首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   

2.
In our previous study vesamicol, an inhibitor of the acetylcholine transporter of the cholinergic vesicles, inhibited veratridine-evoked external Ca2+-dependent acetylcholine release from striatal slices but did not influence acetylcholine release observed in Ca2+-free medium (4). Here we examined if the effect of veratridine on membrane potential, Ca2+ uptake, and intracellular Ca2+ concentration of synaptosomes was altered by vesamicol in parallel with the inhibition of acetylcholine release. The depolarizing effect of 10 M veratridine (from 67±2.3 mV resting membrane potential to 50.7±2.5 mV) was not significantly influenced by vesamicol (1–20 M). Vesamicol (1–20 M) had no effect on either the overall curve of the veratridine-evoked45Ca2+ uptake or the amount of Ca2+ taken up by synaptosomes. Veratridine caused a rise in intrasynaptosomal Ca2+ concentration as measured by Fura2 fluorescence, and the same increase both in characteristics and in magnitude was observed in the presence of vesamicol (20 M). The K+-evoked (40 mM) increase of Ca2+ uptake and of intracellular calcium concentration were also unaltered by vesamicol. In high concentration (50 M) vesamicol inhibited both the fall in membrane potential and the elevated Ca2+ uptake by veratridine, indicating a possible nonspecific effect on potential-dependent Na+ channels at this concentration. Vesamicol, in lower concentration (20 M) when neither of the above parameters was changed, completely prevented veratridine-evoked increase of [14C]acetylcholine release. This was observed only when vesamicol was present in the media throughout the experiment after loading the preparation with [14C]choline. The results suggest that vesamicol does not interfere with veratridine-induced changes in isolated nerve terminals other than with the release of acetylcholine, thus further supporting the involvement of a vesamicol-sensitive vesicular transmitter pool in Ca2+-dependent veratridine-elicited acetylcholine release.  相似文献   

3.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

4.
Fedirko  N.  Vats  Ju.  Klevets  M.  Kruglikov  I.  Voitenko  N. 《Neurophysiology》2002,34(2-3):127-129
We showed that 5 M acetylcholine (ACh) and 100 M norepinephrine (NE) cause increases in the total Ca2+ content in acinar cells by 30 and 87% and in the exocytosis intensity by 15 and 20%, respectively. Application of 5 M ACh and 100 M NE increased the free cytosolic Ca2+ concentration ([Ca2+] i ) by 87 ± 2 and 140 ± 7 nM, respectively. Application of ACh and NE in a Ca2+-free external solution caused a [Ca2+] i increase that was 40 and 67% lower than in physiological solution. We postulate that the exocytosis developing upon neural stimulation of the gland results from generation of Ca2+ transients that are spreading from the basal to the apical region of the exocrine cell, where secretory granules are concentrated.  相似文献   

5.
Polymyxin B, a cyclic peptide antibiotic, inhibits Ca2+-ATPase, p-nitrophenyl phosphatase and phosphorylase kinase activities associated with rabbit skeletal muscle sarcoplasmic reticulum membranes; 50% inhibition is induced by 100 M, 130M and 550 M of polymyxin respectively. The fluorescence intensity of fluorescein isothiocyanate-labeled Ca2+-ATPase, decreases in the presence of polymyxin (50% of the total decrease at 70 M polymyxin). On the other hand, the polypeptide inhibits calmodulin-dependent endogenous phosphorylation of 60 kDa, 20 kDa and 14 kDa membrane proteins, while an increase of calmodulin-dependent phosphorylation is observed in 132 kDa and 86 kDa proteins.  相似文献   

6.
Summary Freeze-fracture studies were conducted on the membranes of normal cockroach hemocytes. The plasmalemma is asymmetric with the A fracture face containing 80–100 Å membrane intercalated particles at a concentration of 2500/2. The B fracture face contains 120–150 Å particles with a relatively low density (800/2). The nuclear envelope displays an asymmetry with the A fracture face containing 1500 particles/2 and the B face containing 300/ 2. No significant particle size differences were observed in nuclear envelope fracture faces. Two types of symmetric membranes were also found in these cells. Both A and B fracture faces of the membrane surrounding the numerous cytoplasmic inclusion bodies contain particle sizes and concentrations similar to the B face of the plasmalemma. A second type of symmetry was observed in cells apparently engaged in exocytosis. Vesicles (0.1 D) from this process were completely particle free on both fracture faces. Such particle free vesicles could be found in the cytoplasm, attached to the plasmalemma, or completely separated from the cell.Supported by a Pharmaceutical Manufacturers Association Foundation Fellowship.The author wishes to thank Ms. Annalena K. Charla for assistance in plate preparation, Dr. Julius Schultz and the Papanicolaou Cancer Research Institute for use of the freeze-etch device, and Dr. David Smith for the electron microscope facilities.  相似文献   

7.
Callus was initiated from immature leaf and stem segments of rose (Rosa hybrida cv. Landora) and subcultured every four weeks on a basal medium of half-strength Murashige & Skoog (1962) salts plus 30 g l-1 sucrose (1/2 MS) and supplemented with 2.2 M BA, 5.4 M NAA and 2.2–9.0 M 2,4-D. Embryogenic callus and subsequently somatic embryos were obtained from 8-week-old callus culture on 1/2 MS+2.2 M BA+0.05 M NAA+0.3 M GA3+200–800 mg l-1 L-proline. Long-term cultures were established and maintained for up to 16 months by repeated subculture of embryogenic callus on L-proline deficient medium. About 12% of cotyledonary stage embryos taken from cultures cold-stored at 8±1°C for 4 days germinated on 1/2 MS+2.2 M BA+0.3 M GA3+24.7 M adenine sulphate.Abbreviations BA benzyladenine - NAA -naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid  相似文献   

8.
The effects of 2-adrenergic stimulation on the Ca2+-current in mouse pancreatic -cells were investigated using the patch-clamp technique. When using the conventional whole-cell recording configuration (dialysis of cell interior with pipette solution), addition of adrenaline (1 M) or the 2-adrenergic agonist clonidine (5 M) failed to reduce the Ca2+-current, irrespective of whether intracellular GTP (or GTP S) was present or not and at both physiological (1.3 mM) and elevated (10.2 mM) Ca2+-concentrations. In fact, in the absence of added guanine nucleotides, the agonists tended toincrease the Ca2+-current amplitude in the presence of the higher Ca2+-concentration. Ca2+-channel activation measured at 1.3 mM Ca2+ was not affected by clonidine. Half-maximal activation was observed at –20 mV. In addition, when Ca2+-currents were recorded from intact -cells, using the perforated patch whole-cell configuration, clonidine (1 M) also failed to detectably affect the Ca2+-current. It is therefore suggested that the inhibition of -cell electrical activity and insulin-secretion produced by 2-adrenoreceptor stimulation does not result from suppression of the L-type Ca2+-current.  相似文献   

9.
Triethyl lead is the major metabolite of tetraethyl lead, which is used in industrial processes and as an antiknock additive to gasoline. We tested the hypothesis that low levels of triethyl lead (0.1 nmol/L to 5mol/L) interfere with the normal development of cultured E18 rat hippocampal neurons, possibly through increases in intracellular free calcium ion concentration, [Ca2+]in. The study assessed survival and differentiation using morphometric analysis of individual neurons. We also looked at short-term (up to 3.75-h) changes in intracellular calcium using the calcium-sensitive dye fura-2. Survival of neurons was significantly reduced at 5 mol/L, and overall production of neurites was reduced at 2 mol/L. The length of axons and the number of axons and dendrites were reduced at 1 mol/L. Neurite branching was inhibited at 10 nmol/L for dendrites and 100 nmol/L for axons. Increases in intracellular calcium were observed during a 3.75-h exposure of newly plated neurons to 5 mol/L triethyl lead. These increases were prevented by BAPTA-AM; which clamps [Ca2+]in at about 100 nmol/L. Culturing neurons with BAPTA-AM and 5 mol/L triethyl lead did not reverse the effects of triethyl lead, suggesting that elevation of [Ca2+]in is not responsible for decreases in survival and neurite production. Triethyl lead has been shown to disrupt cytoskeletal elements, particularly neurofilaments, at very low levels, suggesting a possible mechanism for its inhibition of neurite branching at nanomolar concentrations.Abbreviations BAPTA-AM 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid acetoxymethyl ester - [Ca2+]in intracellular free calcium ion concentration - DMSO dimethyl sulfoxide - E18 embryonic day 18 - FBS fetal bovine serum - fura-2AM fura-2 acetoxymethyl ester - HBSS Hanks' Balanced Salt Solution - MEM Eagle's Minimum Essential Medium  相似文献   

10.
The influence of some ions in pre-growth culture medium on chromate reduction by resting cells of Agrobacterium radiobacter strain EPS-916 was investigated. The reduction was dependent on the Fe2+ content of the culture medium: the higher the iron content, the lower the reduction rate. The cells showed maximum chromate reduction when pre-grown in the presence of 0.243 m Mg2+, 20 m Ca2+ and 3.6 m Mn2+. Chromate reduction was not affected by the addition of MgCl2, CdCl2, ZnCl2, MnCl2, Na2SO4 (1000 m), and Na2MoO4 (100 m) to the activity assays. However, activity was inhibited by the presence of Na2SO4 (10 mm), Na2MoO4 (200 m) and ferric citrate.  相似文献   

11.
Synaptosomal acetylcholine synthesis was found to be dependent on the presence of Na+-dependent HC-3 sensitive choline transport at low (5.5 mM) and high (35 mM) K+ concentrations. However, at 5, 20, and 100 M choline, choline phosphorylation was proportional to total choline uptake, in the presence or absence of high affinity transport. Only in the presence of eserine (50 M) did acetylcholine synthesis increase as the choline concentration was elevated from 20 M to 100 M, and this effect was observed at low and high K+ concentrations. Our results suggest that: 1) the synthesis of non-surplus synaptosomal ACh is dependent on high affinity choline transport; and 2) choline is equally likely to be phosphorylated after being taken up by low or high affinity transport.  相似文献   

12.
The effect of various metals and regucalcin, a calcium-binding protein isolated from rat liver cytosol, on (Ca2+–Mg2+)-ATPase activity in the plasma membranes of rat liver was investigated. Of various metals (Zn2+, Cu2+, Ni2+, Mn2+, Co2+ and Al3+; 100 M as a final concentration), Mn2+ and Co2+ increased markedly (Ca2+–Mg2+)-ATPase activity, while other metals had no effect. When Ca2+ was not added into enzyme reaction mixture, Mn2+ and Co2+ (25–100 M) did not significantly increase the enzyme activity, indicating that heavy metals act on Ca2+-stimulated phosphorylation of the enzyme. Meanwhile, regucalcin (0.25–1.0 M) caused a remarkable elevation of (Ca2+–Mg2+)-ATPase activity. This increase was not inhibited by the presence of 100 M vanadate, although the effects of Mn2+ and Co2+ (100 M) were inhibited by vanadate. Also, the inhibition of the Mn2+ and Co2+ effects by vanadate was not seen in the presence of regucalcin. Moreover, regucalcin (0.5 M) increased significantly the enzyme activity in the absence of Ca2+. This effect of regulcalcin was not altered by increasing concentrations of Ca2+ added, indicating that the regucalcin effect does not depend on Ca2+. The present results suggest that regucalcin activates directly (Ca2+–Mg2+)-ATPase in liver plasma membranes, and that the activation is not involved in the Ca2+-dependent phosphorylation of the enzyme.  相似文献   

13.
The increasing effect of regucalcin, isolated from rat liver cytosol, on neutral proteolytic activity in the hepatic cytosol was characterized. The proteolytic activity was markedly elevated by the addition of regucalcin (0.1–0.5 M) in the absence of Ca2+. This increase was not significantly altered by the presence of diisopropylfluorophsophate (DPF;2.5 mM)—although DFP caused a significant decrease in the proteolytic activity. Regucalcin (0.25 M) additively enhanced the dithiothreitol (DTT; 1.0 mM)—increased proteolytic activity, while the regucalcin or DTT effect was completely abolished by NEM (5 mM), indicating that regucalcin may act on the SH group in proteases. Also, regucalcin (0.25 M) enhanced the effect of Ca2+ (10 M) increasing liver proteolytic activity, suggesting that regucalcin does not influence on the active sites for Ca2+ in proteases. Moreover, the proteolytic activity of regucalcin (0.25 M) was significantly decreased by the presence of calpastatin (24 g/ml), an inhibitor of Ca2+-activated neutral protease (calpain). Now, regucalcin (0.25 M) increased about 7-fold the activity ofm-calpain isolated from rabbit skeletal muscle. These observations demonstrate that regucalcin directly activates cysteinyl-proteases. Regucalcin may have a role as a potent proteolytic activator in the cytoplasm of liver cells.  相似文献   

14.
Hubert Felle 《Planta》1981,152(6):505-512
In the aquatic liverwort Riccia fluitans, membrane depolarization (m), change in membrane conductance (gm), and current-voltage (I-V) characteristics in the presence of different amino acids as well as the uptake of 14C-labeled amino acids were measured. L-isomers of the tested amino acids generate larger electrical effects (m, gm) than D-isomers, and the I-V characteristics show that the positive electrical inward-current of 20 mA m-2 generated by 0.5 mM D-serine is only about 50% of the current generated by adding 0.5 mM L-serine. Whereas - and -amino acids rapidly depolarize the membrane to the same extend, with -aminobutyric acid (-AB) and dipeptides no significant electrical effects have been measured. The uptake kinetics of 14C-labeled amino acids display three components: (I) A saturable high-affinity component with Ks-values of 48 M D-alanine, 12 M -aminoisobutyric acid (AIB), 9 M L-alanine, 8 M L-proline, and 6 M L-serine, respectively; (2) an apparently linear low-affinity component, and (3) an also linear but unspecific component at concentrations >20 times the given Ks-value. Uptake of 14C-labeled AIB can be inhibited competitively by all tested neutral amino acids, the L-isomers being more effective than the D-isomers, as well as by ammonium or methylamine. Vice versa, AIB competitively inhibits uptake of L-serine and L-alanine. It is concluded that an uncharged stereospecific carrier for the investigated amino acids exists in the plasmalemma of Riccia fluitans. Accumulation ratios of about 50 suggest secondary active transport driven by a transmembrane electro-chemical gradient (mainly m) which is generated by the electrogenic proton pump. It is suggested that this carrier binds to the amino group forming either a charged binary complex with positively charged amines (Felle 1980), or an uncharged complex with -AB or dipeptides, whereas electrogenic transport of - and -amino acids is mediated by a ternary carrier complex, probably charged by a proton.Symbols and Abbreviations m membrane potential (mV) - Eco equilibrium potential (mV) of the transport system - gm membrane (slope) conductance (Sm-2) - gm change in gm - I-V curve current-voltage curve - AIB -aminoisobutytric acid - -AB -aminobutyric acid  相似文献   

15.
The regulatory role of Ca2+-stimulated adenosine 5-triphosphatase (Ca2+-ATPase) in Ca2+ transport system of rat liver nuclei was investigated. Ca2+ uptake and release were determined with a Ca2+ electrode. Ca2+-ATPase activity was calculated by subtracting Mg2+-ATPase activity from (Ca2+–Mg2+)-ATPase activity. The release of Ca2+ from the Ca2+-loaded nuclei was evoked progressively after Ca2+ uptake with 1.0 mM ATP addition, while it was only slightly in the case of 2.0 mM ATP addition, indicating that the consumption of ATP causes a leak of Ca2+ from the Ca2+-loaded nuclei. The presence of N-ethylmaleimide (NEM; 0.1 mM) caused an inhibition of nuclear Ca2+ uptake and induced a promotion of Ca2+ release from the Ca2+-loaded nuclei. NEM (0.1 and 0.2 mM) markedly inhibited nuclear Ca2+-ATPase activity. This inhibition was completely blocked by the presence of dithiothreitol (DTT; 0.1 and 0.5 mM). Also, DTT inhibited the effect of NEM (0.1 mM) on nuclear Ca2+ uptake and release. Meanwhile, verapamil and diltiazem (10 M), a blocker of Ca2+ channels, did not prevent the NAD+ (1.0 and 2.0 mM), zinc sulfate (1.0 and 2.5 M) and arachidonic acid (10 M)-induced increase in nuclear Ca2+ release, suggesting that Ca2+ channels do not involve on Ca2+ release from the nuclei. These results indicates that an inhibition of nuclear Ca2+-ATPase activity causes the decrease in nuclear Ca2+ uptake and the release of Ca2+ from the Ca2+-loaded nuclei. The present finding suggests that Ca2+-ATPase plays a critical role in the regulatory mechanism of Ca2+ uptake and release in rat liver nuclei.  相似文献   

16.
We measured the relative sliding velocity of cardiomyopathic hamster cardiac myosin on actin cables by using anin vitro motility assay system. We also investigated the relationship between the velocity and both myosin isozyme content and ATPase activity. Cardiac myosin was obtained from cardiomyopathic hamsters (BIO 14.6;B) aged 3,6,9, and 18 months and age-matched controls (F1B;F). Long well-organized actin cables of an alga,Nitellopsis, wer used for the motility assay. Small latex beads (2 m in diameter) were coated with purified cardiac myosin. When myosin-coated beads were introduced into an algal cell in the presence of Mg-ATP, myosin interacted with actin and dragged the beads. Active movement of the beads along the actin cables was observed under a photomicroscope and the velocity was measured. The velocity was significantly lower in B than in F for each age group (0.47 vs. 0.71 m/s at the age of 3 months, p<0.05; 0.44 vs. 0.88 m/s at 6 months, p<0.01; 0.44 vs. 0.67 m/s at 9 months, p<0.01; 0.35 vs. 0.52 m/s at 18 months, p<0.05). Both Ca2+-activated ATPase activity and the percentage of -myosin heavy chain were also lower in B than in F for each age group. When examined for individual specimens, there was a positive correlation between the velocity and both myosin Ca2+-activated ATPase activity (r=0.84) and percentage of -myosin heavy chain (r=0.83). These data points of both control and cardiomyopathic hamsters were distributed near the regression line obtained from control and thyroxine-treated rabbits reported previously. The present results indicate that the difference in mechanical properties between control and cardiomyopathic cardiac myosin is attributed to isozyme redistribution and not to a qualitative change in each myosin molecule.  相似文献   

17.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+-induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+-induced increase in [Ca2+]i was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25–2.0 mM). The L-type Ca2+-channel blockers, verapamil and diltiazem, at low concentrations (1 M) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 M), and diltiazem (5 and 10 M) as well as with amiloride (5–20 M), nickel (1.25–5.0 mM), cyclopiazonic acid (25 and 50 M) and thapsigargin (10 and 20 M). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 M). These data suggest that in addition to the sarcolemmal Na+–Ca2+ exchanger, both sarcolemmal Na+–K+ATPase, as well as the sarcoplasmic reticulum Ca2+-pump play prominent roles in the low Na+-induced increase in [Ca2+]i. (Mol Cell Biochem 263: 151–162, 2004)  相似文献   

18.
Partially purified plasma membrane fractions were prepared from guinea-pig pancreatic acini. These membrane preparations were found to contain an ATP-dependent Ca2+-transporter as well as a heterogenous ATP-hydrolytic activity. The Ca2+-transporter showed high affinity for Ca2+ (KCa 2+ = 0.04 ± 0.01 M), an apparent requirement for Mg2+ and high substrate specificity. The major component of ATPase activity could be stimulated by either Ca2+ or Mg2+ but showed a low affinity for these cations. At low concentrations, Mg2+ appeared to inhibit the Ca2+-dependent ATPase activity expressed by these membranes. However, in the presence of high Mg2+ concentration (0.5–1 mM), a high affinity Ca2+-dependent ATPase activity was observed (KCa 2+ = 0.08 ± 0.02 M). The hydrolytic activity showed little specificity towards ATP. Neither the Ca2+-transport nor high affinity Ca2+-ATPase activity were stimulated by calmodulin. The results demonstrate, in addition to a low affinity Ca2+ (or Mg+)-ATPase activity, the presence of both a high affinity Ca2+-pump and high affinity Ca2+-dependent ATPase. However, the high affinity Ca2+-ATPase activity does not appear to be the biochemical expression of the Ca2+-pump.Abbreviations Ca2+-ATPase calcium-activated, magnesium-dependent adenosine triphosphatase - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - NADPH reduced form of nicotinamide adenine dinucleotide phosphate  相似文献   

19.
Summmary The Ca2+ uptake activity of rat cardiac sacroplasmic reticulum (CSR) in ventricular homogenates is highly unstable, and this instability probably accounts for the low specific activity of Ca2+ uptake in previously reported fractions of isolated rat CSR. The instability was observed at either 0° or 37°, but the Ca2+ uptake activity was relatively stable at 25°. The decay of Ca2+ uptake activity at 0° could not be prevented by either PMSF or leupeptin, but dithiothreitol exerted some protective effects. Sodium metabisulfite prevented decay of the Ca2+ uptake activity of homogenates kept on ice but not of homogenates kept at 37°. We also found that release of the CSR from the cellular debris required homogenization in high KCI. This distinguishes rat CSR from canine CSR. Isolated CSR was produced by a combination of differential centrifugation and discontinuous sucrous gradient centrifugation. The average rate of the sustained oxalate-supported calcium uptake in the resulting CSR fraction was 0.36 mol/min-mg in the absence of CSR calcium channel blockers and 0.67 mol/min/mg in the presence of 10 M ruthenium red. Thus, this preparation has the advantage of containing both the releasing and non-releasing fractions of the CSR. The Ca2+-ATPase rates averaged 1.07 mol/min/mg and 0.88 mol/min-mg in the absence and presence of ruthenium red, respectively. Although these rates are higher than previously reported rates, this CSR preparation should still be considered a crude preparation. A major distinction between the rat CSR and dog CSR was the lower content of Ca2+-ATPase in rat CSR, as judged by SDS-PAGE. Preparations of CSR isolated by this method may be useful in evaluating alterations in CSR function.  相似文献   

20.
A method has been developed for the preparation of zoospores from Phytophthora palmivora which allows the ionic composition of the suspension medium to be closely controlled. Sub-micromolar concentrations of calcium ions have been shown to play a key role in maintaining the zoospore state and in the transition to the cyst stage. Restriction of free Ca2+ to between 0.2 and 1 M resulted in zoospores which could be maintained for several hours before they finally encysted and germinated. When exposed to citrus-pectin, or 3 mM SrCl2, or to vigorous shaking, these zoospores underwent rapid synchronous encystment. At free Ca2+ concentrations below 0.1 M, zoospores lysed slowly. If exposed to inducers of encystment before lysis had occurred, the zoospores failed to respond to pectin or to vigorous shaking. However, they did differentiate in response to SrCl2 addition. Provided the free Ca2+ was maintained between 0.02 and 0.2 M, zoospores survived gentle centrifugation, a procedure which previously had resulted in encystment.Abbreviations IM (ion-mix) release medium containing 100 M KCl, 10 M CaCl2, and 10 M MgCl2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号