首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na+ content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na+ homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.  相似文献   

2.
3.
HKT-type transporters appear to play key roles in Na(+) accumulation and salt sensitivity in plants. In Arabidopsis HKT1;1 has been proposed to influx Na(+) into roots, recirculate Na(+) in the phloem and control root : shoot allocation of Na(+). We tested these hypotheses using (22)Na(+) flux measurements and ion accumulation assays in an hkt1;1 mutant and demonstrated that AtHKT1;1 contributes to the control of both root accumulation of Na(+) and retrieval of Na(+) from the xylem, but is not involved in root influx or recirculation in the phloem. Mathematical modelling indicated that the effects of the hkt1;1 mutation on root accumulation and xylem retrieval were independent. Although AtHKT1;1 has been implicated in regulation of K(+) transport and the hkt1;1 mutant showed altered net K(+) accumulation, (86)Rb(+) uptake was unaffected by the hkt1;1 mutation. The hkt1;1 mutation has been shown previously to rescue growth of the sos1 mutant on low K(+); however, HKT1;1 knockout did not alter K(+) or (86)Rb(+) accumulation in sos1.  相似文献   

4.

Background

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress.

Results

To analyze global changes in AS under salt stress, we obtained high-coverage (~200 times) RNA sequencing data from Arabidopsis thaliana seedlings that were treated with different concentrations of NaCl. We detected that ~49% of all intron-containing genes were alternatively spliced under salt stress, 10% of which experienced significant differential alternative splicing (DAS). Furthermore, AS increased significantly under salt stress compared with under unstressed conditions. We demonstrated that most DAS genes were not differentially regulated by salt stress, suggesting that AS may represent an independent layer of gene regulation in response to stress. Our analysis of functional categories suggested that DAS genes were associated with specific functional pathways, such as the pathways for the responses to stresses and RNA splicing. We revealed that serine/arginine-rich (SR) splicing factors were frequently and specifically regulated in AS under salt stresses, suggesting a complex loop in AS regulation for stress adaptation. We also showed that alternative splicing site selection (SS) occurred most frequently at 4 nucleotides upstream or downstream of the dominant sites and that exon skipping tended to link with alternative SS.

Conclusions

Our study provided a comprehensive view of AS under salt stress and revealed novel insights into the potential roles of AS in plant response to salt stress.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-431) contains supplementary material, which is available to authorized users.  相似文献   

5.
Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN2 carrier in epidermal root tip cells under conditions normally triggering PIN2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots.  相似文献   

6.
We have characterised genetically and phenotypically a T-DNA insertion mutant line of A. thaliana (L.) Heynh. selected for Cs resistance when germinating and growing on Cs concentrations up to 600microM, lethal for the wild type. Measures of concentration and localisation of Cs, K, and Ca have been conducted on plants grown in vivo also utilising synchrotron light-based techniques as micro-SRXF (synchrotron radiation induced X-ray micro-fluorescence) and micro-XANES (micro X-ray absorption near edge structure) spectroscopy. We report here an attempt to apply micro-XANES to investigate Cs speciation and to measure the Cs content of living plants. The results obtained with micro-SRXF and micro-XANES spectroscopy complemented the genetic and physiological analyses: a comparison between wild type and mutant plants led to the conclusion that in our case a single gene mutation impairs Cs uptake and translocation, K and Ca homeostasis and plant biomass production.  相似文献   

7.
8.
9.
Fatty acid desaturases play important role in plant responses to abiotic stresses including cold, high temperature, drought, and osmotic stress. In this work, we provide the evidence that Fad6, a chloroplast desaturase, is required for salt tolerance during the early seedling development of Arabidopsis. Expression of Fad6 was responsive to salt and osmotic stress. Compared with the wild-type plants, the fad6 mutant showed reduced tolerance to salt stress, and accumulated more Na+ and less K+ under high NaCl stress condition. Furthermore, cellular oxidative damage was more severe in fad6 when treated with high concentrations of NaCl, as indicated by increased electrolyte leakage rate and malondialdehyde production, as well as by decreased activities of anti-oxidative enzymes. All these results suggest that Fad6 is required for salt resistance in Arabidopsis.  相似文献   

10.
Genetic transformation is often associated with different rearrangements of the plant genome at the site of insertion. Therefore the question remains weather these T-DNA insertion sites are more prone to genotoxic stresses. Here, we studied the impact of propagation through generations, the influence of gene stacking and of photo oxidative stress caused by high light intensity on the stability of the transgene flanking regions in the model plant Arabidopsis thaliana. Conformational Sensitive Capillary Electrophoresis (CSCE), RFLP and sequencing were deployed in this analysis in order to study the proximal 100 bp and the long-range T-DNA flanking sequences. By screening seven transgenic lines no evidence for occurrence of mutation events were found, implying that the nucleotide sequence of the T-DNA flanking regions of the studied events is unlikely to be unstable. N. Papazova and R. Ghedira have equally contributed to the paper.  相似文献   

11.
Root hair development is controlled by environmental signals. Studies on root hair plasticity in Arabidopsis thaliana have mainly focused on phosphate and iron deficiency. Root hair growth and development and their physiological role in response to salt stress are largely unknown. Here, we show that root epidermal cell types and root hair development are highly regulated by salt stress. Root hair length and density decreased significantly in a dose-dependent manner on both primary roots and junction sites between roots and shoots. The root hair growth and development were sensitive to inhibition by ions but not to osmotic stress. High salinity also alters anatomical structure of roots, leading to a decrease in cell number in N positions and enlargement of the cells. Moreover, analysis of the salt overly sensitive mutants indicated that salt-induced root hair response is caused by ion disequilibrium and appears to be an adaptive mechanism that reduces excessive ion uptake. Finally, we show that genes WER, GL3, EGL3, CPC, and GL2 might be involved in cell specification of root epidermis in stressed plants. Taken together, data suggests that salt-induced root hair plasticity represents a coordinated strategy for early stress avoidance and tolerance as well as a morphological sign of stress adaptation.  相似文献   

12.
Using the TrichoEST database, generated in a previous functional genomics project from the beneficial filamentous fungus Trichoderma harzianum, a gene named Thkel1, which codes for a putative kelch-repeat protein, was isolated and characterized. Silencing of this gene in T. harzianum leads to a reduction of glucosidase activity and mycelial growth under abiotic stress conditions. Expression of this gene in Arabidopsis enhances plant tolerance to salt and osmotic stresses, accompanied by an increase in glucosidase activity and a reduction of abscisic acid levels compared to those observed in wild-type plants. Data presented throughout this article suggest the high value of T. harzianum as a source of genes able to facilitate the achievement of producing plants resistant to abiotic stresses without alteration of their phenotype.  相似文献   

13.
14.
Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress.  相似文献   

15.
On the basis of earlier reports suggesting that annexin A1 from Arabidopsis thaliana (AnnAt1) participates in limiting the excessive levels of reactive oxygen species during oxidative burst in plants, we examined the sensitivity of recombinant AnnAt1 to hydrogen peroxide and its peroxidase activity. Purified recombinant protein remains mostly alpha-helical and binds to lipids in a calcium-dependent manner. Upon oxidation recombinant AnnAt1 exhibits a tendency to form dimers in vitro. AnnAt1 is also sensitive to the presence of reducing agents, suggesting that AnnAt1 is a redox sensor in plant cells. Moreover, using two independent methods we found that AnnAt1 displayed peroxidase activity which is probably related to the presence of a heme-binding domain within AnnAt1, as present in other peroxidases. Indeed, site-directed mutagenesis within this domain resulted in a complete abrogation of the activity of AnnAt1. Furthermore, this activity was found to be sensitive to the phosphorylation state of the protein.  相似文献   

16.
Müller J  Menzel D  Samaj J 《Protoplasma》2007,230(3-4):231-242
Summary. The cytoskeleton in plant cells plays an important role in controlling cell shape and mediating intracellular signalling. However, almost nothing is known about the reactions of cytoskeletal elements to heat stress, which represents one of the major environmental challenges for plants. Here we show that living epidermal root cells of Arabidopsis thaliana could cope with short-term heat shock stress showing disruption and subsequent recovery of microtubules and actin microfilaments in a time-dependent manner. Time-lapse imaging revealed a very dynamic behavior of both cytoskeletal elements including transient depolymerization and disassembly upon heat shock (40–41 °C) followed by full recovery at room temperature (20 °C) within 1–3 h. Reaction of microtubules, but not actin filaments, to heat shock was dependent on cell type and developmental stage. On the other hand, recovery of actin filaments, but not microtubules, from heat shock stress was dependent on the same parameters. The relevance of this adaptive cytoskeletal behavior to intracellular signalling is discussed. Correspondence and reprints: Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Federal Republic of Germany.  相似文献   

17.
18.
Accumulation of coumarins in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
The biosynthesis of coumarins in plants is not well understood, although these metabolic pathways are often found in the plant kingdom. We report here the occurrence of coumarins in Arabidopsis thaliana ecotype Columbia. Considerably high levels of scopoletin and its beta-d-glucopyranoside, scopolin, were found in the wild-type roots. The scopolin level in the roots was approximately 1200nmol/gFW, which was approximately 180-fold of that in the aerial parts. Calli accumulated scopolin at a level of 70nmol/gFW. Scopoletin and scopolin formation were induced in shoots after treatment with either 2,4-dichlorophenoxyacetic acid (at 100microM) or a bud-cell suspension of Fusarium oxysporum. In order to gain insight into the biosynthetic pathway of coumarins in A. thaliana, we analyzed coumarins in the mutants obtained from the SALK Institute collection that carried a T-DNA insertion within the gene encoding the cytochrome P450, CYP98A3, which catalyzes 3'-hydroxylation of p-coumarate units in the phenylpropanoid pathway. The content of scopoletin and scopolin in the mutant roots greatly decreased to approximately 3% of that in the wild-type roots. This observation suggests that scopoletin and scopolin biosynthesis in A. thaliana are strongly dependent on the 3'-hydroxylation of p-coumarate units catalyzed by CYP98A3. We also found that the level of skimmin, a beta-d-glucopyranoside of umbelliferone, was slightly increased in the mutant roots.  相似文献   

19.
Auxin regulation of plant growth and development is mediated by controlled distribution of this hormone and dose-dependent mechanisms of its action. A mathematical model is proposed, which describes auxin distribution in the cell array along the root longitudinal axis in Arabidopsis thaliana. The model qualitatively simulates auxin distribution over the longitudinal axis in intact roots, changes in this distribution at decreased auxin transport rates, and restoration of the auxin distribution pattern with subsequent establishment of new root meristem in the course of root regeneration after the ablation of its tip. The model shows the presence of different auxin distribution patterns over the longitudinal root axis and suggests possible scenarios for root growth and lateral root formation. Biological interpretation of different regimes of model behavior is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号