首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.  相似文献   

2.
The process of mitochondrial protein import has been studied for many years. Despite this attention, many processes associated with mitochondrial biogenesis are poorly understood. Insight into one of these processes, assembly of beta-barrel proteins into the mitochondrial outer membrane, will be discussed. This review focuses on recent data that suggest that assembly of beta-barrel proteins into the outer mitochondrial membrane is dependent on a newly identified protein complex termed the sorting and assembly machinery (SAM complex). Members of the SAM complex have been identified in both eukaryotic and prokaryotic organisms, suggesting that the process of beta-barrel assembly into membranes has been conserved through evolution.  相似文献   

3.
V Haucke  G Schatz 《The EMBO journal》1997,16(15):4560-4567
We have reconstituted the protein insertion machinery of the yeast mitochondrial inner membrane into proteoliposomes. The reconstituted proteoliposomes have a distinct morphology and protein composition and correctly insert the ADP/ATP carrier (AAC) and Tim23p, two multi-spanning integral proteins of the mitochondrial inner membrane. The reconstituted system requires a membrane potential, but not Tim44p or mhsp70, both of which are required for the ATP-driven translocation of proteins into the matrix. The protein insertion machinery can thus operate independently of the energy-transducing Tim44p-mhsp70 complex.  相似文献   

4.
The biogenesis of mitochondrial outer membrane proteins involves the general translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex). The two known subunits of the SAM complex, Mas37 and Sam50, are required for assembly of the abundant outer membrane proteins porin and Tom40. We have identified an unexpected subunit of the SAM complex, Mdm10, which is involved in maintenance of mitochondrial morphology. Mitochondria lacking Mdm10 are selectively impaired in the final steps of the assembly pathway of Tom40, including the association of Tom40 with the receptor Tom22 and small Tom proteins, while the biogenesis of porin is not affected. Yeast mutants of TOM40, MAS37, and SAM50 also show aberrant mitochondrial morphology. We conclude that Mdm10 plays a specific role in the biogenesis of the TOM complex, indicating a connection between the mitochondrial protein assembly apparatus and the machinery for maintenance of mitochondrial morphology.  相似文献   

5.
Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS) complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM) complex, to form the mitochondrial intermembrane space bridging complex (MIB). We have created knockdown cell lines of most of the MICOS and MIB components and have used them to study the importance of the individual subunits for the cristae formation and complex stability. We show that the most important subunits of the MIB complex in human mitochondria are Mic60/Mitofilin, Mic19/CHCHD3 and an outer membrane component Sam50. We provide additional proof that ApoO indeed is a subunit of the MICOS and MIB complexes and propose the name Mic23 for this protein. According to our results, Mic25/CHCHD6, Mic27/ApoOL and Mic23/ApoO appear to be periphery subunits of the MICOS complex, because their depletion does not affect cristae morphology or stability of other components.  相似文献   

6.
Mitochondria are organelles derived from an intracellular α-proteobacterium. The biogenesis of mitochondria relies on the assembly of β-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an α-proteobacterium, and the BAM (β-barrel assembly machinery) complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A ∼150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane.  相似文献   

7.
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.  相似文献   

8.
Steroidogenesis begins with the transport of cholesterol from intracellular stores into mitochondria via a series of protein-protein interactions involving cytosolic and mitochondrial proteins located at both the outer and inner mitochondrial membranes. In adrenal glands and gonads, this process is accelerated by hormones, leading to the production of high levels of steroids that control tissue development and function. A hormone-induced multiprotein complex, the transduceosome, was recently identified, and is composed of cytosolic and outer mitochondrial membrane proteins that control the rate of cholesterol entry into the outer mitochondrial membrane. More recent studies unveiled the steroidogenic metabolon, a bioactive, multimeric protein complex that spans the outer-inner mitochondrial membranes and is responsible for hormone-induced import, segregation, targeting, and metabolism of cholesterol by cytochrome P450 family 11 subfamily A polypeptide 1 (CYP11A1) in the inner mitochondrial membrane. The availability of genome information allowed us to systematically explore the evolutionary origin of the proteins involved in the mitochondrial cholesterol transport machinery (transduceosome, steroidogenic metabolon, and signaling proteins), trace the original archetype, and predict their biological functions by molecular phylogenetic and functional divergence analyses, protein homology modeling and molecular docking. Although most members of these complexes have a history of gene duplication and functional divergence during evolution, phylogenomic analysis revealed that all vertebrates have the same functional complex members, suggesting a common mechanism in the first step of steroidogenesis. An archetype of the complex was found in invertebrates. The data presented herein suggest that the cholesterol transport machinery is responsible for steroidogenesis among all vertebrates and is evolutionarily conserved throughout the entire animal kingdom.  相似文献   

9.
The general preprotein translocase of the outer mitochondrial membrane (TOM complex) transports virtually all mitochondrial precursor proteins, but cannot assemble outer-membrane precursors into functional complexes. A recently discovered sorting and assembly machinery (SAM complex) is essential for integration and assembly of outer-membrane proteins, revealing unexpected connections to mitochondrial evolution and morphology.  相似文献   

10.
Tim9, a new component of the TIM22.54 translocase in mitochondria.   总被引:14,自引:3,他引:11       下载免费PDF全文
We have identified Tim9, a new component of the TIM22.54 import machinery, which mediates transport of proteins into the inner membrane of mitochondria. Tim9, an essential protein of Saccharomyces cerevisiae, shares sequence similarity with Tim10 and Tim12. Tim9 is located in the mitochondrial intermembrane space and is organized into two distinct hetero-oligomeric assemblies with Tim10 and Tim12. One complex contains Tim9 and Tim10. The other complex contains Tim9, Tim10 and Tim12 and is tightly associated with Tim22 in the inner membrane. The TIM9.10 complex is more abundant than the TIM9.10.12 complex and mediates partial translocation of mitochondrial carriers proteins across the outer membrane. The TIM9.10.12 complex assists further translocation into the inner membrane in association with TIM22.54.  相似文献   

11.
Saccharomyces cerevisiae Mdm38 and Ylh47 are homologues of human Letm1, a protein implicated in Wolf-Hirschhorn syndrome. We analyzed the function of Mdm38 and Ylh47 in yeast mitochondria to gain insight into the role of Letm1. We find that mdm38Delta mitochondria have reduced amounts of certain mitochondrially encoded proteins and low levels of complex III and IV and accumulate unassembled Atp6 of complex V of the respiratory chain. Mdm38 is especially required for efficient transport of Atp6 and cytochrome b across the inner membrane, whereas Ylh47 plays a minor role in this process. Both Mdm38 and Ylh47 form stable complexes with mitochondrial ribosomes, similar to what has been reported for Oxa1, a central component of the mitochondrial export machinery. Our results indicate that Mdm38 functions as a component of an Oxa1-independent insertion machinery in the inner membrane and that Mdm38 plays a critical role in the biogenesis of the respiratory chain by coupling ribosome function to protein transport across the inner membrane.  相似文献   

12.
The genome of mitochondria encodes a small number of very hydrophobic polypeptides that are inserted into the inner membrane in a cotranslational reaction. The molecular process by which mitochondrial ribosomes are recruited to the membrane is poorly understood. Here, we show that the inner membrane protein Mba1 binds to the large subunit of mitochondrial ribosomes. It thereby cooperates with the C-terminal ribosome-binding domain of Oxa1, which is a central component of the insertion machinery of the inner membrane. In the absence of both Mba1 and the C-terminus of Oxa1, mitochondrial translation products fail to be properly inserted into the inner membrane and serve as substrates of the matrix chaperone Hsp70. We propose that Mba1 functions as a ribosome receptor that cooperates with Oxa1 in the positioning of the ribosome exit site to the insertion machinery of the inner membrane.  相似文献   

13.
Mitochondria import the majority of their proteins from the cytosol. At the mitochondrial outer membrane, import is initiated through a series of reactions, which include preprotein recognition, unfolding, insertion and translocation. These processes are facilitated by a multisubunit complex, the TOM complex. Specific roles can now be assigned to several components of this complex. Although the import machinery of the outer membrane can insert and translocate a few proteins on its own, completion of translocation o f most preproteins is dependent upon coupling to both the membrane potential and mt-Hsp70/ATP-driven transport across the inner membrane, mediated by the TIM complex.  相似文献   

14.
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.  相似文献   

15.
The mitochondrial outer membrane contains translocase complexes for the import of precursor proteins. The translocase of the outer membrane complex functions as a general preprotein entry gate, whereas the sorting and assembly machinery complex mediates membrane insertion of β-barrel proteins of the outer membrane. Several α-helical outer membrane proteins are known to carry multiple transmembrane segments; however, only limited information is available on the biogenesis of these proteins. We report that mitochondria lacking the mitochondrial import protein 1 (Mim1) are impaired in the biogenesis of multispanning outer membrane proteins, whereas overexpression of Mim1 stimulates their import. The Mim1 complex cooperates with the receptor Tom70 in binding of precursor proteins and promotes their insertion and assembly into the outer membrane. We conclude that the Mim1 complex plays a central role in the import of α-helical outer membrane proteins with multiple transmembrane segments.  相似文献   

16.
As a consequence of their bacterial origin, mitochondria contain β-barrel proteins in their outer membrane (OMM). These proteins require the translocase of the outer membrane (TOM) complex and the conserved sorting and assembly machinery (SAM) complex for transport and integration into the OMM. The SAM complex and the β-barrel assembly machinery (BAM) required for biogenesis of β-barrel proteins in bacteria are evolutionarily related. Despite this homology, we show that bacterial β-barrel proteins are not universally recognized and integrated into the OMM of human mitochondria. Selectivity exists both at the level of the TOM and the SAM complex. Of all of the proteins we tested, human mitochondria imported only β-barrel proteins originating from Neisseria sp., and only Omp85, the central component of the neisserial BAM complex, integrated into the OMM. PorB proteins from different Neisseria, although imported by the TOM, were not recognized by the SAM complex and formed membrane complexes only when functional Omp85 was present at the same time in mitochondria. Omp85 alone was capable of integrating other bacterial β-barrel proteins in human mitochondria, but could not substitute for the function of its mitochondrial homolog Sam50. Thus, signals and machineries for transport and assembly of β-barrel proteins in bacteria and human mitochondria differ enough to allow only a certain type of β-barrel proteins to be targeted and integrated in mitochondrial membranes in human cells.  相似文献   

17.
Protein sorting in mitochondria.   总被引:20,自引:0,他引:20  
Most polypeptides that are imported into the mitochondrial matrix use a common translocation machinery. By contrast, proteins of the other mitochondrial compartments are imported by a variety of different mechanisms. Some of these proteins completely bypass the common translocation machinery, others use only the outer membrane components of this machinery, and still others use components of this machinery from both the outer and inner membranes. Import to the intermembrane space compartment provides examples of all three possibilities.  相似文献   

18.
Most mitochondrial proteins are imported into mitochondria from the cytosolic compartment. Proteins destined for the outer or inner membrane, the inter-membrane space, or the matrix are recognized and translocated by the TOM machinery containing the specialized protein import channel Tom40. The latter is a protein with β-barrel shape, which is suggested to have evolved from a porin-type protein. To obtain structural insights in the absence of a crystal structure the membrane topology of Tom40 from Neurospora crassa was determined by limited proteolysis combined with mass spectrometry. The results were interpreted on the basis of a structural model that has been generated for NcTom40 by using the structure of mouse VDAC-1 as a template and amino acid sequence information of approximately 270 different Tom40 and approximately 480 VDAC amino acid sequences for refinement. The model largely explains the observed accessible cleavage sites and serves as a structural basis for the investigation of physicochemical properties of the ensemble of our Tom40 sequence data set. By this means we discovered two conserved polar slides in the pore interior. One is possibly involved in the positioning of a pore-inserted helix; the other one might be important for mitochondrial pre-sequence peptide binding as it is only present in Tom40 but not in VDAC proteins. The outer surface of the Tom40 barrel reveals two conserved amino acid clusters. They may be involved in binding other components of the TOM complex or bridging components of the TIM machinery of the mitochondrial inner membrane.  相似文献   

19.
Mitochondrial distribution and morphology depend on MDM33, a Saccharomyces cerevisiae gene encoding a novel protein of the mitochondrial inner membrane. Cells lacking Mdm33 contain ring-shaped, mostly interconnected mitochondria, which are able to form large hollow spheres. On the ultrastructural level, these aberrant organelles display extremely elongated stretches of outer and inner membranes enclosing a very narrow matrix space. Dilated parts of Delta mdm33 mitochondria contain well-developed cristae. Overexpression of Mdm33 leads to growth arrest, aggregation of mitochondria, and generation of aberrant inner membrane structures, including septa, inner membrane fragments, and loss of inner membrane cristae. The MDM33 gene is required for the formation of net-like mitochondria in mutants lacking components of the outer membrane fission machinery, and mitochondrial fusion is required for the formation of extended ring-like mitochondria in cells lacking the MDM33 gene. The Mdm33 protein assembles into an oligomeric complex in the inner membrane where it performs homotypic protein-protein interactions. Our results indicate that Mdm33 plays a distinct role in the mitochondrial inner membrane to control mitochondrial morphology. We propose that Mdm33 is involved in fission of the mitochondrial inner membrane.  相似文献   

20.
Tom40 forms the central channel of the preprotein translocase of the mitochondrial outer membrane (TOM complex). The precursor of Tom40 is encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via a multi-step assembly pathway that involves the mature TOM complex and the sorting and assembly machinery of the outer membrane (SAM complex). We report that opening of the mitochondrial intermembrane space by swelling blocks the assembly pathway of the beta-barrel protein Tom40. Mitochondria with defects in small Tim proteins of the intermembrane space are impaired in the Tom40 assembly pathway. Swelling as well as defects in the small Tim proteins inhibit an early stage of the Tom40 import pathway that is needed for formation of a Tom40-SAM intermediate. We propose that the biogenesis pathway of beta-barrel proteins of the outer mitochondrial membrane not only requires TOM and SAM components, but also involves components of the intermembrane space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号