首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vinca (Catharanthus roseus (L.) G. Don.) is an important medicinal plant species from which antineoplastic alkaloids such as vinblastine are extracted. However, neither abiotic stress nor inoculation of arbuscular mycorrhizal fungi (AMF) has been evaluated on the accumulation of vinca alkaloids under controlled conditions. This study evaluated the effects of AMF and/or abiotic stress induced by the application of potassium bicarbonate (KHCO3) and/or sodium chloride (NaCl) on plant growth, and on total content of phenolic compounds (TCPC), total antioxidant activity (TAOX), and total content of vinblastine alkaloid in leaves of vinca. TCPC, TAOX, and vinblastine were measured via spectrophotometric methods. After 75 days under greenhouse conditions, either the AMF inoculation without abiotic stress or the application of KHCO3 (2.5 and 7.5 mM) resulted in significantly (P?≤?0.001) enhanced plant growth, TCPC, TAOX, and total content of vinblastine. The application of NaCl significantly diminished plant growth, but did not stimulate the content of vinblastine. The combined application of NaCl and KHCO3 significantly decreased AMF-colonization in roots. The sole inoculation of AMF or the single application of 7.5 mM KHCO3 induced the accumulation of vinblastine in leaves of vinca.  相似文献   

2.
Effects of exogenous salicylic acid (SA) on plant growth, contents of Na, K, Ca and Mg, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and contents of ascorbate and glutathione were investigated in tomato (Lycopersicon esculentum L.) plants treated with 100 mM NaCl. NaCl treatment significantly increased H2O2 content and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (TBARS). A foliar spray of 1 mM SA significantly decreased lipid peroxidation caused by NaCl and improved the plant growth. This alleviation of NaCl toxicity by SA was related to decreases in Na contents, increases in K and Mg contents in shoots and roots, and increases in the activities of SOD, CAT, GPX and DHAR and the contents of ascorbate and glutathione.  相似文献   

3.
Sheng  Huajin  Zeng  Jian  Liu  Yang  Wang  Xiaolu  Wang  Yi  Kang  Houyang  Fan  Xing  Sha  Lina  Zhang  Haiqin  Zhou  Yonghong 《Journal of Plant Growth Regulation》2020,39(2):795-808

The effect of Mn and NaCl on growth, mineral nutrients and antioxidative enzymes in two tetroploid wheat genotypes differing in salt tolerance was investigated in this study. 100 mM NaCl and Mn stress significantly inhibited plant growth, photosynthesis and Ca uptake, while stimulated ROS accumulation, MDA and proline content in wheat plants, Mn stress also increased SOD, APX, GR and DHAR activities. Durum wheat (AS780) was less affected by 100 mM NaCl and Mn stress than emmer wheat (AS847) due to more proline production, higher antioxidative enzymes activities and less-affected mineral nutrients. Application of 10 mM NaCl to Mn-stressed durum wheat alleviated Mn-induced damage by reducing Mn accumulation and translocation, while promoting proline accumulation and SOD, APX and GR activities. Irrespective of NaCl level, the combined stress of Mn and NaCl caused more severe oxidative stress, result in further reduction of photosynthetic rate and plant growth in emmer wheat as compared to Mn stress alone. The additively negative effects of NaCl and Mn stress on growth of emmer wheat results from reduced SOD and APX activities as well as Ca, Cu and Fe accumulation in both shoots and roots. These results suggest that salt-tolerant durum wheat is superior to emmer in adapting to Mn stress and the combined stress of salinity and Mn.

  相似文献   

4.
The effects of ABA treatment on the contents of proline, polyamines (PA), and cytokinins (CK) in the facultative halophyte the common ice plant (Mesembryanthemum crystallinum L.) subjected to salt stress were studied. Plants grown in the phytotron chamber on Jonson nutrient medium for 6 weeks were subjected to 6-day-long salinity by a single NaCl adding to medium. During first three days of salinity, half plants of each treatment were placed for 30 min on nutrient medium containing 0, 100, or 300 mM NaCl plus ABA in the final concentration of 1 μM. Salinity reduced biomass accumulation and water and chlorophyll contents in plants. This was accompanied by the increase in the levels of MDA, proline, and sodium ions. ABA treatment of salt-stressed plants favored biomass accumulation and photosynthetic pigment protection, reduced the intensity of oxidative stress and the level of NaCl-induced proline accumulation. ABA treatment increased the contents of putrescine (Put) and spermidine (Spd) in the leaves and roots of control plants (not subjected to salt stress), reduced the losses of Put in the leaves and roots and Spd in the roots in the presence of 100 mM NaCl, and suppressed cadaverine (Cad) accumulation in the roots in the presence of 300 mM NaCl. In the presence of NaCl, ABA reduced the contents of zeatin and zeatin riboside and increased the level of zeatin-O-glucoside in the roots and isopentenyladenosine and isopentenyladenine in the leaves. Thus, ABA protective action under salinity can be realized through the weakening of oxidative stress (a decrease in MDA content) and the regulation of PA, proline, and CK metabolism, which has a great significance in plant adaptation to injurious factors.  相似文献   

5.
Comparative analysis of growth and composition of Atropa belladonna L. plants was performed after separate and combined additions of NaCl and NiCl2 to the nutrient medium. Plants were grown in water culture on modified Johnson solution for 8 weeks until the formation of the fifth leaf pair. Thereafter, NiCl2 was introduced at final concentrations of 100 and 150 μM into the medium either separately or in combination with 100 mM NaCl. After completing the 7-day treatment with Ni ions, the plants' weight and the content of water and photosynthetic pigments were determined. The content of Ni, free polyamines (putrescine, spermidine, spermine), and atropine was determined in plant roots and leaves, whereas the content of Fe, proline, and malondialdehyde (MDA) was examined in leaves only. The distribution of Ni in various tissues was inspected using the dimethylglyoxime method. The presence of NiCl2 in growth media diminished the increments in fresh weight of shoots and roots; lowered the content of water, pigments, and iron in leaves; and initiated chlorosis. The leaves of Ni-treated plants accumulated larger amounts of atropine, putrescine, proline, and MDA with respect to the control levels of these compounds. In contrast to the action of Ni alone, the combined application of NaCl and NiCl2 was followed by the increased content of water and pigments in leaves. The presence of NaCl in the medium restricted the entry of Ni into roots and diminished the levels of MDA and proline in leaves. After growing the plants in the presence of 100 and 150 μM NiCl2, nickel was located in the root outer cortex and the rhizoderm. In plants treated with 150 μM NiCl2, nickel was also observed in tissues of the central cylinder, mostly in the pericycle, phloem, and xylem. In plants grown in the presence of 150 μM NiCl2 and 100 mM NaCl, the decreased accumulation of nickel was noted in the tissues of the central cylinder in the root hair zone. Thus, the combined action of Ni and moderate salinity reduced nickel accumulation in roots and aboveground organs of A. belladonna plants. The reduced Ni content in plants mitigated the toxic effect of Ni present in the medium. This was manifested in stabilization of leaf water status, an increase in the content of photosynthetic pigments, and alleviation of oxidative stress, which was assessed from the content of low-molecular organic compounds exhibiting stress-protective and antioxidant action (proline, MDA, free polyamines, and atropine).  相似文献   

6.
Silicon improves salinity tolerance in wheat plants   总被引:5,自引:0,他引:5  
Durum wheat (Triticum durum cv. Gediz-75) and bread wheat (Triticum aestivum cv. Izmir-85) were grown in a complete nutrient solution in a growth room to investigate effect of silicone supplied to the nutrient solution on plants grown at salt stress. The experiment was a 2 × 2 factorial arrangement with two levels of NaCl in nutrient solution, 0 and 100 mM, and two levels of silicone (Si) in nutrient solution, 0.25 and 0.50 mM, as Na2SiO3. The plants grown at 100 mM NaCl produced less dry matter and chlorophyll content than those without NaCl. Supplementary Si at both 0.25 and 0.5 mM ameliorated the negative effects of salinity on plant dry matter and chlorophyll content. Membrane permeability and proline content in leaves increased with addition of 100 mM NaCl and these increases were decreased with Si treatments. Sodium (Na) concentration in plant tissues increased in both leaves and roots of plants in the high NaCl treatment and Si treatments lowered significantly the concentrations of Na in both leaves and roots. Bread wheat was more tolerant to salinity than durum wheat. The accumulation of Na in roots indicates a possible mechanism whereby bread wheat copes with salinity in the rooting medium and/or may indicate the existence of an inhibition mechanism of Na transport to leaves. Concentrations of both Ca and K were lower in the plants grown at high NaCl than in those in the control treatment and these two element concentrations were increased by Si treatments in both shoots and roots but remained lower than control values in most cases.  相似文献   

7.
8.
Zheng Y  Jia A  Ning T  Xu J  Li Z  Jiang G 《Journal of plant physiology》2008,165(14):1455-1465
A sand culture experiment was conducted to answer the question whether or not exogenous KNO(3) can alleviate adverse effects of salt stress in winter wheat by monitoring plant growth, K(+)/Na(+) accumulation and the activity of some antioxidant enzymes. Seeds of two wheat cultivars (CVs), DK961 (salt-tolerant) and JN17 (salt-sensitive), were planted in sandboxes and controls germinated and raised with Hoagland nutrient solution (6 mM KNO(3), no NaCl). Experimental seeds were exposed to seven modified Hoagland solutions containing increased levels of KNO(3) (11, 16, 21 mM) or 100 mM NaCl in combination with the four KNO(3) concentrations (6, 11, 16 and 21 mM). Plants were harvested 30 d after imbibition, with controls approximately 22 cm in height. Both CVs showed significant reduction in plant height, root length and dry weight of shoots and roots under KNO(3) or NaCl stress. However, the combination of increased KNO(3) and NaCl alleviated symptoms of the individual salt stresses by improving growth of shoots and roots, reducing electrolyte leakage, malondialdehyde and soluble sugar contents and enhancing the activities of antioxidant enzymes. The salt-tolerant cultivar accumulated more K(+) in both shoots and roots compared with the higher Na(+) accumulation typical for the salt-sensitive cultivar. Soluble sugar content and activities of antioxidant enzymes were found to be more stable in the salt-tolerant cultivar. Our findings suggest that the optimal K(+)/Na(+) ratio of the nutrient solution should be 16:100 for both the salt-tolerant and the salt-sensitive cultivar under the experimental conditions used, and that the alleviation of NaCl stress symptoms through simultaneously applied elevated KNO(3) was more effective in the salt-tolerant than in the salt-sensitive cultivar.  相似文献   

9.
Common centaury (Centaurium erythraea Rafn.) is a plant species that can inhabit saline soils. It is known as a plant with high spontaneous regeneration potential in vitro. In the present work we evaluated shoots and roots salinity tolerance of non-transformed and three AtCKX transgenic centaury lines to graded NaCl concentrations (0, 50, 100, 150, 200 mM) in vitro. Overexpression of AtCKX genes in transgenic centaury plants resulted in an altered cytokinins (CKs) profile leading to a decline of bioactive CK levels and, at the same time, increased contents of storage CK forms, inactive CK forms and/or CK nucleotides. Significant increment of fresh shoot weight was obtained in shoots of non-transformed and AtCKX1 transgenic line only on medium supplemented with 50 mM NaCl. However two analysed AtCKX2 transgenic lines reduced shoot growth at all NaCl concentrations. In general, centaury roots showed higher tolerance to salinity than shoots. Non-transformed and AtCKX1 transgenic lines tolerated up to 100 mM NaCl without change in frequency of regeneration and number of regenerated plants. Roots of two analysed AtCKX2 transgenic lines showed different regeneration potential under salt stress. Regeneration of transgenic AtCKX2-26 shoots even at 200 mM NaCl was recorded. Salinity stress response of centaury shoots and roots was also evaluated at biochemical level. Free proline, malondialdehyde and hydrogen peroxide content as well as antioxidative enzymes activities were investigated in shoots and roots after 1, 2, 4 and 8 weeks. In general, adition of NaCl in culture medium elevated all biochemical parameters in centaury shoots and in roots. Considering that all analysed AtCKX transgenic centaury lines showed altered salt tolerance to graded NaCl concentrations in vitro it can be assumed that CKs might be involved in plant defence to salt stress conditions.  相似文献   

10.
Salt-induced oxidative stress in rosemary plants: Damage or protection?   总被引:1,自引:0,他引:1  
Mechanisms of photoprotection and antioxidant protection, including changes in chlorophylls, xanthophyll cycle components and levels of low-molecular-weight chloroplastic antioxidants (lutein, β-carotene and α-tocopherol) were studied together with levels of malondialdehyde, a product of lipid peroxidation, in the response of rosemary (Rosmarinus officinalis L.) plants to salt stress. Plants were exposed to increasing NaCl concentrations (50, 100 and 150 mM) for 6 weeks, and two concentrations of the following chloride salts: KCl, CaCl2, MgCl2 and FeCl3, were used together with 100 mM NaCl to explore the extent to which these salts can alter the mechanisms of photoprotection, antioxidant protection and malondialdehyde accumulation in leaves. Increasing concentrations of NaCl decreased leaf water contents and photosynthetic pigment levels, while the contents of α-tocopherol and malondialdehyde increased, but with completely different kinetics. α-Tocopherol levels increased in a dose-dependent manner as stress progressed, while malondialdehyde levels increased at the highest dose (150 mM NaCl) but only during early phases of stress. Furthermore, although the addition of chloride salts to NaCl-treated plants apparently improved leaf physiological status, in terms of water and chlorophyll contents, plants showed an increased photoprotective demand and increased oxidative stress, particularly in FeCl3-treated plants. It is concluded that (i) rosemary plants can withstand moderate doses of NaCl in the medium (at least 150 mM NaCl for 6 weeks), (ii) oxidative stress may be a mechanism for protecting plants from moderate doses of salt stress rather than causing damage to plants, and (iii) the addition of chloride salts to NaCl-treated plants may dramatically increase the photoprotective demand and oxidative stress of leaves, while plant growth is not negatively affected.  相似文献   

11.
Sodium chloride and sodium sulfate are commonly present in extraction tailings waters produced as a result of surface mining and affect plants on reclaimed areas. Red-osier dogwood (Cornus stolonifera Michx) seedlings were demonstrated to be relatively resistant to these high salinity oil sands tailings waters. The objectives of this study were to compare the effects of Na2SO4 and NaCl, on growth, tissue ion content, water relations and gas exchange in red-osier dogwood (Cornus stolonifera Michx) seedlings. In the present study, red-osier dogwood seedlings were grown in aerated half-strength modified Hoagland's mineral solution containing 0, 25, 50 or 100 mM of NaCl or Na2SO4. After four weeks of treatment, plant dry weights decreased and the amount of Na+ in plant tissues increased with increasing salt concentration. Na+ tissue content was higher in plants treated with NaCl than Na2SO4 and it was greater in roots than shoots. However, Cl concentration in the NaCl treated plants was higher in shoots than in roots. The decrease in stomatal conductance and photosynthetic rates observed in presence of salts is likely to contribute to the growth reduction. Our results suggest that red-osier dogwood is able to control the transport of Na+ from roots to shoots when external concentrations are 50 mM or less.  相似文献   

12.
The effect was studied of chloride ions, added in the form of different salts, on nitrate reductase (NR) level in excised pea roots, on anaerobic nitrite production in an assay medium lacking both nitrate and n-propanol, on nitrate content in the roots, and on in vivo NR activity determined in an assay medium containing 5% n-propanol. The presence of Cl in nitrate containing nutrient solutions resulted in lower NR levels, however counterions supplied together with Cl tended to modify slightly this general trend. The negative effect of Cl ions was also apparent, when Cl ions were applied before nitrate ions. Anaerobic nitrite production in the medium lacking both nitrate and n-propanol was not influenced by chloride ions. Nitrate content in the roots was reduced in the presence of chloride both at 3 mM and 15 mM NO3 in nutrient solutions; however, at 16 mM NO3, nitrate content in the roots exoeeded even in the presence of 15 mM Cl nitrate content in those root segments which were cultivated in a nutrient solution with 6 mM nitrate, which is the concentration at which NR reaches the level of saturation in excised pea roots. The results obtained suggest that a special induction nitrate pool exists in plant cells besides the storage and metabolic nitrate pools.  相似文献   

13.
This study investigates the role of salicylic acid (SA), hydrogen peroxide (H2O2) and calcium chloride (CaCl2) singly or in combination, in inducing naked oat plant tolerance to sodium chloride (NaCl). Two-week-old naked oat plants were pretreated with both single and double of 0.5 mM SA, 0.5 mM H2O2 and 5 mM CaCl2 by adding them to the culture solution for 24 h. At the end of the pretreatment, the plants were subjected to 200 mM NaCl exposure for 7 days. Data were collected on plant biomass, H2O2 level, antioxidant enzyme activity, non-enzymatic antioxidant content and malondialdehyde (MDA) content. Results showed that exposure to salt significantly inhibited plant growth, and the shoot and root dry weights were reduced 47.5% and 63.4%, and the H2O2 levels elevated 5.8 and 2.4 times in comparison with those in the control, respectively. Under the saline stress, the activities of superoxide dismutase (SOD) and catalase (CAT) were induced, but the contents of ascorbic acid (AA) and glutathione (GSH) decreased, and MDA largely accumulated. The various pretreatments efficiently counteracted the salt-caused growth inhibition, especially with H2O2 + CaCl2 the shoot and root dry weights reduced only 9.4% and 24.4% of the non salt-stressed plants. The determination of endogenous H2O2 level demonstrated that the pretreatments induced H2O2 accumulation, with H2O2 + CaCl2 being most efficient, but the effect was transient. After 7 days of saline stress, the H2O2 contents in the pretreated shoots and roots accounted for 23.7–41.8% and 31.7–57.3% of the non-pretreated plants, varying according to the different pretreatments. Under saline stress, SOD and CAT further increased, AA and GSH maintained higher levels and MDA decreased in the pretreated plants compared to the untreated plants. With application of diphenylene iodonium (DPI) during the pretreatment, which inhibited the accumulation of H2O2, the ameliorative effect of the pretreatment on salt-caused plant growth inhibition was reduced. However, applied DPI at the immediate end of the pretreatment did not alter its favorable role, indicating a H2O2 peak formed at the early time of saline stress might play an important role in regulating plant tolerance to saline stress.  相似文献   

14.
The aim of the study was to examine the effect of silicon on spring wheat subjected to salt stress. The experiment was conducted in hydroponic conditions on 10-day old wheat seedlings. Salt stress was induced by sodium chloride at the concentration of 70 and 100 mM added to nutrient medium. Silicon (H4SiO4) at the doses of 1.0 and 1.5 mM significantly increased the shoots and roots weight of wheat seedlings and the content of photosynthetic pigments (chlorophyll a and b, as well as carotenoids) in leaves. It reduced a detrimental effect of salt stress and restricted peroxidation of membrane lipids. We also observed a greater accumulation of nitrates and the decrease in malondialdehyde concentration in plant tissues as a result of silicon addition. Under osmotic stress, silicon did not change the content of sugars in wheat shoots and roots. Silicon did not clearly affect proline content. In general, the obtained results point out that silicon can be used for the alleviation of adverse effect of salinity on plants status.  相似文献   

15.
Salinity is one of the major constraints in oilseed rape (Brassica napus L.) production. One of the means to overcome this constraint is the use of plant growth regulators to induce plant tolerance. To study the plant response to salinity in combination with a growth regulator, 5-aminolevulinic acid (ALA), oilseed rape plants were grown hydroponically in greenhouse conditions under three levels of salinity (0, 100, and 200 mM NaCl) and foliar application of ALA (30 mg/l). Salinity depressed the growth of shoots and roots, and decreased leaf water potential and chlorophyll concentration. Addition of ALA partially improved the growth of shoots and roots, and increased the leaf chlorophyll concentrations of stressed plants. Foliar application of ALA also maintained leaf water potential of plants growing in 100 mM salinity at the same level as that of the control plants, and there was also an improvement in the water relations of ALA-treated plants growing in 200 mM. Net photosynthetic rate and gas exchange parameters were also reduced significantly with increasing salinity; these effects were partially reversed upon foliar application with ALA. Sodium accumulation increased with increasing NaCl concentration which induced a complex response in the macro-and micronutrients uptake and accumulation in both roots and leaves. Generally, analyses of macro- (N, P, K, S, Ca, and Mg) and micronutrients (Mn, Zn, Fe, and Cu) showed no increased accumulation of these ions in the leaves and roots (on dry weight basis) under increasing salinity except for zinc (Zn). Foliar application of ALA enhanced the concentrations of all nutrients other than Mn and Cu. These results suggest that under short-term salinity-induced stress (10 days), exogenous application of ALA helped the plants improve growth, photosynthetic gas exchange capacity, water potential, chlorophyll content, and mineral nutrition by manipulating the uptake of Na+.  相似文献   

16.
The effect of 80 mM NaCl on the structure and ultrastructure of root cells ofPhaseolus vulgaris plants has been investigated. Roots of plants treated with NaCl were shorter and had less secondary roots than control plants. In control plants, epidermal cells were isodiametric and uniformly placed forming a thin layer, whereas in stressed plants, the shape and disposition of epidermal cells was less regular. The cortical cells of control plant were round-shaped and distributed allowing large and well defined intercellular spaces, whereas stressed plants presented irregular cells, which were interdigitated, thus decreasing the volume of the intercellular spaces. Presence of 80 mM NaCl did not result in significant differences in the number, shape or distribution of the cell organelles. Membrane vesiculation was often observed in cells of NaCl treated plants. Addition of 80 mM NaCl to the growth medium considerably increased the leakage of solutes from intact plant roots back to the solution especially K+ and Ca2+.  相似文献   

17.
Efficient utilization of saline land for food cultivation can increase agricultural productivity and rural income. To obtain information on the salt tolerance/susceptibility of wild chicory (Cichorium intybus L.), the influence of salinity (0–260 mM NaCl) on chicory seed germination and that of two salinity levels of irrigation water (100 and 200 mM NaCl) on plant growth, antioxidative enzyme activity, and accumulation of proline and malondialdehyde (MDA) were investigated. The trials were performed outdoors, in pots placed under a protective glass covering, for two consecutive years. Seeds showed a high capacity to germinate in saline conditions. The use of 100 mM NaCl solution resulted in 81 % germination, whereas seed germinability decreased below 40 % using salt concentrations above 200 mM NaCl. Wild chicory showed tolerance to medium salinity (100 mM NaCl), whereas a drastic reduction in biomass was observed when 200 mM NaCl solution was used for irrigation. MDA, present in higher amounts in leaves than in roots, decreased in both tissues under increasing salinity. Proline content increased remarkably with the level of salt stress, more so in roots than in leaves. In salt stress conditions, the activity of antioxidant enzymes (APX, CAT, POD, SOD) was enhanced. The electrophoretic patterns of the studied enzymes showed that the salinity of irrigation water affected only the intensity of bands, but did not activate new isoforms. Our results suggest that wild chicory is able to grow in soil with moderate salinity by activating antioxidative responses both in roots and leaves.  相似文献   

18.
In the present investigation, the role of salicylic acid (SA) in inducing salinity tolerance was studied in Artemisia annua L., which is a major source of the antimalarial drug artemisinin. SA, when applied at 1.00 mM, provided considerable protection against salt stress imposed by adding 50, 100, or 200 mM NaCl to soil. Salt stress negatively affected plant growth as assessed by length and dry weight of shoots and roots. Salinity also reduced the values of photosynthetic attributes and total chlorophyll content and inhibited the activities of nitrate reductase and carbonic anhydrase. Furthermore, salt stress significantly increased electrolyte leakage and proline content. Salt stress also induced oxidative stress as indicated by the elevated levels of lipid peroxidation compared to the control. A foliar spray of SA at 1.00 mM promoted the growth of plants, independent of salinity level. The activity of antioxidant enzymes, namely, catalase, peroxidase, and superoxide dismutase, was upregulated by salt stress and was further enhanced by SA treatment. Artemisinin content increased at 50 and 100 mM NaCl but decreased at 200 mM NaCl. The application of SA further enhanced artemisinin content when applied with 50 and 100 mM NaCl by 18.3 and 52.4%, respectively. These results indicate that moderate saline conditions can be exploited to obtain higher artemisinin content in A. annua plants, whereas the application of SA can be used to protect plant growth and induce its antioxidant defense system under salt stress.  相似文献   

19.
The accumulation of conjugated and free polyamines in plants is very important for their protection against oxidative stress induced by abiotic factors. In the present study, the species halophytic plant Mesembryanthemum crystallinum L. was used as a model system in which the process of Crassulacean Acid Metabolism induction is linked with oxidative stress, especially under salinity conditions. A comparative analysis of the content of free polyamines, perchloric (PCA)-soluble and PCA-insoluble conjugated polyamines in mature leaves and roots was carried out with plants exposed to salinity. It was found that adult leaves and roots under normal conditions or salinity (400 mM NaCl) contained all types of free polyamines (putrescine, spermidine, spermine, and cadaverine). In leaves only PCA-insoluble conjugates were found, which showed a tendency to grow with increased duration of salt action (1.5–48 h). In contrast to leaves, in roots all forms of polyamine conjugates (PCA-soluble and -insoluble) were detected. However, the formation of all conjugates, especially PCA-soluble forms in roots, was sharply inhibited by salt shock (400 mM NaCl, 1.5 h) or exogenous cadaverine (1 mM) treatment. PCA-soluble conjugates of cadaverine in roots were found only when the treatment was carried out in combination with aminoguanidine (1 mM), as a result of diamine oxidase inhibition and consequently a decreasing of H2O2 production in plant cells. The activation of diamine oxidase and guaiacol peroxidase by NaCl or exogenous cadaverine was observed in leaves and roots. Thus, the activation of oxidative degradation of polyamines combined with H2O2–peroxidase reaction in cells are involved in the regulation of free and conjugated polyamines titers under salinity.  相似文献   

20.
The accumulation of conjugated and free polyamines in plants is very important for their protection against oxidative stress induced by abiotic factors. In the present study, the species halophytic plant Mesembryanthemum crystallinum L. was used as a model system in which the process of Crassulacean Acid Metabolism induction is linked with oxidative stress, especially under salinity conditions. A comparative analysis of the content of free polyamines, perchloric (PCA)-soluble and PCA-insoluble conjugated polyamines in mature leaves and roots was carried out with plants exposed to salinity. It was found that adult leaves and roots under normal conditions or salinity (400 mM NaCl) contained all types of free polyamines (putrescine, spermidine, spermine, and cadaverine). In leaves only PCA-insoluble conjugates were found, which showed a tendency to grow with increased duration of salt action (1.5–48 h). In contrast to leaves, in roots all forms of polyamine conjugates (PCA-soluble and -insoluble) were detected. However, the formation of all conjugates, especially PCA-soluble forms in roots, was sharply inhibited by salt shock (400 mM NaCl, 1.5 h) or exogenous cadaverine (1 mM) treatment. PCA-soluble conjugates of cadaverine in roots were found only when the treatment was carried out in combination with aminoguanidine (1 mM), as a result of diamine oxidase inhibition and consequently a decreasing of H2O2 production in plant cells. The activation of diamine oxidase and guaiacol peroxidase by NaCl or exogenous cadaverine was observed in leaves and roots. Thus, the activation of oxidative degradation of polyamines combined with H2O2–peroxidase reaction in cells are involved in the regulation of free and conjugated polyamines titers under salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号