首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Two forms of activated BCR/ABL proteins, P210 and P185, that differ in BCR-derived sequences, are associated with Philadelphia chromosome-positive leukemias. One of these diseases is chronic myelogenous leukemia, an indolent disease arising in hematopoietic stem cells that is almost always associated with the P210 form of BCR/ABL. Acute lymphocytic leukemia, a more aggressive malignancy, can be associated with both forms of BCR/ABL. While it is virtually certain that BCR/ABL plays a central role in both of these diseases, the features that determine the association of a particular form with a given disease have not been elucidated. We have used the bone marrow reconstitution leukemogenesis model to test the hypothesis that BCR sequences influence the ability of activated ABL to transform different types of hematopoietic cells. Our studies reveal that both P185 and P210 induce a similar spectrum of hematological diseases, including granulocytic, myelomonocytic, and lymphocytic leukemias. Despite the similarity of the disease patterns, animals given P185-infected marrow developed a more aggressive disease after a shorter latent period than those given P210-infected marrow. These data demonstrate that the structure of the BCR/ABL oncoprotein does not affect the type of disease induced by each form of the oncogene but does control the potency of the oncogenic signal.  相似文献   

2.
The BCR/ABL gene, formed by the Philadelphia chromosome translocation (Ph1) of human chronic myelogenous leukemia, encodes an altered ABL gene product, P210. P210 is strongly implicated in the malignant process of chronic myelogenous leukemia, but it precise role is unknown. Infection of long-term bone marrow cultures enriched for B-lymphoid cell types with a Moloney murine leukemia virus retroviral vector containing the BCR/ABL cDNA resulted in clonal outgrowths of immature B-lymphoid cells which expressed abundant P210 kinase activity. Surprisingly, infection of long-term myeloid lineage-enriched cultures also resulted in clonal outgrowths of immature B-lymphoid cells. The P210-expressing lymphoid cell lines resulting from either type of culture were resistant to the lethal effects of corticosteroids. These findings indicate that high levels of P210 expressed from a Moloney murine leukemia virus long terminal repeat preferentially stimulate the growth of immature B-lineage cells, and this effect is apparent even in myeloid lineage-enriched cultures, in which few if any lymphoid cells can be detected prior to infection.  相似文献   

3.
The mRNA encoding the chimeric BCR/ABL oncogene, which is transcribed from the Philadelphia chromosome in human chronic myelogenous leukemia, has a 5' noncoding sequence greater than 500 bases in length which is highly GC rich and contains a short open reading frame. This untranslated sequence has a dramatic inhibitory effect upon translational efficiency in vitro. However, when BCR/ABL message is expressed in certain cell types such as the NIH 3T3 cell line, the 5' noncoding region has little inhibitory effect on translational efficiency.  相似文献   

4.
Chronic myeloid leukemia (CML) is characterized by the reciprocal translocation t(9;22)(q34;q11.2) which fuses the ABL1 oncogene on chromosome 9 with the BCR gene on chromosome 22. It is the BCR/ABL protein that drives the neoplasm and the ABL/BCR is not necessary for the disease. In the majority of CML cases, the BCR/ABL fusion gene is cytogenetically recognizable as a small derivative chromosome 22(der 22), which is known as the Philadelphia (Ph) chromosome. However, approximately 2-10% of patients with CML involve cryptic or complex variant translocations with deletions on the der(9) and/or der(22) occuring in roughly 10-15% of CML cases. Fluorescence in situ hybridization (FISH) analysis can help identify deletions and complex or cryptic rearrangements. Various BCR/ABL FISH probes are available, which include dual color single fusion, dual color extra signal (ES), dual color dual fusion and tri color dual fusion probes. To test the utility of these probes, six patients diagnosed with CML carrying different complex variant Ph translocations were studied by G-banding and FISH analysis using the BCR/ABL ES, BCR/ABL dual color dual fusion, and BCR/ABL tricolor probes. There are differences among the probes in their ability to detect variant rearrangements, with or without accompanying chromoso me 9 and/or 22 deletions, and low level disease.  相似文献   

5.
Influence of BCR/ABL fusion proteins on the course of Ph leukemias   总被引:1,自引:0,他引:1  
The hallmark of chronic myeloid leukemia (CML) and a subset of acute lymphoblastic leukemia (ALL) is the presence of the Philadelphia chromosome as a result of the t(9;22) translocation. This gene rearrangement results in the production of a novel oncoprotein, BCR/ABL, a constitutively active tyrosine kinase. There is compelling evidence that the malignant transformation by BCR/ABL is critically dependent on its Abl tyrosine kinase activity. Also the bcr part of the hybrid gene takes part in realization of the malignant phenotype. We supposed that additional mutations accumulate in this region of the BCR/ABL oncogene during the development of the malignant blast crisis in CML patients. In ALL patients having p210 fusion protein the mutations were supposed to be preexisting. Sequencing of PCR product of the BCR/ABL gene (Dbl, PH region) showed that along with single-nucleotide substitutions other mutations, mostly deletions, had occurred. In an ALL patient a deletion of the 5th exon was detected. The size of the deletions varied from 36 to 220 amino acids. For one case of blast crisis of CML changes in the character of actin organization were observed. Taking into account the functional role of these domains in the cell an etiological role of such mutations on the disease phenotype and leukemia progression is plausible.  相似文献   

6.
P210 BCR/ABL is a chimeric oncogene implicated in the pathogenesis of chronic myelogenous leukemia. BCR sequences have been shown to be required for activation of the tyrosine kinase and transforming functions of BCR/ABL. In this work, we show that two other structural requirements for full transforming activity of P210 BCR/ABL include a functional tyrosine kinase and the presence of tyrosine 1294, a site of autophosphorylation within the tyrosine kinase domain. Replacement of tyrosine 1294 with phenylalanine (1294F) greatly diminishes the transforming activity of BCR/ABL without affecting the specific activity of the protein tyrosine kinase. Expression of an exogenous myc gene in fibroblasts partially complements the transforming capacity of mutant P210 BCR/ABL (1294F). Surprisingly, tyrosine 1294 is not required for efficient induction of growth factor-independence in hematopoietic cell lines by P210 BCR/ABL. These results suggest that autophosphorylation at tyrosine 1294 may be important for recognition and phosphorylation of cellular substrates in the pathway of transformation, but it is not critical for mediating the events which lead to growth factor independence.  相似文献   

7.
The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc.   总被引:30,自引:14,他引:16       下载免费PDF全文
The tyrosine kinase P210 is the gene product of the rearranged BCR-ABL locus on the Philadelphia chromosome (Ph1), which is found in leukemic cells of patients with chronic myelogenous leukemia. It has a weakly oncogenic effect in immature murine hematopoietic cells and does not transform NIH 3T3 cells. We have found that P210 has a strikingly different effect in Rat-1 cells, another line of established rodent fibroblasts. Stable expression of P210 in Rat-1 cells caused a distinct morphological change and conferred both tumorigenicity and capacity for anchorage-independent growth. The introduction of v-myc into Rat-1 cells expressing P210 led to complete morphological transformation and enhanced tumorigenicity. No such interaction took place in NIH 3T3 cells. Thus, Rat-1 cells can be used to detect cooperation between BCR-ABL and other oncogenes and may prove useful for the identification of secondary oncogenic events in chronic myelogenous leukemia.  相似文献   

8.
9.
The hallmark of chronic myelogenous leukemia (CML) is a translocation between chromosomes 9 and 22 - the Philadelphia (Ph') translocation. The translocation is also found in acute lymphocytic leukemia (ALL) albeit in a lower percentage of patients. The breakpoint on chromosome 22 is located within the BCR gene: in CML, breakpoints are clustered within 5.8 kb of DNA, the major breakpoint cluster region (Mbcr). In ALL, breakpoints have been reported within the Mbcr but also in more 5' regions encompassing the BCR gene. To characterize the latter breakpoints, we have molecularly cloned and mapped the entire gene, which encompasses approximately 130 kb of DNA. Mbcr negative, Ph'-positive ALL breakpoints were not distributed at random within the gene but rather were found exclusively within the 3' half of the first BCR gene intron. In contrast to the Mbcr, which is limited to a region of 5.8 kb, this part of the intron has a size of 35 kb. Translocation breakpoints in this region appear to be specific for ALL, since it was not rearranged in clinically well-defined CML specimens nor in any other tumor DNA samples examined.  相似文献   

10.
The BCR/ABL oncogene causes chronic myelogenous leukemia (CML), a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and granulocyte lineage cells. The SH2-containing inositol-5-phosphatase SHIP is a 145-kDa protein which has been shown to regulate hematopoiesis in mice. Targeted disruption of the murine SHIP gene results in a myeloproliferative syndrome characterized by a dramatic increase in numbers of granulocyte-macrophage progenitor cells in the marrow and spleen. Also, hematopoietic progenitor cells from SHIP(-/-) mice are hyperresponsive to certain hematopoietic growth factors, a phenotype very similar to the effects of BCR/ABL in murine cells. In a series of BCR/ABL-transformed hematopoietic cell lines, Philadelphia chromosome (Ph)-positive cell lines, and primary cells from patients with CML, the expression of SHIP was found to be absent or substantially reduced compared to untransformed cell lines or leukemia cells lacking BCR/ABL. Ba/F3 cells in which expression of BCR/ABL was under the control of a tetracycline-inducible promoter showed rapid loss of p145 SHIP, coincident with induction of BCR/ABL expression. Also, an ABL-specific tyrosine kinase inhibitor, CGP57148B (STI571), rapidly caused reexpression of SHIP, indicating that BCR/ABL directly, but reversibly, regulates the expression of SHIP protein. The estimated half-life of SHIP protein was reduced from 18 h to less than 3 h. However, SHIP mRNA also decreased in response to BCR/ABL, suggesting that SHIP protein levels could be affected by more than one mechanism. Reexpression of SHIP in BCR/ABL-transformed Ba/F3 cells altered the biological behavior of cells in culture. The reduction of SHIP due to BCR/ABL is likely to directly contribute to the pathogenesis of CML.  相似文献   

11.
The Philadelphia chromosome is found in more than 90 percent of chronic myeloid leukemia (CML) patients. In most cases, it results from the reciprocal t(9;22)(q34;q11), with the ABL proto-oncogene from 9q34 fused to the breakpoint cluster region (BCR) locus on 22q11. In 5 to 10 percent of patients with CML, the Ph originates from variant translocations, involving various breakpoints in addition to 9q34 and 22q11. Here we report a rare case of a Philadelphia positive CML patient carrying t(5;9)(q13;q34) and deletion of ABL/BCR on der(9) as a separate event.  相似文献   

12.
Breakpoints on chromosome 22 in the translocation t(9;22) found in Philadelphia positive acute lymphoblastic leukaemia patients fall within two categories. In the first the breakpoint is localized within the breakpoint cluster region of the BCR gene, analogous to the chromosome 22 breakpoint in chronic myeloid leukaemia. The second category has a breakpoint 5' of this area, but still within the BCR gene. We have previously shown that these breakpoints occur within the first intron of the BCR gene and cloned the 9q+ junction from such a patient. We have now determined the sequences around the breakpoints on both translocation partners from this patient as well as the germline regions. The chromosome 9 ABL sequence around the breakpoint shows homology to the consensus Alu sequence whereas the chromosome 22 BCR sequence does not. At the junction there is a 6 bp duplication of the chromosome 22 sequence which is present both in the 9q+ and in the 22q- translocation products. Possible mechanisms for the generation of the translocation are discussed.  相似文献   

13.
The Philadelphia (Ph) chromosome, the product of t(9:22), is the cytogenetic hallmark of chronic myelogenous leukemia. The c-abl oncogene on chromosome 9 is translocated to the Ph chromosome and linked to a breakpoint cluster region (bcr), which is part of a large bcr gene. This results in the formation of a bcr-c-abl fusion gene, which is transcribed into an 8.5 kb chimeric mRNA encoding a 210 kd bcr-c-abl fusion protein. The Ph chromosome is also found in acute lymphoblastic leukemia (Ph+ ALL). Although the c-abl is translocated and a new 190 kd c-abl protein has been identified, no breakpoints are observed in the bcr (Ph+bcr- ALL). Here we show that in Ph+bcr- ALL, breakpoints in chromosome 22 occur within the same bcr gene, but more 5' of the bcr. Cloning of a chimeric bcr-c-abl cDNA demonstrates that the fusion gene is transcribed into a 7 kb mRNA, encoding a novel fusion protein.  相似文献   

14.
BCR-ABL is a chimeric oncogene implicated in the pathogenesis of Philadelphia chromosome-positive human leukemias. BCR first exon sequences specifically activate the tyrosine kinase and transforming potential of BCR-ABL. We have tested the hypothesis that activation of BCR-ABL may involve direct interaction between BCR sequences and the tyrosine kinase regulatory domains of ABL. Full-length c-BCR as well as BCR sequences retained in BCR-ABL bind specifically to the SH2 domain of ABL. The binding domain has been localized within the first exon of BCR and consists of at least two SH2-binding sites. This domain is essential for BCR-ABL-mediated transformation. Phosphoserine/phosphothreonine but not phosphotyrosine residues on BCR are required for interaction with the ABL SH2 domain. These findings extend the range of potential SH2-protein interactions in growth control pathways and suggest a function for SH2 domains in the activation of the BCR-ABL oncogene as well as a role for BCR in cellular signaling pathways.  相似文献   

15.
16.
慢性粒细胞白血病是一类造血干细胞的恶性克隆性疾病,ph染色体是其特征性细胞遗传学标志,即t(9;22)(q34;ql1),存在BCR/ABL融合基因,现阶段造血干细胞移植是当前最有希望治愈CML的疗法,但受年龄、配型等限制,易发生移植物抗宿主病;复发率较高;传统的化疗、干扰素治疗也有副作用,因此,通过信号传导抑制剂抑制BCR-ABL酪氨酸激酶活性,从而阻止一系列信号传导来治疗CML是一个比较好的治疗方法,伊马替尼是一种酪氨酸激酶抑制剂是治疗慢性粒细胞白血病的靶向治疗药物,治疗疗效显著,但是并不能根治慢性粒细胞白血病,需要长期服药,一些患者出现耐药,导致治疗无效或复发。因此,寻求新的治疗方案至关重要。本文就慢性粒细胞白血病的耐药机制及治疗策略做一综述。  相似文献   

17.
The BCR - ABL tyrosine kinase has been implicated as the cause of Philadelphia chromosome (Ph1)-positive leukemias. We report herein that CGP 57148, a selective inhibitor of the ABL tyrosine kinase, caused apoptosis specifically in bcr - abl-positive chronic myelogenous leukemia (CML) cells, K562 and KYO-1. Upon treatment with CGP 57148, CRKL, a specific substrate for BCR - ABL that propagates signals via phosphatidylinositol-3' kinase (PI3K), was dephosphorylated, indicating inhibition of BCR - ABL tyrosine kinase at the cellular level. Likewise, MAPK/ERK, a downstream mediator of Ras, was also dephosphorylated. Caspase activation and cleavage of retinoblastoma protein (pRB) accompanied the development of CGP 57148-induced apoptosis. Inhibition of caspase suppressed apoptosis and the cleavage of pRB, and in turn arrested cells in the G1 phase. These results indicate that CGP 57148 shows apoptogenic and anti-proliferative effects on bcr - abl-positive cells by blocking BCR - ABL-initiated signaling pathways.  相似文献   

18.
The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL.  相似文献   

19.
The Philadelphia (Ph) chromosome, a hallmark chromosomal anomaly observed in 95 percent of chronic myeloid leukemia (CML) cases, is known to involve the Abelson (ABL) proto-oncogene on chromosome 9 and the breakpoint cluster region (BCR) gene on chromosome 22, producing BCR/ABL mRNA encoding an abnormal tyrosine kinase protein. In the process of generating BCR-ABL fusion, the deletion of residual BCR or ABL occurs in 15-30 percent of CML patients. In addition, some rearrangements are complex, and do not yield the ABL/BCR fusion due to the involvement of a third chromosome in the rearrangement. The possible role of these deletions and complex rearrangements in disease outcome is an ongoing topic of research. We report our results of cytogenetic analysis with GTG banding and fluorescence in situ hybridization using dual color dual fusion probe (D-FISH) from Vysis Inc, USA in 169 (109 male and 60 female) CML patients registered at The Gujarat Cancer and Research Institute (GC and RI) from April 2004 to December 2005. GTG banding was carried out in 123 cases having analyzable metaphases. Of these 123 cases, D-FISH revealed atypical signal patterns in 57 patients (46%), and 12 cases revealed additional complex translocations indicative of disease progression. Out of 57 cases with atypical FISH patterns, 22 included metaphase FISH results, and the rest had only interphase FISH performed. In addition to the hallmark Philadelphia chromosome, other chromosomal aberrations in CML revealed heterogeneity of molecular events. Pooling of more data may lead to identification of new CML sub-groups and hence help in the analysis of clinical trials. Patients enrolled in our prospective study of prognostic significance will be followed up for disease free and overall survival in correlation with ABL-BCR deletion status.  相似文献   

20.
Quantitative measurements of the nuclear localisation of the ABL and BCR genes and the distance between them were performed in randomly oriented bone marrow cells of control donors and patients with chronic myeloid leukaemia (CML). Most ABL and BCR genes (75%) are located at a distance of 20–65% of the local radius from the nuclear centre to the nuclear membrane. A chimeric BCR-ABL gene located on a derivative chromosome 22 resulting from t(9;22)(q34;q11) [the so-called Philadelphia (Ph) chromosome] as well as the intact ABL and BCR genes of patients suffering from chronic myeloid leukaemia are also located mostly in this region, which has a mean thickness of 2 μm in bone marrow cells. We have not found any significant differences in the location of the two genes in the G1 and G2 phases of the cell cycle, nor between bone marrow cells and stimulated lymphocytes. Irradiation of lymphocytes with a dose of 5 Gy of γ-rays results in a shift of both genes to the central region of the nucleus (0–20% of the radius distant from the nuclear centre) in about 15% of the cells. The minimum distance between one ABL and one BCR gene is less than 1 μm in 47.5% of bone marrow cells of control donors. Such a small distance is found between homologous ABL and between homologous BCR genes in only 8.1% and 8.4% of cells, respectively. It is possible that the relative closeness of nonhomologous ABL and BCR genes in interphase nuclei of bone marrow cells could facilitate translocation between these genes. In 16.4% of bone marrow cells one ABL and one BCR gene are juxtaposed (the distance between them varies from 0–0.5 μm) and simulate the Ph chromosome. This juxtaposition is the result of the projection of two genes located one above another into a plane, as follows from the probability calculation. Received: 5 September 1996 / Accepted: 15 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号