共查询到20条相似文献,搜索用时 15 毫秒
1.
Webb JS Thompson LS James S Charlton T Tolker-Nielsen T Koch B Givskov M Kjelleberg S 《Journal of bacteriology》2003,185(15):4585-4592
Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids. However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development thereafter, a bacteriophage capable of superinfecting and lysing the P. aeruginosa parent strain was detected in the fluid effluent from the biofilm. The bacteriophage implicated in biofilm killing was closely related to the filamentous phage Pf1 and existed as a prophage within the genome of P. aeruginosa. We propose that prophage-mediated cell death is an important mechanism of differentiation inside microcolonies that facilitates dispersal of a subpopulation of surviving cells. 相似文献
2.
During the past decade, there has been a renewed interest in using Pseudomonas aeruginosa as a model system for biofilm development and pathogenesis. Since the biofilm matrix represents a crucial interface between the bacterium and the host or its environment, considerable effort has been expended to acquire a more complete understanding of the matrix composition. Here, we focus on recent developments regarding the roles of alginate, Psl, and Pel polysaccharides in the biofilm matrix. 相似文献
3.
A current question in biofilm research is whether biofilm-specific genetic processes can lead to differentiation in physiology and function among biofilm cells. In Pseudomonas aeruginosa, phenotypic variants which exhibit a small-colony phenotype on agar media and a markedly accelerated pattern of biofilm development compared to that of the parental strain are often isolated from biofilms. We grew P. aeruginosa biofilms in glass flow cell reactors and observed that the emergence of small-colony variants (SCVs) in the effluent runoff from the biofilms correlated with the emergence of plaque-forming Pf1-like filamentous phage (designated Pf4) from the biofilm. Because several recent studies have shown that bacteriophage genes are among the most highly upregulated groups of genes during biofilm development, we investigated whether Pf4 plays a role in SCV formation during P. aeruginosa biofilm development. We carried out immunoelectron microscopy using anti-Pf4 antibodies and observed that SCV cells, but not parental-type cells, exhibited high densities of Pf4 filaments on the cell surface and that these filaments were often tightly interwoven into complex latticeworks surrounding the cells. Moreover, infection of P. aeruginosa planktonic cultures with Pf4 caused the emergence of SCVs within the culture. These SCVs exhibited enhanced attachment, accelerated biofilm development, and large regions of dead and lysed cells inside microcolonies in a manner identical to that of SCVs obtained from biofilms. We concluded that Pf4 can mediate phenotypic variation in P. aeruginosa biofilms. We also performed partial sequencing and analysis of the Pf4 replicative form and identified a number of open reading frames not previously recognized in the genome of P. aeruginosa, including a putative postsegregational killing operon. 相似文献
4.
目的评估左氧氟沙星(levofloxacin,LFX)浸涂导管抑制铜绿假单胞菌粘附、定植,防止生物膜形成的能力。方法体外部分:制备LFX浸涂导管。LFX浸涂导管、PVC导管分别浸没在5 mL 50%LB培养液中(含PAO1 108CFU/mL),37℃孵育6、12、24和48 h,在各时间点,予导管表面和导管培养液进行细菌计数。体内部分:小鼠皮下植入LFX浸涂导管或PVC导管,沿着导管注射PAO1菌液50μL(107CFU)。第1、5天,对植入导管及导管周围组织进行细菌计数及扫描电镜(SEM)观察。结果 (1)LFX浸涂导管显示药物的快速释放。(2)在各孵育时间点,LFX浸涂导管及导管培养液的细菌数较PVC导管均明显减少(P〈0.05)。(3)小鼠感染第1、5天,LFX浸涂植入导管表面没有或很少细菌;LFX浸涂导管较PVC导管能明显减少植入导管周围组织的细菌量(P〈0.05)。(4)SEM观察:感染第1、5天,LFX浸涂导管表面散在单个细菌或者没有细菌;而第1天,PVC导管表面大量细菌分散存在。第5天,导管表面"珊瑚状"生物膜形成。结论 LFX浸涂导管能抑制铜绿假单胞菌粘附、定植,防止生物膜形成,从而有效降低导管生物膜相关感染的发生。 相似文献
5.
Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development 下载免费PDF全文
An analysis of the Pseudomonas aeruginosa genomic sequence revealed three gene clusters, PA1381-1393, PA2231-2240, and PA3552-3558, in addition to the alginate biosynthesis gene cluster, which appeared to encode functions for exopolysaccharide (EPS) biosynthesis. Recent evidence indicates that alginate is not a significant component of the extracellular matrix in biofilms of the sequenced P. aeruginosa strain PAO1. We hypothesized that at least one of the three potential EPS gene clusters revealed by genomic sequencing is an important component of P. aeruginosa PAO1 biofilms. Thus, we constructed mutants with chromosomal insertions in PA1383, PA2231, and PA3552. The mutant with a PA2231 defect formed thin unstructured abnormal biofilms. The PA3552 mutant formed structured biofilms that appeared different from those formed by the parent, and the PA1383 mutant formed structured biofilms that were indistinguishable from those formed by the parent. Consistent with a previous report, we found that polysaccharides were one component of the extracellular matrix, which also contained DNA. We suggest that the genes that were inactivated in our PA2231 mutant are required for the production of an EPS, which, although it may be a minor constituent of the matrix, is critical for the formation of P. aeruginosa PAO1 biofilms. 相似文献
6.
细菌分泌胞外多糖附着在物体表面组成一个结构性群体即生物膜,导致对抗生素的强抵抗性和感染的迁延不愈。反过来,已形成的生物膜也可以分散为游离菌,许多环境物质能够促进该分散过程,并且这些物质与抗生素合用对生物膜有强大的对抗作用。从生物膜到浮游菌是个复杂的过程,目前关于铜绿假单胞菌生物膜分散的特征、机制、诱导分子等已经引起了学者的强烈兴趣,随着问题的深入研究必然会给人类治疗生物膜所致的难治性感染带来更大的意义。 相似文献
7.
Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa 下载免费PDF全文
Recent studies have indicated that biosurfactants produced by Pseudomonas aeruginosa play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. Through the use of flow cell technology and enhanced confocal laser scanning microscopy, we have obtained results which suggest that the biosurfactants produced by P. aeruginosa play additional roles in structural biofilm development. We present genetic evidence that during biofilm development by P. aeruginosa, biosurfactants promote microcolony formation in the initial phase and facilitate migration-dependent structural development in the later phase. P. aeruginosa rhlA mutants, deficient in synthesis of biosurfactants, were not capable of forming microcolonies in the initial phase of biofilm formation. Experiments involving two-color-coded mixed-strain biofilms showed that P. aeruginosa rhlA mutants were defective in migration-dependent development of mushroom-shaped multicellular structures in the later phase of biofilm formation. Experiments involving three-color-coded mixed-strain P. aeruginosa biofilms demonstrated that the wild-type and rhlA and pilA mutant strains formed distinct subpopulations on top of each other dependent on their ability to migrate and produce biosurfactants. 相似文献
8.
Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development 总被引:17,自引:6,他引:11
The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface in response to appropriate environmental signals. We report the isolation and characterization of mutants of Pseudomonas aeruginosa PA14 defective in the initiation of biofilm formation on an abiotic surface, polyvinylchloride (PVC) plastic. These mutants are designated surface attachment defective ( sad ). Two classes of sad mutants were analysed: (i) mutants defective in flagellar-mediated motility and (ii) mutants defective in biogenesis of the polar-localized type IV pili. We followed the development of the biofilm formed by the wild type over 8 h using phase-contrast microscopy. The wild-type strain first formed a monolayer of cells on the abiotic surface, followed by the appearance of microcolonies that were dispersed throughout the monolayer of cells. Using time-lapse microscopy, we present evidence that microcolonies form by aggregation of cells present in the monolayer. As observed with the wild type, strains with mutations in genes required for the synthesis of type IV pili formed a monolayer of cells on the PVC plastic. However, in contrast to the wild-type strain, the type IV pili mutants did not develop microcolonies over the course of the experiments, suggesting that these structures play an important role in microcolony formation. Very few cells of a non-motile strain (carrying a mutation in flgK ) attached to PVC even after 8 h of incubation, suggesting a role for flagella and/or motility in the initial cell-to-surface interactions. The phenotype of these mutants thus allows us to initiate the dissection of the developmental pathway leading to biofilm formation. 相似文献
9.
Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self-generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self-assembly process and several distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural differentiation remain largely unknown. The distinct roles of different EPS have been addressed in the present report. Both Pel and Psl polysaccharides are required for type IV pilus-independent microcolony formation in the initial stages of biofilm formation by Pseudomonas aeruginosa PAO1. Both Pel and Psl polysaccharides are also essential for subpopulation interactions and macrocolony formation in the later stages of P. aeruginosa PAO1 biofilm formation. Pel and Psl polysaccharides have different impacts on Pseudomonas quinolone signal-mediated extracellular DNA release in P. aeruginosa PAO1 biofilms. Psl polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation. 相似文献
10.
铜绿假单胞菌铁摄取与生物被膜形成研究进展 总被引:1,自引:0,他引:1
生物被膜是单细胞微生物通过其分泌的胞外多聚基质粘附于介质表面并将其自身包绕其中而成的膜样微生物细胞聚集物。生物被膜的形成使细菌具有更强的适应外界环境的能力,也是导致微生物产生耐药性及慢性感染性疾病难以治疗的重要原因之一。铜绿假单胞菌在肺部的定殖是肺囊性纤维化病患者发病和死亡主要原因,其造成的感染通常与形成抗生素抗性极强的生物被膜有关。铜绿假单胞菌生物被膜的形成受控于多种复杂的细菌调控体系之下,包括群体感应系统及参与调节胞外多聚基质合成的双组分调控系统等。此外,为了利用低浓度的环境铁来维持生存并完成各种生理功能,铜绿假单胞菌进化出了一系列铁摄取系统,这些系统对其毒力因子的释放和生物被膜的形成又起着重要的调控作用。本文主要对铜绿假单胞菌生物被膜的形成与调控机制及其铁摄取系统进行了综述,为进一步了解及清除铜绿假单胞菌引发的问题提供途径与思路。 相似文献
11.
Diggle SP Stacey RE Dodd C Cámara M Williams P Winzer K 《Environmental microbiology》2006,8(6):1095-1104
LecA (PA-IL) is a cytotoxic lectin and adhesin produced by Pseudomonas aeruginosa which binds hydrophobic galactosides with high specificity and affinity. By using a lecA-egfp translation fusion and immunoblot analysis of the biofilm extracellular matrix, we show that lecA is expressed in biofilm-grown cells. In static biofilm assays on both polystyrene and stainless steel, biofilm depth and surface coverage was reduced by mutation of lecA and enhanced in the LecA-overproducing strain PAO-P47. Biofilm surface coverage by the parent strain, PAO-P47 but not the lecA mutant on steel coupons was also inhibited by growth in the presence of either isopropyl-beta-D-thiogalactoside (IPTG) or p-nitrophenyl-alpha-D-galactoside (NPG). Furthermore, mature wild-type biofilms formed in the absence of these hydrophobic galactosides could be dispersed by the addition of IPTG. In contrast, addition of p-nitrophenyl-alpha-L-fucose (NPF) which has a high affinity for the P. aeruginosa LecB (PA-IIL) lectin had no effect on biofilm formation or dispersal. Planktonic growth of P. aeruginosa PAO1 was unaffected by the presence of IPTG, NPG or NPF, nor was the strain able to utilize these sugars as carbon sources, suggesting that the observed effects on biofilm formation were due to the competitive inhibition of LecA-ligand binding. Similar results were also obtained for biofilms grown under dynamic flow conditions on steel coupons, suggesting that LecA contributes to P. aeruginosa biofilm architecture under different environmental conditions. 相似文献
12.
13.
Maianskiĭ AN Chebotar' IV Rudneva EI Chistiakova VP 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》2012,(1):3-8
Definition of the biofilm process as one of the types of intercellular bacterial communications is presented. The modern data concerning the structure of the Pseudomonas aeruginosa biofilm matrix and genetic mechanisms necessary for its production are described. Active and passive rejections of biofilm bacteria, which are the basis of bacterial spreading to new surfaces, are discussed. The complexity and chain type of the reactions associated with biofilm formation are emphasized. 相似文献
14.
《Biologicals》2014,42(1):1-7
Pseudomonas aeruginosa is a gram-negative pathogen that has become an important cause of infection, especially in patients with compromised host defense mechanisms. It is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteremia. The biofilm formed by the bacteria allows it to adhere to any surface, living or non-living and thus Pseudomonal infections can involve any part of the body. Further, the adaptive and genetic changes of the micro-organisms within the biofilm make them resistant to all known antimicrobial agents making the Pseudomonal infections complicated and life threatening. Pel, Psl and Alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell–cell and cell–surface interactions during biofilm formation. Understanding the bacterial virulence which depends on a large number of cell-associated and extracellular factors is essential to know the potential drug targets for future studies. Current novel methods like small molecule based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides, monoclonal antibodies and nanoparticles to curtail the biofilm formed by P. aeruginosa are being discussed in this review. 相似文献
15.
Yang L Haagensen JA Jelsbak L Johansen HK Sternberg C Høiby N Molin S 《Journal of bacteriology》2008,190(8):2767-2776
The growth dynamics of bacterial pathogens within infected hosts are a fundamental but poorly understood feature of most infections. We have focused on the in situ distribution and growth characteristics of two prevailing and transmissible Pseudomonas aeruginosa clones that have caused chronic lung infections in cystic fibrosis (CF) patients for more than 20 years. We used fluorescence in situ hybridization (FISH) directly on sputum specimens to examine the spatial distribution of the infecting P. aeruginosa cells. Mucoid variants were present in sputum as cell clusters surrounded by an extracellular matrix, whereas nonmucoid variants were present mainly as dispersed cells. To obtain estimates of the growth rates of P. aeruginosa in CF lungs, we used quantitative FISH to indirectly measure growth rates of bacteria in sputum samples (reflecting the in vivo lung conditions). The concentration of rRNA in bacteria isolated from sputa was measured and correlated with the rRNA contents of the same bacteria growing in vitro at defined rates. The results showed that most cells were actively growing with doubling times of between 100 and 200 min, with some growing even faster. Only a small stationary-phase subpopulation seemed to be present in sputa. This was found for both mucoid and nonmucoid variants despite their different organizations in sputum. The results suggest that the bacterial population may be confronted with selection forces that favor optimized growth activities. This scenario constitutes a new perspective on the adaptation and evolution of P. aeruginosa during chronic infections in CF patients in particular and on long-term infections in general. 相似文献
16.
Alterations in extracellular substances during the biofilm development of Pseudomonas aeruginosa on aluminum plates 总被引:1,自引:0,他引:1
The chemical moieties during biofilm formation of Pseudomonas aeruginosa on aluminium plates were examined for a period of 17 days. The effect of fluid shearing upon biofilm formation has also been investigated. The Fourier transform infrared (FTIR) spectrum of the biofilm taken on the fifth day showed significant differences compared with the spectrum of the unattached bacterial cells, indicating that structural changes or modifications of the cell envelope had taken place during the development of the biofilm. Major changes were also observed in the spectrum during the subsequent development of the biofilm from day 5 to day 17. The increasing intensity of a band corresponding to the symmetric stretching mode of the carboxyl group indicated interactions between the carboxyl group and the aluminium surface. Increased bacterial colonization was also observed at the air-water interface of the aluminium plates when compared with the middle and the bottom parts. Changes in FTIR spectra of the biofilm at the bottom, at the middle, and at the air-water interface suggest that the mechanisms of bacterial attachment differed by a -COO(-) interaction at the air-water interface, and by both -COO(-) and NH3(+) groups beneath the water surface. 相似文献
17.
Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development 下载免费PDF全文
Mature Pseudomonas aeruginosa biofilms form complex three-dimensional architecture and are tolerant of antibiotics and other antimicrobial compounds. In this work, an in vivo expression technology system, originally designed to study virulence-associated genes in complex mammalian environments, was used to identify genes up-regulated in P. aeruginosa grown to a mature (5-day) biofilm. Five unique cloned promoters unable to promote in vitro growth in the absence of purines after recovery from the biofilm environment were identified. The open reading frames downstream of the cloned promoter regions were identified, and knockout mutants were generated. Insertional mutation of PA5065, a homologue of Escherichia coli ubiB, was lethal, while inactivation of PA0240 (a porin homologue), PA3710 (a putative alcohol dehydrogenase), and PA3782 (a homologue of the Streptomyces griseus developmental regulator adpA) had no effect on planktonic growth but caused defects in biofilm formation in static and flowing systems. In competition experiments, mutants demonstrated reduced fitness compared with the parent strain, comprising less than 0.0001% of total biofilm cells after 5 days. Therefore, using in-biofilm expression technology, we have identified novel genes that do not affect planktonic growth but are important for biofilm formation, development, and fitness. 相似文献
18.
Pseudomonas aeruginosa is an opportunistic human pathogen and has been established as a model organism to study bacterial biofilm formation. At least three exopolysaccharides (alginate, Psl, and Pel) contribute to the formation of biofilms in this organism. Here mutants deficient in the production of one or more of these polysaccharides were generated to investigate how these polymers interactively contribute to biofilm formation. Confocal laser scanning microscopy of biofilms formed in flow chambers showed that mutants deficient in alginate biosynthesis developed biofilms with a decreased proportion of viable cells than alginate-producing strains, indicating a role of alginate in viability of cells in biofilms. Alginate-deficient mutants showed enhanced extracellular DNA (eDNA)-containing surface structures impacting the biofilm architecture. PAO1 ΔpslA Δalg8 overproduced Pel, and eDNA showing meshwork-like structures presumably based on an interaction between both polymers were observed. The formation of characteristic mushroom-like structures required both Psl and alginate, whereas Pel appeared to play a role in biofilm cell density and/or the compactness of the biofilm. Mutants producing only alginate, i.e., mutants deficient in both Psl and Pel production, lost their ability to form biofilms. A lack of Psl enhanced the production of Pel, and the absence of Pel enhanced the production of alginate. The function of Psl in attachment was independent of alginate and Pel. A 30% decrease in Psl promoter activity in the alginate-overproducing MucA-negative mutant PDO300 suggested inverse regulation of both biosynthesis operons. Overall, this study demonstrated that the various exopolysaccharides and eDNA interactively contribute to the biofilm architecture of P. aeruginosa. 相似文献
19.
A study was undertaken to examine the effects of the heavy metals copper, lead, and zinc on biofilm and planktonic Pseudomonas aeruginosa. A rotating-disk biofilm reactor was used to generate biofilm and free-swimming cultures to test their relative levels of resistance to heavy metals. It was determined that biofilms were anywhere from 2 to 600 times more resistant to heavy metal stress than free-swimming cells. When planktonic cells at different stages of growth were examined, it was found that logarithmically growing cells were more resistant to copper and lead stress than stationary-phase cells. However, biofilms were observed to be more resistant to heavy metals than either stationary-phase or logarithmically growing planktonic cells. Microscopy was used to evaluate the effect of copper stress on a mature P. aeruginosa biofilm. The exterior of the biofilm was preferentially killed after exposure to elevated concentrations of copper, and the majority of living cells were near the substratum. A potential explanation for this is that the extracellular polymeric substances that encase a biofilm may be responsible for protecting cells from heavy metal stress by binding the heavy metals and retarding their diffusion within the biofilm. 相似文献
20.
Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function 总被引:24,自引:0,他引:24 下载免费PDF全文
Hentzer M Teitzel GM Balzer GJ Heydorn A Molin S Givskov M Parsek MR 《Journal of bacteriology》2001,183(18):5395-5401
During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development on an abiotic surface. Biofilms formed by an alginate-overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments. 相似文献