首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the cyclodiene organochlorine pesticides aldrin, dieldrin and endosulfan was assessed on CHO-K1 cultures at fractions of their lethal doses, determined by the neutral red (NRI) incorporation assay (NRI6.25, NRI12.5 and NRI25). Glutathione peroxidase, reductase and S-transferase, and total and oxidised glutathione were evaluated along the standard growth curve of the cultures. After a 24-h incubation with each insecticide, glutathione peroxidase incurred a large increase, while glutathione reductase and S-transferase activities were slightly higher than untreated controls. Unlike oxidised glutathione, the content of total glutathione declined significantly after exposure to cyclodiene insecticides. Changes in cell membrane integrity were assessed by the lactate dehydrogenase (LDH) release assay and lipid peroxidation for a wide range of pesticide concentrations. Membrane leakage and peroxide production were significantly enhanced at concentrations of aldrin and as low as 12.5 μg/ml, whereas dieldrin and endosulfan increased membrane fragility at much higher concentrations.  相似文献   

2.
The aim of this study was to assess the intensity of oxidative stress by measuring levels of lipid peroxidation products in the duodenum, jejunum and colon of rats infected with Hymenolepis diminuta and evaluate the effectiveness of protection against oxidative stress by measuring the glutathione levels and activity of anti-oxidant enzymes: superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase.In exposed rats we observed a significant increase of lipid peroxidation products in the duodenum and jejunum. A significant decrease in superoxide dismutase activity in all the examined parts of the digestive tract was observed. Additionally, rats from 16 to 40 days post H. diminuta infection (dpi) had a decreased catalase activity in the colon, while at 60 dpi it increased. The glutathione peroxidase activity increased significantly in the colon at 60 dpi. The increase in glutathione reductase activity was observed in the colon in rats 60 dpi. There was a lack of changes in the levels of glutathione in the duodenum and a significant increase in its concentration in the jejunum and colon from 40 to 60 dpi and from 16 to 40 dpi, respectively. In this study we observed altered activity of anti-oxidant enzymes and glutathione level in experimental hymenolepidosis, as a consequence of oxidative stress. It may indicate a decrease in the efficiency of intestinal protection against oxidative stress induced by the presence of the parasite. The imbalance between oxidant and anti-oxidant processes may play a major role in pathology associated with hymenolepidosis.  相似文献   

3.
Thermal stability of antioxidant defense enzymes superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11) was studied in chloroplasts and mitochondria of leaf and inflorescence in heat adaptive weed Chenopodium album. Leaf samples were taken in March (31 °C/14 °C) and young inflorescence (INF) was sampled at flowering in April (40 °C/21 °C). Leaf and INF chloroplast and mitochondrial fractions were subjected to elevated temperatures in vitro (5–100 °C) for 30′. SOD and APX showed activity even after boiling treatment in both chloroplast and mitochondria of leaf and INF. SOD was more heat stable than APX in both chloroplasts and mitochondria in both the tissues. Chloroplast contained more heat stable SOD and APX isozymes than mitochondria in both leaf and INF. To the best of our knowledge this is the first report showing presence of thermostable APX isozymes (100 °C for 30′) in chloroplasts and mitochondria in C. album. Heat stable isozymes of SOD and APX in chloroplasts and mitochondria in leaves and inflorescence may contribute to heat tolerance in C. album.  相似文献   

4.
A selective chiral high performance liquid chromatographic (HPLC) method was developed and validated to separate and quantify the enantiomers of a novel anticonvulsant agent, N-(4-chlorophenyl)-1-(4-pyridyl)ethylamine (AAP-Cl), in rat plasma. After extraction of the plasma samples with ethyl acetate, the separation was accomplished by an HPLC system consisting of a Chirex chiral column (250 mm x 4.6 mm i.d.) and a mobile phase of hexane:ethanol:tetrahydrofuran (280:20:40 (v/v)) containing trifluroacetic acid (0.3% (v/v)) and triethylamine (0.018% (v/v)) at a flow rate of 0.8 ml/min with UV detection. Male Sprague-Dawley rats were given (+)-AAP-Cl (10 and 20 mg/kg), (-)-AAP-Cl (10 mg/kg) or the racemic mixture (20 mg/kg) by i.v. bolus injection and serial blood samples were collected at different times after drug administration. (+)-AAP-Cl and (-)-AAP-Cl were separated with a resolution factor, Rs, of at least 1.4, and a separation factor, alpha, greater than 1.09. Linear calibration curves were obtained over the concentration range of 0.5-30 microg/ml in plasma for both (+)-AAP-Cl and (-)-AAP-Cl (R2 > or = 0.996) with a limit of quantitation of 100 ng/ml and the recovery was greater than 80% for both enantiomers. The accuracy and precision for both enantiomers ranged from 96 to 102% (+/-0.2-7%) at upper and lower concentrations. The plasma concentration-time profiles of the enantiomers of AAP-Cl were best described by a two-compartment open model with a mean terminal half-life of about 5h, volume of distribution at steady state of 3 l/kg and clearance of about 0.6l/(hkg) in rats. There was no significant difference between the pharmacokinetic parameters of (+)-AAP-Cl and (-)-AAP-Cl, suggesting that the disposition of AAP-Cl in rats is not enantioselective. In addition, no chiral inversion of (+)-AAP-Cl to (-)-AAP-Cl or vice versa was observed. The results of this investigation have shed some light on the mechanism of action and disposition of AAP-Cl in rats.  相似文献   

5.
Salicylic acid (SA) is known to affect photosynthesis under normal conditions and induces tolerance in plants to biotic and abiotic stresses through influencing physiological processes. In this study, physiological processes were compared in salt-tolerant (Pusa Vishal) and salt-sensitive (T44) cultivars of mungbean and examined how much these processes were induced by SA treatment to alleviate decrease in photosynthesis under salt stress. Cultivar T44 accumulated higher leaf Na+ and Cl content and exhibited greater oxidative stress than Pusa Vishal. Activity of antioxidant enzymes, ascorbate peroxidase (APX) and glutathione reductase (GR) was greater in Pusa Vishal than T44. Contrarily, activity of superoxide dismutase (SOD) was greater in T44. The greater accumulation of leaf nitrogen and sulfur through higher activity of their assimilating enzymes, nitrate reductase (NR) and ATP-sulfurylase (ATPS) increased reduced glutathione (GSH) content more conspicuously in Pusa Vishal than T44. Application of 0.5 mM SA increased nitrogen and sulfur assimilation, GSH content and activity of APX and GR. This resulted in the increase in photosynthesis under non-saline condition and alleviated the decrease in photosynthesis under salt stress. It also helped in restricting Na+ and Cl content in leaf, and maintaining higher efficiency of PSII, photosynthetic N-use efficiency (NUE) and water relations in Pusa Vishal. However, application of 1.0 mM SA resulted in inhibitory effects. The effect of SA was more pronounced in Pusa Vishal than T44. These results indicate that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the activity of NR and ATPS, and increasing antioxidant metabolism to a greater extent in Pusa Vishal than T44.  相似文献   

6.
Colon cancer is the major health hazard related with high mortality and it is a pathological consequence of persistent oxidative stress and inflammation. Farnesol, an isoprenoid alcohol, has been shown to possess antioxidant, anti-inflammatory and chemopreventive properties. The present study was performed to evaluate the protective efficacy of farnesol against 1,2-dimethylhydrazine (DMH) induced oxidative stress, inflammatory response and apoptotic tissue damage. Farnesol was administered once daily for seven consecutive days at the doses of 50 and 100 mg/kg body weight in corn oil. On day 7, a single injection of DMH was given subcutaneously in the groin at the dose of 40 mg/kg body weight. Protective effects of farnesol were assessed by using caspase-3 activity, tissue lipid peroxidation (LPO) and antioxidant status as end point markers. Further strengthening was evident on histopathological observations used to assess the protective efficacy of farnesol. Prophylactic treatment with farnesol significantly ameliorates DMH induced oxidative damage by diminishing the tissue LPO accompanied by increase in enzymatic viz., superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and quinone reductase (QR) and non-enzymatic viz., reduced glutathione (GSH) antioxidant status. Farnesol supplementation significantly decreased caspase-3 activity in colonic tissue. Histological findings also revealed that pretreatment with farnesol significantly reduced the severity of submucosal edema, regional destruction of the mucosal layer and intense infiltration of the inflammatory cells in mucosal and submucosal layers of the colon. The data of the present study suggest that farnesol effectively suppress DMH induced colonic mucosal damage by ameliorating oxidative stress, inflammatory and apoptotic responses.  相似文献   

7.
Hypoxia favored the preservation of progenitor characteristics of hematopoietic stem and progenitor cells (HSPCs) in bone marrow. This work aimed at studying the role of reactive oxygen species (ROS)-generating NADPH oxidase system regulated by hypoxia in ex vivo cultures of cord blood CD34+ cells. The results showed that NADPH oxidase activity and ROS generation were reduced in hypoxia with respect to normal oxygen tension. Meanwhile the ROS generation was found to be inhibited by diphenyleneiodonium (the NADPH oxidase inhibitor), or N-acetylcysteine (the ROS scavenger). Accordingly NADPH oxidase mRNA and p67 protein levels decreased in hypoxia. The analysis of progenitor characteristics, including the proportion of cultured cells expressing the HSPCs marker CD34+CD38, colony production ability of the colony-forming cells (CFCs), and the re-expansion capability of the cultured CD34+ cells, showed that either 5% pO2 or reduced ROS favored preserving the characteristics of CD34+ progenitors, and promoted the expansion of CD34+CD38 cells as well. The above results demonstrated that hypoxia effectively maintained biological characteristics of CD34+ cells through keeping lower intracellular ROS levels by regulating NADPH oxidase.  相似文献   

8.
Yeast glutaredoxins Grx1 and Grx2 catalyze the reduction of both inter- and intra-molecular disulfide bonds using glutathione (GSH) as the electron donor. Although sharing the same dithiolic CPYC active site and a sequence identity of 64%, they have been proved to play different roles during oxidative stress and to possess different glutathione-disulfide reductase activities. To address the structural basis of these differences, we solved the crystal structures of Grx2 in oxidized and reduced forms, at 2.10 Å and 1.50 Å, respectively. With the Grx1 structures we previously reported, comparative structural analyses revealed that Grx1 and Grx2 share a similar GSH binding site, except for a single residue substitution from Asp89 in Grx1 to Ser123 in Grx2. Site-directed mutagenesis in combination with activity assays further proved this single residue variation is critical for the different activities of yeast Grx1 and Grx2.  相似文献   

9.
HIV-1 envelope gp120 and gp41 glycoproteins (Env), expressed at the cell surface, induce uninfected CD4 T-cell death, but the molecular mechanisms leading to this demise are still largely unknown. To better understand these events, we analyzed by a proteomic approach the differential protein expression profile of two types of uninfected immune cells after their coculture for 1-3 days with cells that express, or not, Env. First, umbilical cord blood mononuclear cells (UCBMCs) were used to approach the in vivo situation, i.e., blood uninfected naive cells that encounter infected cells. Second, we used the A2.01/CD4.403 T-cell line expressing wild type CXCR4 and a truncated form of CD4 that still undergoes Env-mediated apoptosis, independently of CD4 signaling. After coculture with cells expressing Env, 35 and 39 proteins presenting an altered expression in UCBMCs and the A2.01/CD4.403 T-cell line, respectively, were identified by mass-spectrometry. Whatever the cell type analyzed, the majority of these proteins are involved in degradation processes, redox homeostasis, metabolism and cytoskeleton dynamics, and linked to mitochondrial functions. This study provides new insights into the events that sequentially occur in bystander T lymphocytes after contact with HIV-infected cells and leading, finally, to apoptotic cell death.  相似文献   

10.
11.
Su-Mi Kim 《FEBS letters》2010,584(1):213-606
Adrenomedullin (ADM) functions as a survival factor against hypoxic cell death. However, molecular mechanisms underlying the cell survival pathway remain largely unknown. In this report, we showed that ADM suppressed reactive oxygen species (ROS) increase by inhibiting reduction of glutathione (GSH) level in hypoxia/reoxygenation (H/R) injury, and increased the activities of glutathione peroxidase and reductase. In addition, ADM maintained total and active reduced thioredoxin (Trx) levels against H/R. We also found that ADM blocked nuclear translocation of Trx induced by H/R. The results of the present study show that ADM regulates cellular ROS levels via the GSH and Trx system.  相似文献   

12.
We investigated the effect of long-term exposure to CBZ on the antioxidant system in brain tissue of rainbow trout. Fish were exposed to sublethal concentrations of CBZ (1.0 μg/L, 0.2 mg/L or 2.0 mg/L) for 7, 21, and 42 days. Oxidative stress indices (LPO and CP) and activities of antioxidant enzymes (SOD, CAT, GPx and GR) in fish brain were measured. In addition, non-enzymatic antioxidant (GSH) was determined after 42 days exposure. Carbamazepine exposure at 0.2 mg/L led to significant increases (p < 0.05) of LPO and CP after 42 days and, at 2.0 mg/L, after 21 days. Activities of the antioxidant enzymes SOD, CAT, and GPx in CBZ-treated groups slightly increased during the first period (7 days). However, activities of all measured antioxidant enzymes were significantly inhibited (p < 0.05) at 0.2 mg/L exposure after 42 days and after 21 days at 2.0 mg/L. After 42 days, the content of GSH in fish brain was significantly lower (p < 0.05) in groups exposed to CBZ at 0.2 mg/L and 2.0 mg/L than in other groups. Prolonged exposure to CBZ resulted in excess reactive oxygen species formation, finally resulting in oxidative damage to lipids and proteins and inhibited antioxidant capacities in fish brain. In short, a low level of oxidative stress could induce the adaptive responses of antioxidant enzymes, but long-term exposure to CBZ could lead to serious oxidative damage in fish brain.  相似文献   

13.
Im YJ  Ji M  Lee AM  Boss WF  Grunden AM 《FEBS letters》2005,579(25):5521-5526
Pyrococcus furiosus superoxide reductase (SOR) is a thermostable archaeal enzyme that reduces superoxide without producing oxygen. When produced as a fusion protein with the green fluorescent protein in plant cells, P. furiosus SOR is located in the cytosol and nucleus. The recombinant SOR enzyme retains its function and heat stability when assayed in vitro. Importantly, expressing SOR in plant cells enhances their survival at high temperature indicating that it functions in vivo. The archaeal SOR provides a novel mechanism to reduce superoxide and demonstrates the potential for using archaeal genes to alter eukaryotic metabolism.  相似文献   

14.
15.
16.
Brassica juncea annexin-3 (BjAnn3) was functionally characterized for its ability to modulate H2O2-mediated oxidative stress in Saccharomyces cerevisiae. BjAnn3 showed a significant protective role in cellular-defense against oxidative stress and partially alleviated inhibition of mitochondrial respiration in presence of exogenously applied H2O2. Heterologous expression of BjAnn3 protected membranes from oxidative stress-mediated damage and positively regulated antioxidant gene expression for ROS detoxification. We conclude that, BjAnn3 partially counteracts the effects of thioredoxin peroxidase 1 (TSA1) deficiency and aids in cellular-protection across kingdoms. Despite partial compensation of TSA1 by BjAnn3 in cell-viability tests, the over-complementation in ROS-related features suggests the existence of both redundant (e.g. ROS detoxification) and distinct features (e.g. membrane protection versus proximity-based redox regulator) of both proteins.  相似文献   

17.
We investigated the regulation of free radical metabolism in Helix aspersa snails during a cycle of 20-day estivation and 24-h arousal in summer in comparison with estivation/arousal in winter-snails. In winter-snails (J. Exp. Biol. 206, 675-685, 2003), we had already observed an increase in the selenium-dependent glutathione-peroxidase (Se-GPX) activity in foot muscle and hepatopancreas and in the contents of hepatopancreas GSH-equivalents (GSH-eq=GSH+2 GSSG) during estivation compared with 24-h aroused snails. Summer-estivation prompted a 3.6-fold increase in Se-GPX activity in hepatopancreas, though not in foot muscle. Total-superoxide dismutase and catalase activities in hepatopancreas decreased (by 30-40%) during summer-estivation; however, no changes occurred in the activities of glutathione reductase, glutathione S-transferase and glucose-6-phosphate dehydrogenase in the two organs. GSH-eq levels were increased (by 54%) in foot muscle during estivation, but were unchanged in hepatopancreas. In contrast with winter-snails, oxidative stress markers (lipid peroxidation, carbonyl protein, and the GSSG/GSH-eq ratio) were unaltered during estivation/arousal in summer. These results demonstrate that seasonality modulates not only the absolute activities/levels of antioxidants (enzymes and GSH-eq) in H. aspersa, but also the regulatory process that controls the snail's antioxidant capacity during estivation/arousal. These results suggest that H. aspersa has an "internal clock" controlling the regulation of free radical metabolism in the different seasons.  相似文献   

18.
The food additive butylated hydroxytoluene (BHT) promotes tumorigenesis in mouse lung. Chronic BHT exposure is accompanied by pulmonary inflammation and several studies indicate that elevated levels of reactive oxygen species (ROS) are involved in its promoting activity. The link between BHT and elevated ROS involves formation of quinone methide (QM) metabolites; these electrophiles form adducts with a variety of lung proteins including several enzymes that protect cells from oxidative stress. Studies in vitro demonstrated that QM alkylation of cytoprotective enzymes is accompanied by inactivation, so an objective of the present investigation was to determine if inactivation also occurs in vivo. Two groups of mice were exposed to BHT by intraperitoneal injection, one for 10 days and the other for 24 days, and proteins from lung cytosols were examined for damage. Analysis by Western blotting demonstrated that BHT treatment caused substantial increases in protein carbonylation, nitration and adduction by 4-hydroxynonenal, confirming the occurrence of sustained oxidative and nitrosative stress over the treatment period required for tumor promotion. Effects of BHT on the activities and/or levels of a representative group of antioxidant/protective enzymes in mouse lung also were assessed; NAD(P)H:quinone reductase and glutathione reductase were unaffected, however carbonyl reductase activity decreased 50–60%. Superoxide dismutase and glutathione peroxidase activities increased 2- and 1.5-fold, respectively, and glutamate-cysteine ligase catalytic subunit expression increased 32–39% relative to untreated mice. Glutathione S-transferase (GST) activity decreased 50–60% but concentrations of the predominant isoforms, GSTM1 and P1, were not affected. GSTP1 was substantially more susceptible than M1 to adduction and inhibition by treatment with BHT–QM in vitro, suggesting that lower GST activity in mice after BHT treatment is due to adduction of the P1 isoform. The results of this study provide additional insight into mechanisms of BHT-induced oxidative damage and further support a link between inflammation and tumor promotion in mouse lung.  相似文献   

19.
Shi Q  Bao Z  Zhu Z  He Y  Qian Q  Yu J 《Phytochemistry》2005,66(13):1551-1559
The effects of exogenous silicon (Si) on plant growth, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase, and concentrations of ascorbate and glutathione were investigated in cucumber (Cucumis sativus L.) plants treated with excess manganese (Mn) (600 microM). Compared with the treatment of normal Mn (10 microM), excess Mn significantly increased H2O2 concentration and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances. The leaves showed apparent symptoms of Mn toxicity and the plant growth was significantly inhibited by excess Mn. The addition of Si significantly decreased lipid peroxidation caused by excess Mn, inhibited the appearance of Mn toxicity symptoms, and improved plant growth. This alleviation of Mn toxicity by Si was related to a significant increase in the activities of SOD, APX, DHAR and GR and the concentrations of ascorbate and glutathione.  相似文献   

20.
Annona muricata Linnaeus, popularly known as “graviola” and also called soursop, is a species typical of countries with a tropical climate, and it is used in folk medicine as an anticancer, analgesic and antispasmodic agent. The aim of the present study was to validate the gastroprotective activity of the hydroalcoholic extract of the leaves of A. muricata (HEAM) and to investigate the underlying mechanisms of action for this effect. Gastric lesions were induced in mice by absolute ethanol, acidified ethanol or indomethacin. Before, the animals were pretreated with saline, omeprazole or HEAM orally at doses of 50–400 mg/kg. To determine the mechanism of action of the extract, we investigated, using specific inhibitors, the involvement of nitric oxide (NO), prostaglandins (PGEs), ATP-dependent K+ channels and α2-noradrenergic receptors. HEAM showed significant antiulcer activity against lesions induced by absolute ethanol, acidified ethanol or indomethacin, which was mediated by endogenous gastric prostaglandins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号