首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mannitol is a sugar polyol claimed to have health-promoting properties. A mannitol-producing strain of Lactococcus lactis was obtained by disruption of two genes of the phosphoenolpyruvate (PEP)-mannitol phosphotransferase system (PTS(Mtl)). Genes mtlA and mtlF were independently deleted by double-crossover recombination in strain L. lactis FI9630 (a food-grade lactate dehydrogenase-deficient strain derived from MG1363), yielding two mutant (Delta ldh Delta mtlA and Delta ldh Delta mtlF) strains. The new strains, FI10091 and FI10089, respectively, do not possess any selection marker and are suitable for use in the food industry. The metabolism of glucose in nongrowing cell suspensions of the mutant strains was characterized by in vivo (13)C-nuclear magnetic resonance. The intermediate metabolite, mannitol-1-phosphate, accumulated intracellularly to high levels (up to 76 mM). Mannitol was a major end product, one-third of glucose being converted to this hexitol. The double mutants, in contrast to the parent strain, were unable to utilize mannitol even after glucose depletion, showing that mannitol was taken up exclusively by PEP-PTS(Mtl). Disruption of this system completely blocked mannitol transport in L. lactis, as intended. In addition to mannitol, approximately equimolar amounts of ethanol, 2,3-butanediol, and lactate were produced. A mixed-acid fermentation (formate, ethanol, and acetate) was also observed during growth under controlled conditions of pH and temperature, but mannitol production was low. The reasons for the alteration in the pattern of end products under nongrowing and growing conditions are discussed, and strategies to improve mannitol production during growth are proposed.  相似文献   

2.
Mannitol kinase and mannitol-1-phosphate dehydrogenase activities were detected in two Micromonospora isolates. The presence of these enzyme activities indicates that mannitol is catabolized first to mannitol-1-phosphate and then to fructose-6-phosphate. Mannitol-oxidizing enzymes were also surveyed in representative species of four other genera of actinomycetes. Mannitol-1-phosphate dehydrogenase was detected in cell-free extracts of Streptomyces lactamdurans. In contrast, cell-free extracts of Mycobacterium smegmatis, Nocardia erythrophila, Streptomyces lavendulae, and Actinoplanes missouriensis contained mannitol dehydrogenase activity but no detectable mannitol-1-phosphate dehydrogenase activity. The mannitol dehydrogenase activities in the latter species support the operation of a pathway for catabolism of mannitol that involves the oxidation of mannitol to fructose, followed by phosphorylation to fructose-6-phosphate.  相似文献   

3.
Mannitol kinase and mannitol-1-phosphate dehydrogenase activities were detected in two Micromonospora isolates. The presence of these enzyme activities indicates that mannitol is catabolized first to mannitol-1-phosphate and then to fructose-6-phosphate. Mannitol-oxidizing enzymes were also surveyed in representative species of four other genera of actinomycetes. Mannitol-1-phosphate dehydrogenase was detected in cell-free extracts of Streptomyces lactamdurans. In contrast, cell-free extracts of Mycobacterium smegmatis, Nocardia erythrophila, Streptomyces lavendulae, and Actinoplanes missouriensis contained mannitol dehydrogenase activity but no detectable mannitol-1-phosphate dehydrogenase activity. The mannitol dehydrogenase activities in the latter species support the operation of a pathway for catabolism of mannitol that involves the oxidation of mannitol to fructose, followed by phosphorylation to fructose-6-phosphate.  相似文献   

4.
Mannitol metabolism was evaluated in fruiting bodies of Lentinus edodes. Cell extracts were prepared from fruiting bodies, and key enzymes involved in mannitol metabolism were assayed, including hexokinase, mannitol dehydrogenase, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, and fructose-6-phosphatase. Mannitol dehydrogenase, fructose-6-phosphatase, mannitol-1-phosphatase, and hexokinase activities were found in extracts of fruiting bodies. However, mannitol-1-phosphate dehydrogenase activity was not detected. Mycelial cultures were grown in an enriched liquid medium, and enzymes of the mannitol cycle were assayed in cell extracts of rapidly growing cells. Mannitol-1-phosphate dehydrogenase activity was also not found in mycelial extracts. Hence, evidence for a complete mannitol cycle both in vegetative mycelia and during mushroom development was lacking. The pathway of mannitol synthesis in L. edodes appears to utilize fructose as an intermediate.  相似文献   

5.
To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and (13)C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.  相似文献   

6.
The levels of phosphofructokinase (EC 2.7.1.11) and mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) have been determined in a number of Mucor and Penicillium species. Mannitol-1-phosphate dehydrogenase was found in only one species of mucor, Mucor rouxii, and this with a specific activity much lower than that found in Penicillium species. All of the fungi tested in the Ascomycetes class exhibited mannitol-1-phosphate dehydrogenase activity. Interference from both mannitol-1-phosphate dehydrogenase and NADH oxidase (EC 1.6.99.5) caused some difficulty initially in detecting phosphofructokinase in Penicillium species; the Penicillium phosphofructokinase is very unstable. Penicillium notatum accumulates mannitol intracellularly; detection of mannitol-1-phosphate dehydrogenase and mannitol-1-phosphatase (EC 3.1.3.22) activity in cell-free extracts indicates that the mannitol is formed from glucose via fructose-6-phosphate and mannitol-1-phosphate; no direct reduction of fructose to mannitol could be detected. The mannitol-1-phosphate dehydrogenase was specific for mannitol-1-phosphate and fructose-6-phosphate; NADP+(H) could not replace NAD+(H). The phosphatase (EC3.1.3.22) exhibited a distinct preference for mannitol-1-phosphate as substrate; all other substrates tested exhibited less than 25% of the activity observed with mannitol-1-phosphate.  相似文献   

7.
To achieve high mannitol production by Lactococcus lactis, the mannitol 1-phosphatase gene of Eimeria tenella and the mannitol 1-phosphate dehydrogenase gene mtlD of Lactobacillus plantarum were cloned in the nisin-dependent L. lactis NICE overexpression system. As predicted by a kinetic L. lactis glycolysis model, increase in mannitol 1-phosphate dehydrogenase and mannitol 1-phosphatase activities resulted in increased mannitol production. Overexpression of both genes in growing cells resulted in glucose-mannitol conversions of 11, 21, and 27% by the L. lactis parental strain, a strain with reduced phosphofructokinase activity, and a lactate dehydrogenase-deficient strain, respectively. Improved induction conditions and increased substrate concentrations resulted in an even higher glucose-to-mannitol conversion of 50% by the lactate dehydrogenase-deficient L. lactis strain, close to the theoretical mannitol yield of 67%. Moreover, a clear correlation between mannitol 1-phosphatase activity and mannitol production was shown, demonstrating the usefulness of this metabolic engineering approach.  相似文献   

8.
A metabolic pathway, known as the mannitol cycle in fungi, has been identified as a new entity in the eulittoral mangrove red algaCaloglossa leprieurii (Montagne) J. Agardh. Three specific enzymes, mannitol-1-phosphate dehydrogenase (Mt1PDH; EC 1.1.1.17), mannitol-1-phosphatase (MtlPase; EC 3.1.3.22), mannitol dehydrogenase (MtDH; EC 1.1.1.67) and one nonspecific hexokinase (HK; EC 2.7.1.1) were determined and biochemically characterized in cell-free extracts. Mannitol-1-phosphate dehydrogenase showed activity maxima at pH 7.0 [fructose-6-phosphate (F6P) reduction] and pH 8.5 [oxidation of mannitol-1-phosphate (Mt1P)], and a very high specificity for both carbohydrate substrates. TheK m values were 1.4 mM for F6P, 0.09 mM for MOP, 0.020 mM for NADH and 0.023 mM for NAD+. For the dephosphorylation of MOP, MtlPase exhibited a pH optimum at 7.2, aK m value of 1.2 mM and a high requirement of Mg2+ for activation. Mannitol dehydrogenase had activity maxima at pH 7.0 (fructose reduction) and pH 9.8 (mannitol oxidation), and was less substrate-specific than Mt1PDH and MtlPase, i.e. it also catalyzed reactions in the oxidative direction with arabitol (64.9%), sorbitol (31%) and xylitol (24.8%). This enzyme showedK m values of 39 mM for fructose, 7.9 mM for mannitol, 0.14 mM for NADH and 0.075 mM for NAD+. For the non-specific HK, only theK m values for fructose (0.19 mM) and glucose (7.5 mM) were determined. The activities of the anabolic enzymes Mt1PDH and MtlPase were always at least two orders of magnitude higher than those of the degradative enzymes, indicating a net carbon flow towards a high intracellular mannitol pool. The function of mannitol metabolism inC. leprieurii as a biochemical adaptation to the environmental extremes in the mangrove habitat is discussed.Abbreviations F6P fructose-6-phosphate - HK hexokinase - Mt1P mannitol-1-phosphate - Mt1PDH mannitol-1-phosphate dehydrogenase - Mt1Pase mannitol-1-phosphatase - MtDH mannitol dehydrogenase  相似文献   

9.
The most efficient substrate for mannitol production by Candida magnoliae HH-01 is fructose; glucose and sucrose can also be converted into mannitol but with lower conversion yields. Mannitol dehydrogenase was purified and characterized; it had the highest activity with fructose as the substrate and used only NADPH. In fed-batch fermentation with glucose, the production of mannitol from fructose ceased when the glucose was exhausted but it was reinitiated with the addition of glucose, implying that glucose plays an important role in NADPH regeneration.  相似文献   

10.
Mannitol is a sugar polyol claimed to have health-promoting properties. A mannitol-producing strain of Lactococcus lactis was obtained by disruption of two genes of the phosphoenolpyruvate (PEP)-mannitol phosphotransferase system (PTSMtl). Genes mtlA and mtlF were independently deleted by double-crossover recombination in strain L. lactis FI9630 (a food-grade lactate dehydrogenase-deficient strain derived from MG1363), yielding two mutant (ΔldhΔmtlA and ΔldhΔmtlF) strains. The new strains, FI10091 and FI10089, respectively, do not possess any selection marker and are suitable for use in the food industry. The metabolism of glucose in nongrowing cell suspensions of the mutant strains was characterized by in vivo 13C-nuclear magnetic resonance. The intermediate metabolite, mannitol-1-phosphate, accumulated intracellularly to high levels (up to 76 mM). Mannitol was a major end product, one-third of glucose being converted to this hexitol. The double mutants, in contrast to the parent strain, were unable to utilize mannitol even after glucose depletion, showing that mannitol was taken up exclusively by PEP-PTSMtl. Disruption of this system completely blocked mannitol transport in L. lactis, as intended. In addition to mannitol, approximately equimolar amounts of ethanol, 2,3-butanediol, and lactate were produced. A mixed-acid fermentation (formate, ethanol, and acetate) was also observed during growth under controlled conditions of pH and temperature, but mannitol production was low. The reasons for the alteration in the pattern of end products under nongrowing and growing conditions are discussed, and strategies to improve mannitol production during growth are proposed.  相似文献   

11.
Knockout and complement mutants of mannitol-1-phosphate dehydrogenase (MPD) and mannitol dehydrogenase (MTD) were constructed to probe the roles of both enzymes in the mannitol metabolism and multi-stress tolerances of entomopathogenic fungus Beauveria bassiana. Compared with wild-type and complement mutants, ΔBbMPD lost 99.5% MPD activity for reducing fructose-6-phosphate to mannitol-1-phosphate while ΔBbMTD lost 78.9% MTD activity for oxidizing mannitol to fructose. Consequently, mannitol contents in mycelia and conidia decreased 68% and 83% for ΔBbMPD, and 16% and 38% for ΔBbMTD, accompanied by greatly enhanced trehalose accumulations due to 81-87% decrease in their neutral trehalase expression. Mannitol as mere carbon source in a nitrate-based minimal medium suppressed the colony growth of ΔBbMTD instead of ΔBbMPD, and delayed more conidial germination of ΔBbMTD than ΔBbMPD. Based on median lethal responses, conidial tolerances to H(2) O(2) oxidation, UV-B irradiation and heat stress at 45°C decreased 38%, 39% and 22% in ΔBbMPD, and 18%, 16% and 11% in ΔBbMTD respectively. Moreover, ΔBbMPD and ΔBbMTD lost 14% and 7% of their virulence against Spodoptera litura larvae respectively. Our findings highlight the primary roles of MPD and MTD in mannitol metabolism and their significant contributions to multi-stress tolerances and virulence influential on the biocontrol potential of B.bassiana.  相似文献   

12.
Biotechnological production of mannitol and its applications   总被引:1,自引:0,他引:1  
Mannitol, a naturally occurring polyol (sugar alcohol), is widely used in the food, pharmaceutical, medical, and chemical industries. The production of mannitol by fermentation has become attractive because of the problems associated with its production chemically. A number of homo- and heterofermentative lactic acid bacteria (LAB), yeasts, and filamentous fungi are known to produce mannitol. In particular, several heterofermentative LAB are excellent producers of mannitol from fructose. These bacteria convert fructose to mannitol with 100% yields from a mixture of glucose and fructose (1:2). Glucose is converted to lactic acid and acetic acid, and fructose is converted to mannitol. The enzyme responsible for conversion of fructose to mannitol is NADPH- or NADH-dependent mannitol dehydrogenase (MDH). Fructose can also be converted to mannitol by using MDH in the presence of the cofactor NADPH or NADH. A two enzyme system can be used for cofactor regeneration with simultaneous conversion of two substrates into two products. Mannitol at 180 g l−1 can be crystallized out from the fermentation broth by cooling crystallization. This paper reviews progress to date in the production of mannitol by fermentation and using enzyme technology, downstream processing, and applications of mannitol.  相似文献   

13.
Fructose and mannitol are fermented by Clostridium thermocellum in a medium containing salts and 0.5% yeast extract. The initial reaction in the catabolism of fructose was found to be the formation of fructose l-phosphate by phosphoenolpyruvate (PEP):fructose phosphotransferase which resembles the Kundig-Roseman phosphotransferase system. The phosphorylation of fructose l-phosphate to form fructose-1, 6-diphosphate is catalyzed by fructose l-phosphate kinase. Fructose-1, 6-diphosphate can be further metabolized by the Embden-Meyerhof pathway. The formation of both PEP:fructose phosphotransferase and fructose l-phosphate kinase is induced by growth in fructose medium. Mannitol catabolism was found to proceed by the phosphorylation of mannitol by PEP:mannitol phosphotransferase to form mannitol l-phosphate. Mannitol l-phosphate is converted to fructose 6-phosphate by a nicotinamide adenine dinucleotide-specific mannitol l-phosphate dehydrogenase. The fructose 6-phosphate formed in the reaction can enter the glycolytic scheme. The formation of both PEP:mannitol phosphotransferase and mannitol l-phosphate dehydrogenase is induced by growth in mannitol medium. Evidence is presented for the induction by mannitol of PEP:mannitol phosphotransferase and mannitol l-phosphate dehydrogenase in suspensions of fructose-grown cells.  相似文献   

14.
Mannitol metabolism in fungi is thought to occur through a mannitol cycle first described in 1978. In this cycle, mannitol 1-phosphate 5-dehydrogenase (EC 1.1.1.17) was proposed to reduce fructose 6-phosphate into mannitol 1-phosphate, followed by dephosphorylation by a mannitol 1-phosphatase (EC 3.1.3.22) resulting in inorganic phosphate and mannitol. Mannitol would be converted back to fructose by the enzyme mannitol dehydrogenase (EC 1.1.1.138). Although mannitol 1-phosphate 5-dehydrogenase was proposed as the major biosynthetic enzyme and mannitol dehydrogenase as a degradative enzyme, both enzymes catalyze their respective reverse reactions. To date the cycle has not been confirmed through genetic analysis. We conducted enzyme assays that confirmed the presence of these enzymes in a tobacco isolate of Alternaria alternata. Using a degenerate primer strategy, we isolated the genes encoding the enzymes and used targeted gene disruption to create mutants deficient in mannitol 1-phosphate 5-dehydrogenase, mannitol dehydrogenase, or both. PCR analysis confirmed gene disruption in the mutants, and enzyme assays demonstrated a lack of enzymatic activity for each enzyme. GC-MS experiments showed that a mutant deficient in both enzymes did not produce mannitol. Mutants deficient in mannitol 1-phosphate 5-dehydrogenase or mannitol dehydrogenase alone produced 11.5 and 65.7 %, respectively, of wild type levels. All mutants grew on mannitol as a sole carbon source, however, the double mutant and mutant deficient in mannitol 1-phosphate 5-dehydrogenase grew poorly. Our data demonstrate that mannitol 1-phosphate 5-dehydrogenase and mannitol dehydrogenase are essential enzymes in mannitol metabolism in A. alternata, but do not support mannitol metabolism operating as a cycle.  相似文献   

15.
D-Mannitol utilization in Salmonella typhimurium   总被引:12,自引:9,他引:3  
A biochemical and genetic analysis of d-mannitol metabolism in Salmonella typhimurium indicates that d-mannitol is phosphorylated by the phosphoenolpyruvate-dependent phosphotransferase system. d-Mannitol-1-phosphate is converted to d-fructose-6-phosphate by mannitol-1-phosphate dehydrogenase. Two classes of mannitol mutants are described. Both map at about 115 min on the Salmonella chromosome. Mutants missing mannitol-1-phosphate dehydrogenase activity are mannitol sensitive; i.e., either growth is inhibited or the cells are lysed in the presence of mannitol. In a strain missing adenyl cyclase activity, the mannitol genes require exogenous cyclic adenosine-3',5'-monophosphate for expression.  相似文献   

16.
Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two sorbitol-6-phosphate dehydrogenase (Stl6PDH) genes (srlD1 and srlD2) identified in the genome sequence were constitutively expressed at a high level in this mutant strain. Both Stl6PDH enzymes were shown to be active, and high specific activity could be detected in the overexpressing strains. Using resting cells under pH control with glucose as a substrate, both Stl6PDHs were capable of rerouting the glycolytic flux from fructose-6-phosphate toward sorbitol production with a remarkably high efficiency (61 to 65% glucose conversion), which is close to the maximal theoretical value of 67%. Mannitol production was also detected, albeit at a lower level than the control strain (9 to 13% glucose conversion), indicating competition for fructose-6-phosphate rerouting by natively expressed mannitol-1-phosphate dehydrogenase. By analogy, low levels of this enzyme were detected in both the wild-type and the lactate dehydrogenase-deficient strain backgrounds. After optimization, 25% of sugar conversion into sorbitol was achieved with cells grown under pH control. The role of intracellular NADH pools in the determination of the maximal sorbitol production is discussed.  相似文献   

17.
Evidence is presented that inStaphylococcus aureus mannitol is metabolized by phosphorylation to mannitol-1-phosphate and subsequent dehydrogenation to fructose-6-phosphate. Both mechanisms were equally active in a coagulase-positive and a coagulase-negative strain. Mannitol metabolism is inducible, both mannitol and sorbitol acting as inducers. No evidence for unphosphorylated mannitol breakdown could be found.  相似文献   

18.
Glucose metabolism of Pasteurella multocida was examined in resting cells in vivo using 13C NMR spectroscopy, in cell-free extracts in vitro using 31P NMR spectroscopy and using enzyme assays. The NMR data indicate that glucose is converted by the Embden-Meyerhof and pentose phosphate pathways. The P. multocida fructose 6-phosphate phosphotransferase activity (the key enzyme of the Embden-Meyerhof pathway) was similar to that of Escherichia coli. Nevertheless, and in contrast to that of E. coli, its activity was inhibited by alpha glycerophosphate. This inhibition is consistent with the very low fructose 6-phosphate phosphotransferase activity found in cell-free extracts of P. multocida using a spectrophotometric method. The dominant end products of glucose metabolism were mannitol, acetate and succinate. Under anaerobic conditions, P. multocida was able to constitutively produce mannitol from glucose, mannose, fructose, sucrose, glucose 6-phosphate and fructose 6-phosphate. We propose a new metabolic pathway in P. multocida where fructose 6-phosphate is reduced to mannitol 1-phosphate by fructose 6-phosphate reductase. Mannitol 1-phosphate produced is then converted to mannitol by mannitol 1-phosphatase.  相似文献   

19.
Mutant cells of mucoid Pseudomonas aeruginosa isolated from cystic fibrosis patients were examined for their ability to synthesize alginic acid in resting cell suspensions. Unlike the wild-type strain which synthesizes alginic acid from glycerol, fructose, mannitol, glucose, gluconate, glutamate, or succinate, mutants lacking specific enzymes of carbohydrate metabolism are uniquely impaired. A phosphoglucose isomerase mutant did not synthesize the polysaccharide from mannitol, nor did a glucose 6-phosphate dehydrogenase mutant synthesize the polysaccharide from mannitol or glucose. Mutants lacking the Entner-Doudoroff pathway dehydrase or aldolase failed to produce alginate from mannitol, glucose, or gluconate, as a 3-phosphoglycerate kinase or glyceraldehyde 3-phosphate dehydrogenase mutant failed to produce from glutamate or succinate. These results demonstrate the primary role of the Entner-Doudoroff pathway enzymes in the synthesis of alginate from glucose, mannitol, or gluconate and the role of glyceraldehyde 3-phosphate dehydrogenase reaction for the synthesis from gluconeogenic precursors such as glutamate. The virtual absence of any activity of phosphomannose isomerase in cell extracts of several independent mucoid bacteria and the impairment of alginate synthesis from mannitol in mutants lacking phosphoglucose isomerase or glucose 6-phosphate dehydrogenase rule out free mannose 6-phosphate as an intermediate in alginate biosynthesis.  相似文献   

20.
In mushroom, presence of the mannitol cycle has not been reported so far although the polyol is supposed to be generated by the reduction of fructose by mannitol dehydrogenase. This study submits evidence for the presence of the mannitol cycle in Pleurotus ostreatus. The key enzyme of the cycle, mannitol-1-phosphate dehydrogenase (M1PDH), was present appreciably in all the developmental stages of the mushroom. However, the enzyme level dropped significantly at the onset of sporulation. The presence of M1DPH was confirmed by isozyme analysis and RT-PCR mediated amplification of a approximately 400 bp DNA fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号