首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The pivotal role of estrogens in the pain sensitivity has been investigated in many ways. Traditionally, it is ascribed to the slow genomic changes mediated by classical nuclear estrogen receptors (ER), ER?? and ER??, depending on peripheral estrogens. Recently, it has become clear that estrogens can also signal through membrane ERs (mERs), such as G-protein-coupled ER1 (GPER1), mediating the non-genomic effects. However, the spinal specific role played by ERs and the underlying cellular mechanisms remain elusive. The present study investigated the rapid estrogenic regulation of nociception at the spinal level. Spinal administration of 17??-estradiol (E2), the most potent natural estrogen, acutely produced a remarkable mechanical allodynia and thermal hyperalgesia without significant differences among male, female and ovariectomized (Ovx) rats. E2-induced the pro-nociceptive effects were partially abrogated by ICI 182,780 (ERs antagonist), and mimicked by E2-BSA (a mER agonist). Inhibition of local E2 synthesis by 1,4,6-Androstatrien-3,17-dione (ATD, a potent irreversible aromatase inhibitor), or blockade of ERs by ICI 182,780 produced an inhibitory effect on the late phase of formalin nociceptive responses. Notably, lumbar puncture injection of G15 (a selective GPER1 antagonist) resulted in similar but more efficient inhibition of formalin nociceptive responses as compared with ICI 182,780. At the cellular level, the amplitude and decay time of spontaneous inhibitory postsynaptic currents were attenuated by short E2 or E2-BSA treatment in spinal slices. These results indicate that estrogen acutely facilitates nociceptive transmission in the spinal cord via activation of membrane-bound estrogen receptors.  相似文献   

3.
4.
A new triazole derivative, R76713 (6-[4-chlorophenyl)(1H-1,2,4-triazol-1-yl)methyl]-1-methyl-1H- benzotriazole), was recently shown to inhibit aromatase selectively without affecting other steroid-metabolizing enzymes and without interacting with estrogen, progestin, or androgen receptors. This compound was tested for its capacity to intefere with the induction of copulatory behavior by testosterone (T) in castrated Japanese quail (Coturnix coturnix japonica). In a first experiment, R76713 inhibited (range 0.01 to 1 mg/kg) the activation of sexual behavior by T silastic implants and hypothalamic aromatase activity in castrated male quail in a dose-dependent manner. The 5 alpha- and 5 beta- reductases of T were not systematically affected. Stereotaxic implantation of R76713 in the medial preoptic area similarly blocked the behavior activated by systemic treatment with T, demonstrating that central aromatization of androgen is implicated in the activation of behavior. These inhibiting effects of R76713 on behavior were observed when implants were placed in the medial part of the nucleus preopticus medialis, confirming the implication of this brain area in the control of male copulatory behavior. Finally, the behavioral inhibition produced by R76713 could be reversed by simultaneous treatment with a dose of estradiol, which was not behaviorally effective by itself. This suggests that the behavioral deficit induced by the inhibitor was specifically due to the suppression of estrogen production. This also shows that the activation of copulatory behavior probably results from the interaction of androgens and estrogens at the brain level, as the two treatments separately providing these hormonal stimuli (T with the aromatase inhibitor on one hand and a low dose of estradiol on the other hand) had almost no behavioral effects but they synergized to activate copulation when given concurrently. These data confirm the critical role of preoptic aromatase in the activation of reproductive behavior and demonstrate that R76713 is a useful tool for the in vivo study of estrogen-dependent processes.  相似文献   

5.
The enzyme aromatase (also called estrogen synthase) that catalyzes the transformation of testosterone (T) into estradiol plays a key limiting role in the action of T on many aspects of reproduction. The distribution and regulation of aromatase in the quail brain has been studied by radioenzyme assays on microdissected brain areas, immunocytochemistry, RT-PCR and in situ hybridization. High levels of aromatase activity (AA) characterize the sexually dimorphic, steroid-sensitive medial preoptic nucleus (POM), a critical site of T action and aromatization for the activation of male sexual behavior. The boundaries of the POM are clearly outlined by a dense population of aromatase-containing cells as visualized by both immunocytochemistry and in situ hybridization histochemistry. Aromatase synthesis in the POM is controlled by T and its metabolite estradiol, but estradiol receptors alpha (ER) are not normally co-localized with aromatase in this brain area. Estradiol receptor beta (ERβ) has been recently cloned in quail and localized in POM but we do not yet know whether ERβ occurs in aromatase cells. It is therefore not known whether estrogens regulate aromatase synthesis directly or by affecting different inputs to aromatase cells as is the case with the gonadotropin releasing hormone neurons. The presence of aromatase in presynaptic boutons suggests that locally formed estrogens may exert part of their effects by non-genomic mechanisms at the membrane level. Rapid effects of estrogens in the brain that presumably take place at the neuronal membrane level have been described in other species. If fast transduction mechanisms for estrogen are available at the membrane level, this will not necessarily result in rapid changes in brain function if the availability of the ligand does not also change rapidly. We demonstrate here that AA in hypothalamic homogenates is rapidly down-regulated by exposure to conditions that enhance protein phosphorylation (addition of Ca2+, Mg2+, ATP). This inhibition is blocked by kinase inhibitors which supports the notion that phosphorylation processes are involved. A rapid (within minutes) and reversible regulation of AA is also observed in hypothalamic explants incubated in vitro and exposed to high Ca2+ levels (K+-induced depolarization, treatment by thapsigargin, by kainate, AMPA or NMDA). The local production and availability of estrogens in the brain can therefore be rapidly changed by Ca2+ based on variation in neurotransmitter activity. Locally-produced estrogens are as a consequence available for non-genomic regulation of neuronal physiology in a manner more akin to the action of a neuropeptide/neurotransmitter than previously thought.  相似文献   

6.
Osteoarthritis (OA) of the joint is a prevalent disease accompanied by chronic, debilitating pain. Recent clinical evidence has demonstrated that central sensitization contributes to OA pain. An improved understanding of how OA joint pathology impacts upon the central processing of pain is crucial for the identification of novel analgesic targets/new therapeutic strategies.Inhibitory cannabinoid 2 (CB2) receptors attenuate peripheral immune cell function and modulate central neuro-immune responses in models of neurodegeneration. Systemic administration of the CB2 receptor agonist JWH133 attenuated OA-induced pain behaviour, and the changes in circulating pro- and anti-inflammatory cytokines exhibited in this model. Electrophysiological studies revealed that spinal administration of JWH133 inhibited noxious-evoked responses of spinal neurones in the model of OA pain, but not in control rats, indicating a novel spinal role of this target. We further demonstrate dynamic changes in spinal CB2 receptor mRNA and protein expression in an OA pain model. The expression of CB2 receptor protein by both neurones and microglia in the spinal cord was significantly increased in the model of OA. Hallmarks of central sensitization, significant spinal astrogliosis and increases in activity of metalloproteases MMP-2 and MMP-9 in the spinal cord were evident in the model of OA pain. Systemic administration of JWH133 attenuated these markers of central sensitization, providing a neurobiological basis for analgesic effects of the CB2 receptor in this model of OA pain. Analysis of human spinal cord revealed a negative correlation between spinal cord CB2 receptor mRNA and macroscopic knee chondropathy.These data provide new clinically relevant evidence that joint damage and spinal CB2 receptor expression are correlated combined with converging pre-clinical evidence that activation of CB2 receptors inhibits central sensitization and its contribution to the manifestation of chronic OA pain. These findings suggest that targeting CB2 receptors may have therapeutic potential for treating OA pain.  相似文献   

7.
Several lines of evidence from both animal and clinical studies have demonstrated that dorsal column (DC) pathway plays a critical role in visceral pain transmission from the spinal cord to supraspinal center. The descending pain modulation pathway from the rostral ventromedial medulla (RVM) area has been implicated in visceral nociceptive neurotransmission. Previous studies have demonstrated that the multiple protein kinase signaling transduction cascades in the RVM area contribute to the descending facilitation of inflammatory pain and neuropathic pain. However, whether these signaling transduction pathways in the RVM area are triggered by the afferent visceral input from the DC pathway during acute visceral pain remains elusive. Here, we have tested the hypothesis that the afferent visceral stimuli from the DC pathway might induce the activation of extracellular signal-regulated protein kinase (ERK) signaling in the RVM area and contribute to the descending facilitation of neurotransmission in a rat model of visceral pain. Our results showed that acetic acid-induced visceral nociception produced a persistent activation of ERK in the RVM area and a microinjection of a mitogen-activated ERK kinase (MEK) inhibitor, U0126, into the RVM area significantly inhibited the visceral noxious stimulation-induced behaviors in rats. A microinjection of lidocaine into the nucleus gracilis (NG) also inhibited the activation of ERK in the RVM area. The current study indicates that activated ERK signaling pathway in the RVM area is dependent on afferent input from dorsal column pathway and may contribute to acetic acid-induced visceral nociception.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disorder characterized by motoneuron death. Clinical and experimental studies in animal models of ALS have found gender differences in the incidence and onset of disease, suggesting that female hormones may play a beneficial role. Cumulative evidence indicates that 17β-estradiol (17βE2) has a neuroprotective role in the central nervous system. We have previously developed a new culture system by using rat spinal cord embryonic explants in which motoneurons have the singularity of migrating outside the spinal cord, growing as a monolayer in the presence of glial cells. In this study, we have validated this new culture system as a useful model for studying neuroprotection by estrogens on spinal cord motoneurons. We show for the first time that spinal cord motoneurons express classical estrogen receptors and that 17βE2 activates, specifically in these cells, the Akt anti-apoptotic signaling pathway and two of their downstream effectors: GSK-3β and Bcl-2. To further validate our system, we demonstrated neuroprotective effects of 17βE2 on spinal cord motoneurons when exposed to the proinflammatory cytokines TNF-α and IFN-γ. These effects of 17βE2 were fully reverted in the presence of the estrogen receptor antagonist ICI 182,780. Our new culture model and the results presented here may provide the basis for further studies on the effects of estrogens, and selective estrogen receptor modulators, on spinal cord motoneurons in the context of ALS or other motoneuron diseases.  相似文献   

9.
Hypotaurine is an intermediate in taurine biosynthesis from cysteine in astrocytes. Although hypotaurine functions as an antioxidant and organic osmolyte, its physiological role in the central nervous system remains unclear. This study used behavioral assessments to determine whether hypotaurine influenced nociceptive transmission in acute, inflammatory, and neuropathic pain. The tail flick, paw pressure, and formalin tests were performed in male Sprague-Dawley rats to examine the effects of the intrathecal administration of hypotaurine (100, 200, 400, 600?μg) on thermal, mechanical, and chemical nociception. Chronic constriction injury (CCI) to the sciatic nerve was induced in the rats, and the electronic von Frey test and plantar test were performed to assess the effects on neuropathic pain. To determine which neurotransmitter pathway(s) was involved in the action of hypotaurine, in this study, we examined how the antagonists of spinal pain processing receptors altered the effect of 600?μg hypotaurine. To explore whether hypotaurine affected motor performance, the Rotarod test was conducted. Hypotaurine had antinociceptive effects on thermal, mechanical, and chemical nociception in the spinal cord. In CCI rats, hypotaurine alleviated mechanical allodynia and thermal hyperalgesia. These effects were reversed completely by pretreatment with an intrathecal injection of strychnine, a glycine receptor antagonist. Conversely, hypotaurine did not affect motor performance. This study demonstrated that intrathecal hypotaurine suppressed acute, inflammatory, and neuropathic pain. Hypotaurine may regulate nociceptive transmission physiologically by activating glycinergic neurons in the spinal cord, and it is a promising candidate for treating various pain states.  相似文献   

10.
11.
12.
In adult male primates, estrogens play a role in both gonadotropin feedback and sexual behavior. Inhibition of aromatization in intact male monkeys acutely elevates serum levels of luteinizing hormone, an effect mediated, at least partially, within the brain. High levels of aromatase (CYP19) are present in the monkey brain and regulated by androgens in regions thought to be involved in the central regulation of reproduction. Androgens regulate aromatase pretranslationally and androgen receptor activation is correlated with the induction of aromatase activity. Aromatase and androgen receptor mRNAs display both unique and overlapping distributions within the hypothalamus and limbic system suggesting that androgens and androgen-derived estrogens regulate complimentary and interacting genes within many neural networks. Long-term castrated monkeys, like men, exhibit an estrogen-dependent neural deficit that could be an underlying cause of the insensitivity to testosterone that develops in states of chronic androgen deficiency. Future studies of in situ estrogen formation in brain in the primate model are important for understanding the importance of aromatase not only for reproduction, but also for neural functions such as memory and cognition that appear to be modulated by estrogens.  相似文献   

13.
We recently demonstrated the presence of estrogen synthase (aromatase) and of estrogen receptors in the dorsal horn (laminae I-II) throughout the rostrocaudal extent of the spinal cord in male and female Japanese quail. The spinal laminae I-II receive and process abundant sensory information elicited, among others, by acute noxious stimulation of the skin and resulting in rapid, reflex-like withdrawal behavior. In the present study, we demonstrate that systemic treatment with estradiol or testosterone markedly decreases the latency of the foot withdrawal in the hot water test. A simultaneous treatment with an aromatase inhibitor blocks the effects of testosterone demonstrating, hence, that they are mediated by a conversion of testosterone into an estrogen by aromatase. Furthermore, the testosterone- or estradiol-induced decrease in foot withdrawal latency is blocked by a treatment with the estradiol receptor antagonist, tamoxifen, indicating that the effects are largely mediated by the interaction of estradiol with estrogen receptors. Together, these data suggest that sex steroids modulate sensitivity to noxious stimuli possibly by a direct action at the level of the dorsal horn of the spinal cord.  相似文献   

14.
Nitric oxide-mediated nociception has been suggested to involve formation of cyclic guanosine 5'-monophosphate (cGMP) and activation of cGMP-dependent protein kinase (PKG). To further evaluate this pathway we assessed the effects of the PKG-inhibiting cGMP analog Rp-8-Br-cGMPS in the rat formalin assay and analyzed the regulation of PKG expression in rat lumbar spinal cord. Spinally delivered Rp-8-Br-cGMPS (0.1-0.5 micro mol i.t.) reduced the nociceptive behavior in a dose-dependent manner. Similar effects were achieved with Rp-8-Br-PET-cGMPS (0.5 micro mol i.t.), another PKG-inhibitory cGMP analog. In contrast, Rp-8-Br-cAMPS (0.5 micro mol i.t.), an inhibitor of protein kinase A, had no effect in this model. Formalin treatment resulted in a rapid (within 1h), long-lasting (up to 96h) upregulation of PKG-I protein expression. This increase was prevented in animals pretreated with Rp-8-Br-cGMPS (0.5 micro mol i.t.) or morphine (2.5-5mg/kg i.p.) 10min prior to formalin injection. Spinal delivery of 8-Br-cGMP, a PKG-activating cGMP analog, without subsequent formalin treatment also caused an increase of PKG-I protein expression. Hence, the upregulation of PKG-I might possibly be mediated by cGMP itself. Our data suggest that PKG-I activation is involved in the synaptic transmission of nociceptive stimuli in the spinal cord and that PKG-I inhibitors might be interesting novel drugs for pain treatment.  相似文献   

15.
Fibromyalgia (FM) pain is frequent in the general population but its pathogenesis is only poorly understood. Many recent studies have emphasized the role of central nervous system pain processing abnormalities in FM, including central sensitization and inadequate pain inhibition. However, increasing evidence points towards peripheral tissues as relevant contributors of painful impulse input that might either initiate or maintain central sensitization, or both. It is well known that persistent or intense nociception can lead to neuroplastic changes in the spinal cord and brain, resulting in central sensitization and pain. This mechanism represents a hallmark of FM and many other chronic pain syndromes, including irritable bowel syndrome, temporomandibular disorder, migraine, and low back pain. Importantly, after central sensitization has been established only minimal nociceptive input is required for the maintenance of the chronic pain state. Additional factors, including pain related negative affect and poor sleep have been shown to significantly contribute to clinical FM pain. Better understanding of these mechanisms and their relationship to central sensitization and clinical pain will provide new approaches for the prevention and treatment of FM and other chronic pain syndromes.  相似文献   

16.
In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transmission are thought to contribute to the hyperexcitability of these dorsal horn neurons, which can lead to maladaptive circuitry, aberrant pain processing and, ultimately, chronic neuropathic pain. Here we present a mouse model of SCI-induced neuropathic pain that exhibits a persistent pain phenotype accompanied by chronic neuronal hyperexcitability and glial activation in the spinal cord dorsal horn. We generated a unilateral cervical contusion injury at the C5 or C6 level of the adult mouse spinal cord. Following injury, an increase in the number of neurons expressing ΔFosB (a marker of chronic neuronal activation), persistent astrocyte activation and proliferation (as measured by GFAP and Ki67 expression), and a decrease in the expression of the astrocyte glutamate transporter GLT1 are observed in the ipsilateral superficial dorsal horn of cervical spinal cord. These changes have previously been associated with neuronal hyperexcitability and may contribute to altered pain transmission and chronic neuropathic pain. In our model, they are accompanied by robust at-level hyperaglesia in the ipsilateral forepaw and allodynia in both forepaws that are evident within two weeks following injury and persist for at least six weeks. Furthermore, the pain phenotype occurs in the absence of alterations in forelimb grip strength, suggesting that it represents sensory and not motor abnormalities. Given the importance of transgenic mouse technology, this clinically-relevant model provides a resource that can be used to study the molecular mechanisms contributing to neuropathic pain following SCI and to identify potential therapeutic targets for the treatment of chronic pathological pain.  相似文献   

17.
Neuropathic pain is a very common dysfunction caused by several types of nerve injury. This condition leads to a variety of pathological changes in central nervous system regions related to pain transmission. It has been demonstrated that nociception is modulated by reactive oxidative species and treatments with antioxidant compounds produce antinociceptive effects. Thus, the aim of the present study was to investigate oxidative parameters in spinal and supraspinal regions following sciatic nerve transection (SNT). In behavioral assessments, animals showed mechanical allodynia and a significant functional impairment following SNT, measured by von Frey hairs test and sciatic functional index, respectively. Superoxide dismutase activity was increased 3 and 7 days following SNT in cerebral cortex and brainstem. Catalase activity was also increased in cerebral cortex 3 days after SNT. Ascorbic acid levels were decreased 7 days in the spinal cord only in SNT group. We also showed an increase in lipid peroxidation in cerebral cortex and brainstem 3 days after surgery in SNT and sham groups. These results showed that supraspinal regions also exhibit changes in antioxidant activity after SNT and demonstrate an intricate relationship among antioxidant defenses in different regions of the neuro axis related to pain transmission.  相似文献   

18.
Progress in the control and treatment of pain may be facilitated by a better understanding of mechanisms underlying nociceptive processing. Cannabinoids and opioids are endogenous modulator of pain sensation, but therapies based in these compounds are not completely exploited because of their side effects. To test the role of cannabinoid receptor type 1 (CB1-R) inhibition in nociception, we performed a subchronic administration of the CB1-R antagonist N -(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM281) in mice. This treatment provoked analgesia in peripheral thermal and visceral models of pain. Analysis of genes encoded for the opioid system in the spinal cord showed an increase in the expression of genes encoded for the κ-opioid system in AM281-injected mice compared with vehicle-injected ones. Furthermore, systemic administration of nor-binaltorphimine, a κ-opioid receptor antagonist, blocked AM281-induced analgesia. Finally, c-fos expression in the dorsal spinal cord and higher centers of pain processing after noxious stimulation were significantly lower in AM281-injected mice than in vehicle-injected animals, indicating that dynorphin could block nociceptive information transmission at the spinal cord level. These results indicate the existence of a cross-talk between opioid and cannabinoid systems in nociception. Furthermore, the results suggest that CB1-R antagonists could be useful as a new therapeutic approach for pain relief.  相似文献   

19.
Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the intracellular cascade in PSDC neurons mediated by PKA nociceptive neurotransmission was not known. In this study, by using multiple experimental approaches, we investigated the role of PKA in nociceptive signaling in the spinal cord and PSDC neurons in a visceral pain model in rats with the intracolonic injection of mustard oil. We found that mustard oil injection elicited visceral pain that significantly changed exploratory behavior activity in rats in terms of decreased numbers of entries, traveled distance, active and rearing time, rearing activity and increased resting time when compared to that of rats receiving mineral oil injection. However, the intrathecal infusion of PKA inhibitor, H89 partially reversed the visceral pain-induced effects. Results from Western blot studies showed that mustard oil injection significantly induced the expression of PKA protein in the lumbosacral spinal cord. Immunofluorescent staining in pre-labeled PSDC neurons showed that mustard oil injection greatly induces the neuronal profile numbers. We also found that the intrathecal infusion of a PKA inhibitor, H89 significantly blocked the visceral pain-induced phosphorylation of c-AMP-responsive element binding (CREB) protein in spinal cord in rats. The results of our study suggest that the PKA signal transduction cascade may contribute to visceral nociceptive changes in spinal PSDC pathways.  相似文献   

20.
Chronic pain is a debilitating condition with unknown mechanism. Nociceptive sensitivity may be regulated by genetic factors, some of which have been separately linked to neuronal progenitor cells and neuronal differentiation. This suggests that genetic factors that interfere with neuronal differentiation may contribute to a chronic increase in nociceptive sensitivity, by extending the immature, hyperexcitable stage of spinal cord neurons. Although adult rodent spinal cord neurogenesis was previously demonstrated, the fate of these progenitor cells is unknown. Here, we show that peripheral nerve injury in adult rats induces extensive spinal cord neurogenesis and a long‐term increase in the number of spinal cord laminae I–II neurons ipsilateral to injury. The production and maturation of these new neurons correlates with the time course and modulation of nociceptive behaviour, and transiently mimics the cellular and behavioural conditions present in genetically modified animal models of chronic pain. This suggests that the number of immature neurons present at any time in the spinal cord dorsal horns contributes to the regulation of nociceptive sensitivity. The continuous turnover of these neurons, which can fluctuate between normal and injured states, is a dynamic regulator of nociceptive sensitivity. In support of this hypothesis, we find that promoters of neuronal differentiation inhibit, while promoters of neurogenesis increase long‐term nociception. TrkB agonists, well‐known promoters of nociception in the short‐term, significantly inhibit long‐term nociception by promoting the differentiation of newly produced immature neurons. These findings suggest that promoters of neuronal differentiation may be used to alleviate chronic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号