首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

2.
d-fructose (10 mM) augments, in rat pancreatic islets, insulin release evoked by 10 mM d-glucose. Even in the absence of d-glucose, d-fructose (100 mM) displays a positive insulinotropic action. It was now examined whether the insulinotropic action of d-fructose could be attributed to an increase in the ATP content of islet cells. After 30-60 min incubation in the presence of d-glucose and/or d-fructose, the ATP and ADP content was measured by bioluminescence in either rat isolated pancreatic islets (total ATP and ADP) or the supernatant of dispersed rat pancreatic islet cells exposed for 30 s to digitonine (cytosolic ATP and ADP). d-fructose (10 and 100 mM) was found to cause a concentration-related decrease in the total ATP and ADP content and ATP/ADP ratio below the basal values found in islets deprived of exogenous nutrient. Moreover, in the presence of 10 mM d-glucose, which augmented both the total ATP content and ATP/ADP ratio above basal value, d-fructose (10 mM) also lowered these two parameters. The cytosolic ATP/ADP ratio, however, was increased in the presence of d-glucose and/or d-fructose. Under the present experimental conditions, a sigmoidal relationship was found between such a cytosolic ATP/ADP ratio and either 86Rb net uptake by dispersed islet cells or insulin release from isolated islets. These data provide, to our knowledge, the first example of a dramatic dissociation between changes in total ATP content or ATP/ADP ratio and insulin release in pancreatic islets exposed to a nutrient secretagogue. Nevertheless, the cationic and insulinotropic actions of d-glucose and/or d-fructose were tightly related to the cytosolic ATP/ADP ratio.  相似文献   

3.
Tsai YC  Chou YC  Wu AB  Hu CM  Chen CY  Chen FA  Lee JA 《Life sciences》2006,78(12):1385-1391
In researches of ketone bodies, D-3-hydroxybutyrate (D-3HB) is usually the major one which has been investigated; in contrast, little attention has been paid to L-3-hydroxybutyrate (L-3HB), because of its presence in trace amounts, its dubious metabolism, and a lack of knowledge about its sources. In the present study we determined the distributions of enantiomers of 3-hydroxybutyrate (3HB) in rat brain, liver, heart, and kidney homogenates, and we found the heart homogenate contained an enriched amount of L-3HB (37.67 microM/mg protein) which generated a significant ratio of 66/34 (D/L). The ratio was altered to be 87/13 in the diabetic rat heart homogenate. We subsequently found this changed ratio of D/L-3HB may contribute to reduce glucose utilization in cardiomyocytes. Glucose utilization by cardiomyocytes with 5 mM of D-3HB was decreased to 61% of the control, but no interference was observed when D-3HB was replaced with L-3HB, suggesting L-3HB is not utilized for the energy fuel as other ketone bodies are. In addition, the reduced glucose utilization caused by D-3HB gradually recovered in a dose-dependent manner with administration of additional L-3HB. The results gave the necessity of taking L-3HB together with D-3HB into account with regard to glucose utilization, and L-3HB may be a helpful substrate for improving inhibited cardiac pyruvate oxidation caused by hyperketonemia.  相似文献   

4.
Melting behaviour of D-sucrose, D-glucose and D-fructose   总被引:1,自引:0,他引:1  
The melting behaviour of d-sucrose, d-glucose and d-fructose was studied. The melting peaks were determined with DSC and the start of decomposition was studied with TG at different rates of heating. In addition, melting points were determined with a melting point apparatus. The samples were identified as d-sucrose, alpha-d-glucopyranose and beta-d-fructopyranose by powder diffraction measurements. There were differences in melting between the different samples of the same sugar and the rate of heating had a remarkable effect on the melting behaviour. For example, T(o), DeltaH(f) and T(i) (initial temperature of decomposition) at a 1 degrees Cmin(-1) rate of heating were 184.5 degrees C, 126.6Jg(-1) and 171.3 degrees C for d-sucrose, 146.5 degrees C, 185.4Jg(-1) and 152.0 degrees C for d-glucose and 112.7 degrees C, 154.1Jg(-1) and 113.9 degrees C for d-fructose. The same parameters at 10 degrees Cmin(-1) rate of heating were 188.9 degrees C, 134.4Jg(-1) and 189.2 degrees C for d-sucrose, 155.2 degrees C, 194.3Jg(-1) and 170.3 degrees C for d-glucose and 125.7 degrees C, 176.7Jg(-1) and 136.8 degrees C d-fructose. At slow rates of heating, there were substantial differences between the different samples of the same sugar. The melting point determination is a sensitive method for the characterization of crystal quality but it cannot be used alone for the identification of sugar samples in all cases. Therefore, the melting point method should be validated for different sugars.  相似文献   

5.
5-Thio-D-arabinopyranose (5) and 5-thio-D-xylopyranose (10) were synthesized from the corresponding D-pentono-1,4-lactones. After regioselective bromination at C-5, transformation into 5-S-acetyl-5-thio derivatives, reduction into lactols and deprotection afforded the title compounds in 49 and 42% overall yield, respectively.  相似文献   

6.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

7.
1,5-Anhydro-d-fructose was efficiently prepared from d-fructose via regiospecific 1,5-anhydro ring formation of 2,3-O-isopropylidene-1-O-methyl(tolyl)sulfonyl-d-fructopyranose and subsequent deprotection.  相似文献   

8.
Four novel disaccharides of glycosylated 1,5-anhydro-d-ketoses have been prepared: 1,5-anhydro-4-O-β-d-glucopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-galactopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-glucopyranosyl-d-tagatose, and 1,5-anhydro-4-O-β-d-galactopyranosyl-d-tagatose. The common intermediate, 1,5-anhydro-2,3-O-isopropylidene-β-d-fructopyranose, was prepared from d-fructose and was converted into the d-tagatose derivative by oxidation followed by stereoselective reduction to the 4-epimer. The anhydroketoses thus prepared were glycosylated and deprotected to give the disaccharides.  相似文献   

9.
1,5-Anhydro-d-fructose (1,5AnFru) is a monoketosaccharide that can be prepared enzymatically from starch by α-1,4-glucan lyase or chemically from d-glucose or d-fructose in a few steps with high yields. The formed 1,5AnFru can be derivatized both enzymatically and chemically to interesting new carbohydrate derivatives, some with biological activities. For example dehydratases, isomerases and reductases can convert 1,5AnFru to enolones (as Ascopyrone P) and sugar alcohols with antimicrobial and antioxidant properties, while chemical modifications can give similar compounds as well as natural products like 1-deoxymannonojirimycin and Clavulazine. 1,5AnFru disaccharides (glycosyl 1→4 1,5AnFru) have been prepared as well as glycosyl 1→4 1,5-anhydro-d-tagatose.  相似文献   

10.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.  相似文献   

11.
Acetalation of sucrose with 2,2-dimethoxypropane in 1,4-dioxane in the presence of p-toluenesulfonic acid, followed by acetylation, afforded methyl 4,6-di-O-acetyl-1,3-O-isopropylidene-alpha-D-fructofuranoside and 4-O-acetyl-2,3:5,6-di-O-isopropylidene-D-glucose dimethyl acetal as major products, while tosylation of the intermediate acetals provided methyl 6-O-tosyl-1,3-O-isopropylidene-alpha-D-fructofuranose.  相似文献   

12.
2-Amino-2,3-dideoxy-D-manno-heptonic acid (7) has been synthesized from 2,5,6,7-tetra-O-acetyl-3-deoxy-D-gluco-heptono-1,4-lactone (1), which was readily prepared from D-glycero-D-gulo-heptono-1,4-lactone. O-Deacetylation of 1 followed by treatment with 13:1 (v/v) 2,2-dimethoxypropane/acetone in the presence of p-toluenesulfonic acid gave methyl 3-deoxy-4,5:6,7-di-O-isopropylidene-D-gluco-heptonate (3) as a crystalline product (80% yield). The free hydroxyl group (OH-2) of 3 was mesylated and substituted by azide to give the corresponding azide derivative 5. Hydrogenolysis and further hydrolysis of the ester function of 5 afforded alpha-amino acid 7 (43% overall yield from 1). Compound 7 is an analog of L-alanine having a polyhydroxy chain attached to C-3. The diastereoisomer of 7 at C-2, 2-amino-2,3-dideoxy-D-gluco-heptonic acid (12) was also prepared from 3, by a route that involved 2,3-dideoxy-2-iodo derivative 8 as a key intermediate.  相似文献   

13.
The reaction of a racemic mixture of (2R,2'S)- and (2S,2'R)-N-(p-tolylsulfonyl)-2-pyrrolidinyl-2-propanol, prepared from (S)-proline, with 2,3,4-tri-O-acetyl-alpha-L-fucopyranosyl trichloroacetimidate led to both diastereoisomers of the title compound after O-deacetylation.  相似文献   

14.
Mills SJ  Liu C  Potter BV 《Carbohydrate research》2002,337(20):1795-1801
The preparation of D- and L-myo-inositol 2,4,5-trisphosphate is described, together with the phosphorothioate counterparts. The known chiral diols D- and L-1,4-di-O-benzyl-5,6-bis-O-p-methoxybenzyl-myo-inositol were regioselectively protected at the 3-position using a benzyl group via a 2,3-O-stannylene acetal. Removal of the p-methoxybenzyl groups of each enantiomer gave D- and L-1,3,6-tri-O-benzyl-myo-inositol. Phosphitylation with bis(benzyloxy)diisoproplyaminophosphine and 1H-tetrazole gave the trisphosphite intermediate for each enantiomer. Oxidation with 3-chloroperoxybenzoic acid gave the fully protected D- and L-myo-inositol 2,4,5-trisphosphates. Sulphoxidation of the D- and L-2,4,5-trisphosphite intermediates gave the fully protected D- and L-myo-inositol 2,4,5-trisphosphorothioate compounds. The fully protected trisphosphates were deblocked using hydrogenolysis and the phosphorothioates were deprotected using sodium in liquid ammonia. The individual compounds were then purified using ion exchange chromatography to afford pure D- and L-myo-inositol 2,4,5-trisphosphates together with the corresponding phosphorothioates.  相似文献   

15.
The enzymatic characterization of GDP-d-mannose 3',5'-epimerase (GME), a key enzyme in the biosynthesis of vitamin C in plants is described. The GME gene (Genbank Accession No. AB193582) in rice was cloned, and expressed as a fusion protein in Escherichia coli. Reaction products from GDP-d-mannose, as produced by GME catalysis, were separated by recycling HPLC on an ODS column, and were determined to be GDP-l-galactose and GDP-l-gulose, based on their NMR spectra and sugar analysis. The reaction catalyzed by GME was inhibited by GDP, and was strongly accelerated by NAD(+) in contrast to the case of GME from Arabidopsis thaliana. This difference in the effect of NAD(+) on GME activity can be attributed to the NAD binding domain which is conserved in the rice gene, but not in the Arabidopsis thaliana gene. The apparent K(m) and k(cat) were determined to be 1.20x10(-5)M and 0.127s(-1), respectively, in the presence of 20microM NAD(+). The fractions of GDP-d-mannose, GDP-l-galactose and GDP-l-gulose, at equilibrium, were approximately 0.75, 0.20 and 0.05, respectively.  相似文献   

16.
Flavonoids and isoflavonoids are potent inhibitors of glucose efflux in human erythrocytes. Net changes of sugars inside the cells were measured by right angle light scattering. The inhibitory potency of hydroxylated flavonoids depends on the pH of the medium. The apparent affinity is maximal at low pH where the molecule is in the undissociated form. The following K(i)-values at pH 6.5 in microM have been obtained: phloretin 0.37+/-0.03, myricetin 0.76+/-0.42, quercetin 0.93+/-0.28, kaempferol 1.33+/-0.17, isoliquiritigenin 1.96, genistein 3.92+/-0.62, naringenin 8.88+/-1.88, 7-hydroxyflavone 17.58+/-3.15 and daidzein 18.62+/-2.85. Flavonoids carrying hydroxyl groups are weak acids and are deprotonated at high pH-values. From spectral changes pK-values between 6.80 (naringenin) and 7.73 (myricetin) have been calculated. No such pK-value could be obtained from quercetin which was rather unstable at alkaline pH. Flavone itself without a hydroxyl group does not demonstrate any absorbance changes at different pH-values and no significant change in inhibition of glucose transport with pH (K(i)-value around 35 microM). In this respect it is similar to the antiestrogens diethylstilbestrol, tamoxifen and cyclofenil with K(i)-values for glucose efflux inhibition of 2.61+/-0.30, 6.75+/-2.03 and 3.97+/-0.54 microM. Except for phloretin, the flavonoids investigated have planar structures. The inhibitory activity in glucose efflux of planar flavonoids increases exponentially with the number of hydroxyl groups in the molecule.  相似文献   

17.
D-glucosaminic acid (2-amino-2-deoxy-D-gluconic acid), a component of bacterial lipopolysaccharides and a chiral synthon, is easily prepared on a multigram scale by air oxidation of D-glucosamine (2-amino-2-deoxy-D-glucose) catalysed by glucose oxidase.  相似文献   

18.
Phosphatidy[2-3]jinositol was prepared from Saccharoniycts cerevisiae (YSC-2), grown in synthetic meaiurn containing myo[2-3H]inositol. Over 44 μCi (or 81 %) of the racio-labeleo inositol was taken up by the organism, with 34 yCi incorporated into phospnatiaylinositol. Upon purification d) silicic acia-meaium pressure liquia chrcnatography (MPLC), a final yield of 24 to 2b μCi of phosphatiayl[2-3h]inositot with a specific radioactivity of 40 ± 103 apm/nmoie wäs obtained. The purified phosphatiuyl[2-3H] inositol was founo to be a suitable substrate for phospholipase C from human platelets  相似文献   

19.
An improved synthesis of 5-thio-D-ribose from D-ribono-1,4-lactone   总被引:1,自引:0,他引:1  
5-Thio-D-ribopyranose was synthesized from D-ribono-1,4-lactone (1) by two approaches: (i) 5-bromo-5-deoxy-D-ribono-1,4-lactone (2) was successively transformed into 5-bromo-5-deoxy, 5-S-acetyl-5-thio or 5-thiocyanato-D-ribofuranose derivatives; appropriate treatment then lead to 5-thio-D-ribopyranose (7) in 46-48% overall yield and; (ii) 2 was transformed into the 5-S-acetyl-5-thio-D-ribono-1,4-lactone derivative (11). Reduction and deprotection of 11 afforded 5-thio-D-ribopyranose (7) in 57% overall yield.  相似文献   

20.
Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号