首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic process of embryonic cell motility was investigated by analyzing the lateral mobility of the fibronectin receptor in various locomotory or stationary avian embryonic cells, using the technique of fluorescence recovery after photobleaching. The lateral mobility of fibronectin receptors, labeled by a monoclonal antibody, was defined by the diffusion coefficient and mobile fraction of these receptors. Even though the lateral diffusion coefficient did not vary appreciably (2 X 10(-10) cm2/S less than or equal to D less than or equal to 4 X 10(-10) cm2/S) with the locomotory state and the cell type, the mobile fraction was highly dependent on the degree of cell motility. In locomoting cells, the population of fibronectin receptors, which was uniformly distributed on the cell surface, displayed a high mobile fraction of 66 +/- 19% at 25 degrees C (82 +/- 14% at 37 degrees C). In contrast, in nonmotile cells, the population of receptors was concentrated in focal contacts and fibrillar streaks associated with microfilament bundles and, in these sites, the mobile fraction was small (16 +/- 8%). When cells were in a stage intermediate between highly motile and stationary, the population of fibronectin receptors was distributed both in focal contacts with a small mobile fraction and in a diffuse pattern with a reduced mobile fraction (33 +/- 9%) relative to the diffuse population in highly locomotory cells. The mobile fraction of the fibronectin receptor was found to be temperature dependent in locomoting but not in stationary cells. The mobile fraction could be modulated by affecting the interaction between the receptor and the substratum. The strength of this interaction could be increased by growing cells on a substratum coated with polyclonal antibodies to the receptor. This caused the mobile fraction to decrease. The interaction could be decreased by using a probe, monoclonal antibodies to the receptor known to perturb the adhesion of certain cell types which caused the mobile fraction to increase. From these results, we conclude that in locomoting embryonic cells, most fibronectin receptors can readily diffuse in the plane of the membrane. This degree of lateral mobility may be correlated to the labile adhesions to the substratum presumably required for high motility. In contrast, fibronectin receptors in stationary cells are immobilized in focal contacts and fibrillar streaks which are in close association with both extracellular and cytoskeletal structures; these stable complexes appear to provide firm anchorage to the substratum.  相似文献   

2.
Summary Migration and tissue distribution of immunocompetent cells may be critical prerequisites for efficient immune surveillance. The effect of various concentrations of the mistletoe extract Iscador? QuFrF on the locomotory behavior and viability of immunomagnetically isolated human CD4+ and CD8+ T lymphocytes within three-dimensional collagen gels was investigated. Although variation in baseline activities of spontaneously migrating T cells was donor-dependent, a dose-dependent stimulation of the locomotory activity in both CD4+ and CD8+ T cells for noncytotoxic concentrations of Iscador QuFrF (0.25–1.25 μg/ml) was detected. The optimal concentration of mistletoe extract and time of maximal response were specific for each donor. As shown by cell tracking and subsequent data analysis, CD4+ T cells exposed to the mistletoe extract displayed a significant increase in mean velocity and time locomoting; total distance migrated was nearly doubled. In contrast, CD8+ T cells showed less pronounced changes in these critical parameters. Cytotoxic effects of the mistletoe preparation on T lymphocytes, which could at least partially be attributed to the induction of apoptosis, were drastically reduced in the presence of fetal calf serum in the culture system. Our data suggest that the direct stimulation of T-cell migration in the presence of mistletoe components may modulate in a dose-dependent manner the system of immune surveillance and recognition in patients under mistletoe therapy.  相似文献   

3.
Actin filament (F-actin) assembly kinetics determines the locomotion and shape of crawling eukaryotic cells, but the nature of these kinetics and their determining reactions are unclear. Live BHK21 fibroblasts, mouse melanoma cells, and Dictyostelium amoebae, locomoting on glass and expressing Green Fluorescent Protein-actin fusion proteins, were examined by confocal microscopy. The cells demonstrated three-dimensional bands of F-actin, which propagated throughout the cytoplasm at rates usually ranging between 2 and 5 microm/min in each cell type and produced lamellipodia or pseudopodia at the cell boundary. F-actin's dynamic behavior and supramolecular spatial patterns resembled in detail self-organized chemical waves in dissipative, physico-chemical systems. On this basis, the present observations provide the first evidence of self-organized, and probably autocatalytic, chemical reaction-diffusion waves of reversible actin filament assembly in vertebrate cells and a comprehensive record of wave and locomotory dynamics in vegetative-stage Dictyostelium cells. The intensity and frequency of F-actin wavefronts determine locomotory cell projections and the rotating oscillatory waves, which structure the cell surface. F-actin assembly waves thus provide a fundamental, deterministic, and nonlinear mechanism of cell locomotion and shape, which complements mechanisms based exclusively on stochastic molecular reaction kinetics.  相似文献   

4.
The broad aim of this work was to explore the feasibility of using light-directed perturbation techniques to study cell locomotion. Specifically, a caged form of thymosin beta4 (Tbeta4) was photoactivated in a defined local region of locomoting fish scale keratocytes and the resulting perturbation of locomotion was studied. Purified Tbeta4 was produced in an inactive form by "caging" with ([n-nitroveratryl]oxy)chlorocarbamate. In vitro spectrophotofluorometric assays indicated that caged Tbeta4 did not change the normal actin polymerization kinetics, whereas photoactivated Tbeta4 significantly inhibited actin polymerization. With an a priori knowledge of the cytoplasmic diffusion coefficient of Tbeta4 as measured by fluorescence recovery after photobleaching experiments, the rapid sequestration of actin monomers by uncaged Tbeta4 and the consequent reduction in the diffusional spread of the Tbeta4-actin complex were predicted using Virtual Cell software (developed at the Center for Biomedical Imaging Technology, University of Connecticut Health Center). These simulations demonstrated that locally photoactivating Tbeta4 in keratocytes could potentially elicit a regional locomotory response. Indeed, when caged Tbeta4 was locally photoactivated at the wings of locomoting keratocytes, specific turning about the irradiated region was observed, whereas various controls were negative. Additionally, loading of exogenous Tbeta4 into both keratocytes and fibroblasts caused very rapid disassembly of actin filaments and reduction of cellular contractility. Based on these results, a mechanical model is proposed for the turning behavior of keratocytes in response to photoreleased Tbeta4.  相似文献   

5.
Unmated E. cautella of both sexes were caged together and the ensuing behaviours of females were recorded, with particular attention to orientations to other insects. Calling females engaged in ‘turning-to-face’ and ‘walking up to’ orientations directed almost exclusively at wing-beating males (flying, or sexually excited and ambulatory). Non-calling, locomoting females engaged in ‘flying at’, ‘landing near’ and ‘walking into’ orientations directed predominantly at wing-beating or resting males, and occasionally at mating pairs or at calling females. The activities of the orienting female led to changes in the behaviour of some target insects, and 4% of all females mated directly after approaching males. Results are discussed in relation to sexual receptivity, locomotory excitation, and the pheromonal control of this species.  相似文献   

6.
The paper presents a quantitative study of the trajectories of rat granulocytes (PMNs) migrating on a glass surface inclined at various angles, i.e. under the action of gravitational force component parallel to the plane. The action of the force of the order of 5 X 10(-13) N (component parallel to the plane inclined at 80 degrees) accompanied by the decrease of a gravitational component perpendicular to the surface does not disrupt the adhesion contact of migrating PMNs with the serum coated glass surface. Under the action of the external force parallel to the surface, the PMNs exhibit a tendency to migrate in the direction of the force vector and the angles between elementary segments (steps) of cell trajectories are smaller in comparison with migration on a horizontal plane (0 degrees inclination). It has been found that the mean velocity of motion of PMNs locomoting on a steep slope (70 degrees and 80 degrees) is greater in comparison with the migration velocity on a horizontal surface. The increase of velocity concerns not only cells migrating in the downward direction, but also those which move upwards. Possible mechanisms of the influence of external force on direction and rate of migration of granulocytes are discussed, namely modification of adhesion force, stimulation of cell motile activity, individual variability of cell adhesive and migration properties, shortening of transient locomotory adhesions.  相似文献   

7.
We have determined the structural organization and dynamic behavior of actin filaments in entire primary locomoting heart fibroblasts by S1 decoration, serial section EM, and photoactivation of fluorescence. As expected, actin filaments in the lamellipodium of these cells have uniform polarity with barbed ends facing forward. In the lamella, cell body, and tail there are two observable types of actin filament organization. A less abundant type is located on the inner surface of the plasma membrane and is composed of short, overlapping actin bundles (0.25–2.5 μm) that repeatedly alternate in polarity from uniform barbed ends forward to uniform pointed ends forward. This type of organization is similar to the organization we show for actin filament bundles (stress fibers) in nonlocomoting cells (PtK2 cells) and to the known organization of muscle sarcomeres. The more abundant type of actin filament organization in locomoting heart fibroblasts is mostly ventrally located and is composed of long, overlapping bundles (average 13 μm, but can reach up to about 30 μm) which span the length of the cell. This more abundant type has a novel graded polarity organization. In each actin bundle, polarity gradually changes along the length of the bundle. Actual actin filament polarity at any given point in the bundle is determined by position in the cell; the closer to the front of the cell the more barbed ends of actin filaments face forward.

By photoactivation marking in locomoting heart fibroblasts, as expected in the lamellipodium, actin filaments flow rearward with respect to substrate. In the lamella, all marked and observed actin filaments remain stationary with respect to substrate as the fibroblast locomotes. In the cell body of locomoting fibroblasts there are two dynamic populations of actin filaments: one remains stationary and the other moves forward with respect to substrate at the rate of the cell body.

This is the first time that the structural organization and dynamics of actin filaments have been determined in an entire locomoting cell. The organization, dynamics, and relative abundance of graded polarity actin filament bundles have important implications for the generation of motile force during primary heart fibroblast locomotion.

  相似文献   

8.
Three-dimensional locomotory trajectories have been determined for an embryonic fibroblast population and also for these cells after a 20-day period in tissue culture (C-20 cells). Differences in locomotory characteristics between these two cell populations are reported. Applying factor analysis to the distribution of angle changes between vectors in a cell's trajectory reveals the possibility that different locomotory phenotypes exist. Of the three phenotypes detected in the embryonic population only one continues in the C-20 population while a new phenotype appears in the latter. These results document changes in locomotory characteristics and phenotypes in an embryonic population with time.  相似文献   

9.
The cytoskeletal activity of motile or adherent cells is frequently seen to induce detectable displacements of sufficiently compliant substrata. The physics of this phenomenon is discussed in terms of the classical theory of small-strain, plane-stress elasticity. The main results of such analysis is a transform expressing the displacement field of the elastic substrate as an integral over the traction field. The existence of this transform is used to derive a Bayesian method for converting noisy measurements of substratum displacement into "images" of the actual traction forces exerted by adherent or locomoting cells. Finally, the Monte Carlo validation of the statistical method is discussed, some new rheological studies of films are presented, and a practical application is given.  相似文献   

10.
A computer-driven, three-dimensional, optical, cell-tracking system was used to quantify the locomotory phenotypes of Mos-11 cells in a collagen gel. Factor analysis was used as a statistical means to make the complex variables generated by the system more tractable to analysis. Heterogeneity in locomotory behavior (two independent locomotory phenotypes) was detected among a sample of 54 cells.  相似文献   

11.
Using two newly synthesized inhibitors, Ro 31-8220 and CGP 41 251, of protein kinase C (PKC), we analyzed: (1) how distinct PMN functions (shape changes, locomotion, pinocytosis) are regulated, and (2) the role of protein phosphorylation and PKC in this process. We were able to transform: (1) resting PMNs into locomoting cells using fNLPNTL, (2) locomoting cells into non-locomoting highly pinocytic cells using PMA, and (3) PMA-stimulated cells showing marked pinocytosis into locomoting or into resting cells using Ro 31-8220. It is thus possible to selectively manipulate PMN function (resting state, locomotion, marked pinocytosis), indicating that there are different regulatory pathways. It was not possible to induce locomotion and marked pinocytosis simultaneously, indicating crosstalk between pathways. Ro 31-8220 inhibited PMA-induced shape changes (nonpolar cells) and pinocytosis, but not fNLPNTL-induced shape changes (polarity) and pinocytosis. At higher concentrations, Ro 31-8220 alone elicited cell polarity and chemokinesis, indicating that a constitutively active protein kinase is involved in maintaining the spherical shape of resting PMNs. Functional effects of another PKC inhibitor, CGP 41 251, on neutrophil function were strikingly different. CGP 41 251 selectively inhibited fNLPNTL-induced polarity and locomotion (but not colchicine or Ro 31-8220-induced polarity), and it failed to inhibit PMA-induced, stimulated pinocytosis and shape changes. Although the effects of Ro 31-8220 vs. CGP 41 251 on PMN function were strikingly different, the inhibition of profiles for constitutive and for fNLPNTL- or PMA-induced protein phosphorylation in intact PMNs showed only small differences, which could not yet be conclusively related to cell function. © 1994 Wiley-Liss, Inc.  相似文献   

12.
The relationship between the organization of cytoskeletal elements and locomotory activity was studied in single cells of the V2 rabbit carcinoma. Like migratory fibroblasts, and unlike colony-forming epithelial cells, these cells show a pronounced horizontal polarization, and develop a large lamella at their leading front. With affinity-purified antibodies and a combination of light and electron microscopic techniques, actin and alpha-actinin (but not myosin and tropomyosin) were found highly concentrated within the marginal region of the leading lamella, both in ruffles and in the underlying zone of contacts with the substratum. Close contacts prevailed in the locomotory cells and small focal contacts developed only in cells detaching from others. Focal contacts always contained small microfilament bundles. Reorganization of actin filaments is suggested as the fundamental event for the dynamic contact formation of the leading lamella. Large microfilament bundles (stress fibers) were absent in all stages of locomotion.Since locomotory behavior and shape changes of V2 cells are the same on glass as on the surface of a natural membrane, the rabbit mesentery, organization and distribution of contractile elements of cultured V2 cells probably reflect the in vivo situation.  相似文献   

13.
刘宁  刘建武 《植物学报》2004,21(2):164-171
介绍了近年来蕨类植物游动精子运动器和细胞骨架的研究进展。游动精子由配子体精子器中的非运动细胞发育形成,其分化过程包括了运动器官和细胞骨架的合成和组装。精子发生过程中形成的运动器的各部分结构包括鞭毛、基体、多层结构及附属结构;基体是细胞中新形成的结构,在不同类群的蕨类植物中分别由双中心粒、分支生毛体和生毛体产生。鞭毛、基体和多层结构中的微管带形成了游动精子三个独特的微管列阵,由于微管蛋白的后修饰作用这些微管列阵十分稳定;centrin是运动器中的重要成分, 但功能尚不清楚,可能和细胞骨架及运动器的构建有关。  相似文献   

14.
The locomotory behavior of tissue cells cultured on various artificial substrata was studied by time-lapse cinemicrography. Cells were able to spread more completely on certain more wettable substrata and to accumulate preferentially on these substrata according to a consistent hierarchy of cell-substratum affinity, which was the same for all cell types. Cell responses to variations in substrata suggest that substratum adhesiveness is the determining factor, but that cells accumulate on more adhesive substrata as the result of unequal competition between several actively locomotory ruffled lamellae around their margin. The increased overlapping between cells cultured on less adhesive substrata was found to be attributable to factors other than a decrease of contact inhibition of locomotion.  相似文献   

15.
While the protrusive event of cell locomotion is thought to be driven by actin polymerization, the mechanism of forward translocation of the cell body is unclear. To elucidate the mechanism of cell body translocation, we analyzed the supramolecular organization of the actin–myosin II system and the dynamics of myosin II in fish epidermal keratocytes. In lamellipodia, long actin filaments formed dense networks with numerous free ends in a brushlike manner near the leading edge. Shorter actin filaments often formed T junctions with longer filaments in the brushlike area, suggesting that new filaments could be nucleated at sides of preexisting filaments or linked to them immediately after nucleation. The polarity of actin filaments was almost uniform, with barbed ends forward throughout most of the lamellipodia but mixed in arc-shaped filament bundles at the lamellipodial/cell body boundary. Myosin II formed discrete clusters of bipolar minifilaments in lamellipodia that increased in size and density towards the cell body boundary and colocalized with actin in boundary bundles. Time-lapse observation demonstrated that myosin clusters appeared in the lamellipodia and remained stationary with respect to the substratum in locomoting cells, but they exhibited retrograde flow in cells tethered in epithelioid colonies. Consequently, both in locomoting and stationary cells, myosin clusters approached the cell body boundary, where they became compressed and aligned, resulting in the formation of boundary bundles. In locomoting cells, the compression was associated with forward displacement of myosin features. These data are not consistent with either sarcomeric or polarized transport mechanisms of cell body translocation. We propose that the forward translocation of the cell body and retrograde flow in the lamellipodia are both driven by contraction of an actin–myosin network in the lamellipodial/cell body transition zone.  相似文献   

16.
Dynamics of the cytoskeleton in Amoeba proteus   总被引:3,自引:0,他引:3  
Fluorescein-labeled muscle actin was microinjected into Amoeba proteus and followed during intracellular redistribution by means of the image-intensification technique. The fully polymerization-competent protein becomes part of the endogenous actomyosin system undergoing dynamic changes over time periods of several hours. Single-frame analysis of long-term sequences enabled the direct demonstration of both the contractile activities and morphological transformations of microfilaments in normally locomoting, immobilized and phagocytozing specimens. In normally locomoting cells the filament layer undergoes continuous changes in spatial distribution depending on the actual pattern of cytoplasmic streaming and cell shape. The highest degree of differentiation is always maintained in the intermediate region between the front and the uroid, thus indicating this segment of the cortex to be the most important site in generating motive force for pseudopodium formation and ameboid movement. In immobilized cells contracted by the application of ruthenium red or relaxed by different anesthetics, the filament layer forms a continuous thick sheath beneath the cell surface or becomes completely disintegrated. In phagocytozing cells the local polymerization of actin at the tip of pseudopodia forming the food-cup and around the nascent phagosome points to a significant participation of the actomyosin system in the process of capturing and constricting prey organisms. Although our results provide clear evidence for the overall importance of motive force generation according to the hydraulic pressure theory, some motile phenomena exist in Amoeba proteus that cannot exclusively be explained by this mechanism.  相似文献   

17.
Hindlimb segmental kinematics and stride characteristics are quantified in several quail locomoting on a treadmill over a six-fold increase in speed. These data are used to describe the kinematics of a walking stride and to identify which limb elements are used to change stride features as speed increases. In quail, the femur does not move during locomotion and the tarsometatarsus-phalangeal joint is a major moving joint; thus, quail have lost the most proximal moving joint and added one distally. The tibiotarsus and tarsometatarsus act together as a fixed strut swinging from the knee during stance phase (the ankle angle remains constant at a given speed) and the tarsometatarsus-phalangeal joint appears to have a major role in increasing limb length during the propulsive phase of the stride. Speed is increased with greater knee extension and by lengthening the tibiotarsus/tarsometatarsus via increased ankle extension at greater speeds. Because the femur is not moved and three distal elements are, quail move the limb segments through a stride and increase speed in a way fundamentally different from other nonavian vertebrates. However, the three moving joints in quail (the knee, ankle, and tarsometatarsophangeal joint) have strikingly similar kinematics to the analogous moving joints (the hip, knee, and ankle) in other vertebrates. Comparisons to other vertebrates indicate that birds appear to have two modes of limb function (three- and four-segment modes) that vary with speed and locomotory habits.  相似文献   

18.
刘宁  刘建武 《植物学通报》2004,21(2):164-171
介绍了近年来蕨类植物游动精子运动器和细胞骨架的研究进展.游动精子由配子体精子器中的非运动细胞发育形成,其分化过程包括了运动器官和细胞骨架的合成和组装.精子发生过程中形成的运动器的各部分结构包括鞭毛、基体、多层结构及附属结构;基体是细胞中新形成的结构,在不同类群的蕨类植物中分别由双中心粒、分支生毛体和生毛体产生.鞭毛、基体和多层结构中的微管带形成了游动精子三个独特的微管列阵,由于微管蛋白的后修饰作用这些微管列阵十分稳定;centrin是运动器中的重要成分,但功能尚不清楚,可能和细胞骨架及运动器的构建有关.  相似文献   

19.
In locomotory systems, the central pattern generator and motoneuron output must be modulated in order to achieve variability in locomotory speed, particularly when speed changes are important components of different behavior acts. The swimming system of the pteropod molluscClione limacina is an excellent model system for investigating such modulation. In particular, a system of central serotonergic neurons has been shown to be intimately involved in regulating output of the locomotory pattern generator and motor system ofClione. There are approximately 27 pairs of serotonin-immunoreactive neurons in the central nervous system ofClione, with about 75% of these identified. The majority of these identified immunoreactive neurons are involved in various aspects of locomotory speed modulation. A symmetrical cluster of pedal serotonergic neurons serves to increase wing contractility without affecting wing-beat frequency or motoneuron activity. Two clusters of cerebral cells produce widespread responses that lead to an increase in pattern generator cycle frequency, recruitment of swim motoneurons, activation of the pedal serotonergic neurons and excitation of the heart excitor neuron. A pair of ventral cerebral neurons provides weak excitatory inputs to the swimming system, and strongly inhibits neurons of the competing whole-body withdrawal network. Overall, the serotonergic system inClione is compartmentalized so that each subsystem (usually neuron cluster) can act independently or in concert to produce variability in locomotory speed.  相似文献   

20.
Spontaneously migrating Walker carcinosarcoma cells usually form lamellipodia at the front. Combined treatment with 10(-5)M colchicine and 10(-7)M latrunculin A produces large defects in the cortical F-actin layer at the leading front and suppresses lamellipodia. However, the cortical actin layer at the rear is intact and shows myosin IIA accumulation. These cells, showing no or little detectable cortical F-actin at the front and no morphologically recognisable protrusions, migrate faster than control cells with lamellipodia and an intact cortical actin layer. This documents that the cortical actin layer or actin-powered force generation at the front is redundant for locomotion. Colchicine and latrunculin A have synergistic effects in compromising the cortical layer at the front and in increasing the speed of locomotion, but antagonistic effects on the relative amount of F-actin per cell. Colchicine but not latrunculin A, can increase the proportion of polarised and locomoting cells under appropriate conditions. Locomotion and polarity of cells treated with latrunculin A and colchicine is inhibited at latrunculin A concentrations >10(-7)M, by the myosin inhibitor BDM or the ROCK inhibitor Y-27632. Colchicine and Y-27632 have antagonistic effects on polarity and the speed of locomoting cells. The data show that locomotion of metazoan cells, which normally form lamellipodia, can be driven by actomyosin contraction behind the front (cell body, uropod). They are best compatible with a cortical contraction/frontal expansion model, but they are not compatible with models implying that actin polymerisation or actomyosin contraction at the front drive locomotion of the cells studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号