首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) has been shown to play an important role in both the neuroendocrine reproductive and stress axes, which are closely linked. Because progesterone (P4) receptors (PRs) and glucocorticoid receptors (GRs) are not found in GnRH neurons and the NOergic system has been implicated in the control of GnRH secretion, this study aimed to ascertain whether steroids altered the NOergic system. Our first objective was to map the distribution of NO synthase (NOS) cells in the ovine preoptic area (POA) and hypothalamus and to determine whether NOS activity is enhanced by estradiol (E2) treatment. Using NADPH diaphorase (NADPHd) histochemistry, we found that NADPHd-positive neurons were spread throughout the ovine POA and hypothalamus, and that all NADPHd cells were immunoreactive for NOS. In response to estradiol, a significant increase in the number of NADPHd cells was noted only in the ventrolateral region of the ventromedial nucleus (VMNvl), with no significant difference in the POA or arcuate nucleus. Progesterone and glucocorticoid receptors were colocalized with NADPHd reactive neurons in the POA, arcuate nucleus, and VMNvl of ewes in both treatment groups. In ewes receiving estradiol, the number of NADPHd-positive cells containing steroid receptors in the POA (PR, 81%; GR, 79%) and arcuate nucleus (PR, 89%; GR, 84%) was similar, but in the VMNvl, fewer NADPHd-positive cells contained GR (PR, 88%, GR, 31%). These data show that estradiol up-regulates NOS activity in a site-specific manner and that the influence and possible interaction of progesterone and corticosteroids on NO producing cells may differ according to the neural location.  相似文献   

2.
The distribution of androgen receptor-like immunoreactive (AR-ir) cells in the quail brain was analyzed by immunocytochemistry with the use of the affinity-purified antibody PG-21-19A raised against a synthetic peptide representing the first 21 N-terminal amino acids of the rat and human AR. This antibody is known to bind to the receptor in the absence as well as in the presence of endogenous ligands, and it was therefore expected that a more complete and accurate characterization of AR-ir cells would be obtained in comparison with previous studies using an antibody that preferentially recognizes the occupied receptor. Selected sections were double labeled for aromatase (ARO) by a technique that uses alkaline phosphatase as the reporter enzyme and Fast blue as the chromogen. AR-ir material was detected in the nucleus of cells located in a variety of brain areas in the preoptic region and the hypothalamus including the medial preoptic (POM), the supraoptic, the paraventricular (PVN), and the ventromedial (VMN) nuclei, but also in the tuberculum olfactorium, the nucleus accumbens/ventral striatum, the nucleus taeniae, the tuberal hypothalamus, the substantia grisea centralis (GCt), and the locus ceruleus. Cells exhibiting a dense AR-ir label were also detected in the nucleus intercollicularis. Preincubation of the primary antibody with an excess of the synthetic peptide used for immunization completely eliminated this nuclear staining. A significant number of AR-ir cells in the POM, VMN, PVN, and tuberal hypothalamus also contained ARO-ir material in their cytoplasm. These data confirm and extend previous studies localizing AR in the avian brain, and raise questions about the possible regulation by androgens of the metabolizing enzyme aromatase. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 323–340, 1998  相似文献   

3.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either β-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17β to induce high levels of progestin receptors, and injected intracerebroventricularly with co chicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by β-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many β-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by β-endorphin and/or enkephalin.  相似文献   

4.
Summary The fine structure of the ventrolateral and dorsomedial subdivisions of the ventromedial nucleus (VMN) of the hypothalamus was examined in ovariectomized/control and ovariectomized/estrogen-treated rats to compare neurons of these areas to other neurons (specifically the ventrolateral thalamus), and to determine the effects of estrogen on these cells. The neurons of the VMN contain a large nucleus with a prominent nucleolus, rough endoplasmic reticulum (RER), polysomes, a Golgi complex, coated, uncoated and dense-cored vesicles, lysosome-like bodies, inclusion bodies, multivesicular bodies, whorl bodies and myelin figures. Similar organelles were present in the neurons of the ventrolateral thalamus, although polysomes were more prominent, and the cells lacked dense-cored vesicles in the perikarya. Differences in the cells of the VMN between ovariectomized/control and ovariectomized/estrogen-treated rats included a more conspicuous stacking of the RER and greater number of dense-cored vesicles in the estrogen-treated group in both the ventrolateral and dorsomedial subdivisions. In both areas the differences were statistically significant, although more marked in the ventrolateral subdivision. In both VMN subdivisions, the increased stacking of the RER could be correlated with the greater number of dense-cored vesicles and may reflect increased biosynthesis of a secretory product.Supported by grants from the National Institutes of Health (1 R01 NS15889-01) to R.S.C. and (HD-05751) to D.W.P.  相似文献   

5.
Estrogen receptor alpha (ERalpha) participates in the neuroendocrine regulation of male sexual behavior, primarily in brain areas located in the limbic system. Males of many species present a long-term inhibition of sexual behavior after several ejaculations, known as sexual satiety. It has been shown that androgen receptor density is reduced 24 h after a single ejaculation or mating to satiety, in the medial preoptic area, nucleus accumbens and ventromedial hypothalamus. The aim of this study was to analyze if the density of ERalpha was also modified 24 h after a single ejaculation or mating to satiety. Sexual satiety was associated with an increased ERalpha density in the anteromedial bed nucleus of the stria terminalis (BSTMA), ventrolateral septum (LSV), posterodorsal medial amygdala (MePD), medial preoptic area (MPA) and nucleus accumbens core (NAc). A single ejaculation was related to an increase in ERalpha density in the BSTMA and MePD. ERalpha density in the arcuate (Arc) and ventromedial hypothalamic nuclei (VMN), and serum estradiol levels remained unchanged 24 h after one ejaculation or mating to satiety. These data suggest a relationship between sexual activity and an increase in the expression of ERalpha in specific brain areas, independently of estradiol levels in systemic circulation.  相似文献   

6.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either beta-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17 beta to induce high levels of progestin receptors, and injected intracerebroventricularly with colchicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by beta-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many beta-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by beta-endorphin and/or enkephalin.  相似文献   

7.
Cells immunoreactive for the enzyme aromatase were localized in the forebrain of male zebra finches with the use of an immunocytochemistry procedure. Two polyclonal antibodies, one directed against human placental aromatase and the other directed against quail recombinant aromatase, revealed a heterogeneous distribution of the enzyme in the telencephalon, diencephalon, and mesencephalon. Staining was enhanced in some birds by the administration of the nonsteroidal aromatase inhibitor, R76713 (racemic Vorozole) prior to the perfusion of the birds as previously described in Japanese quail. Large numbers of cells immunoreactive for aromatase were found in nuclei in the preoptic region and in the tuberal hypothalamus. A nucleus was identified in the preoptic region based on the high density of aromatase immunoreactive cells within its boundaries that appears to be homologous to the preoptic medial nucleus (POM) described previously in Japanese quail. In several birds alternate sections were stained for immunoreactive vasotocin, a marker of the paraventricular nucleus (PVN). This information facilitated the clear separation of the POM in zebra finches from nuclei that are adjacent to the POM in the preoptic area-hypothalamus, such as the PVN and the ventromedial nucleus of the hypothalamus. Positively staining cells were also detected widely throughout the telencephalon. Cells were discerned in the medial parts of the ventral hyperstriatum and neostriatum near the lateral ventricle and in dorsal and medial parts of the hippocampus. They were most abundant in the caudal neostriatum where they clustered in the dorsomedial neostriatum, and as a band of cells coursing along the dorsal edge of the lamina archistriatalis dorsalis. They were also present in high numbers in the ventrolateral aspect of the neostriatum and in the nucleus taeniae. None of the telencephalic vocal control nuclei had appreciable numbers of cells immunoreactive for aromatase within their boundaries, with the possible exception of a group of cells that may correspond to the medial part of the magnocellular nucleus of the neostriatum. The distribution of immunoreactive aromatase cells in the zebra finch brain is in excellent agreement with the distribution of cells expressing the mRNA for aromatase recently described in the finch telencephalon. This widespread telencephalic distribution of cells immunoreactive for aromatase has not been described in non-songbird species such as the Japanese quail, the ring dove, and the domestic fowl. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
The proteins calbindin-D(28K) and calretinin buffer intracellular calcium and are speculated to be involved in the integration of neuronal signaling. Using Western blot analysis, we compared the levels of calbindin-D(28K) and calretinin in the developing male and female rat hypothalamus on postnatal days (PN) 0, PN2, PN4, PN6, PN8, and PN10. Analysis of variance (ANOVA) of mean calbindin levels indicated a significant effect of sex (p 相似文献   

9.
The mechanisms involved in sexual differentiation of the brain remain incompletely defined. In mammals, testosterone secretion by the male during early development permanently alters the capacity of the brain to respond to circulating estrogen. In rats, this change in estrogen responsiveness is associated with a reduction in estrogen receptor (ER) levels in the periventricular region of the preoptic area (PVP), the medial preoptic nucleus (MPO), and the hypothalamic ventromedial nucleus (VMN) of the male. To determine whether these differences represent a response to early testosterone exposure or a secondary consequence of gonadal secretions at puberty, ER levels were measured by quantitative in vitro autoradiography in the brains of rats killed at intervals between 1-10 and 28-49 days of age. As early as 24 hr after birth, ER sex differences in the MPO and PVP are already quantitatively similar to those observed in adulthood. A sex difference in the VMN emerges later, between 5 and 10 days of age. Differences between brain regions are also observed in the rate of ER development after the first week of life, ER concentrations in the PVP and MPO being close to adult levels within 1 day of birth, in contrast to the VMN where they increase markedly between Day 10 and adulthood in both sexes. These observations suggest that changes in ER concentrations may be one of the earliest hallmarks of brain sexual differentiation. Sex differences in ER in different brain regions may, however, be expressed asynchronously, providing a possible mechanism for variation in the duration of "critical periods" for testosterone-mediated organization of specific CNS functions.  相似文献   

10.
Progesterone (P) facilitation of sexual receptivity in rodents has been achieved by intracranial administration to the ventral hypothalamus; the preoptic area; and midbrain areas such as central gray, mesencephalic reticular formation, and ventral tegmental nucleus. In our laboratory, by far the most effective site in rats has been the ventromedial nucleus of the hypothalamus (VMN). However, several reports of sensitivity to P in the midbrain of rats and other rodent species led us to investigate whether stimulation of the ventral midbrain of female rats might contribute to facilitation of sexual receptivity. Ovariectomized Long-Evans rats received one cannula aimed at the VMN, and another aimed at the contralateral ventral mesencephalon. P in both cannulae, following a priming dose of estradiol, caused significantly higher lordosis quotients (LQ) than blank tubes. Controls with bilateral cannulae in the VMN responded when both tubes were filled with P, but did not respond to unilateral VMN P stimulation. P in the VMN and contralateral anterior preoptic area did not result in a greater degree of receptivity than did the empty tubes. These studies indicate that although progesterone stimulation in the midbrain alone is not sufficient to facilitate receptivity in female rats with our methods, the midbrain may play an auxiliary role. P implants in the midbrain appear to facilitate receptivity in the case of VMN implant treatments that are subthreshold for stimulating lordosis. The results are discussed in light of similar studies in other rodent species, and in the context that more than one brain site may be important in the natural stimulation of sexual receptivity by gonadal hormones.  相似文献   

11.
Throughout the hypothalamus there are several regions known to contain sex differences in specific cellular, neurochemical, or cell grouping characteristics. The current study examined the potential origin of sex differences in calbindin expression in the preoptic area and hypothalamus as related to sources of nitric oxide. Specific cell populations were defined by immunoreactive (ir) calbindin and neuronal nitric oxide synthase (nNOS) in the preoptic area/anterior hypothalamus (POA/AH), anteroventral periventricular nucleus (AVPv), and ventromedial nucleus of the hypothalamus (VMN). The POA/AH of adult mice was characterized by a striking sex difference in the distribution of cells with ir-calbindin. Examination of the POA/AH of androgen receptor deficient Tfm mice suggests that this pattern was in part androgen receptor dependent, since Tfm males had reduced ir-calbindin compared with wild-type males and more similar to wild-type females. At P0 ir-calbindin was more prevalent than in adulthood, with males having significantly more ir-calbindin and nNOS than have females. Cells that contained either ir-calbindin or ir-nNOS in the POA/AH were in adjacent cell groups, suggesting that NO derived from the enzymatic activity of nNOS may influence the development of ir-calbindin cells. In the region of AVPv, at P0, there was a sex difference with males having more ir-nNOS fibers than have females while ir-calbindin was not detected. In the VMN, at P0, ir-nNOS was greater in females than in males, with no significant difference in ir-calbindin. We suggest that NO as an effector molecule and calbindin as a molecular biomarker illuminate key aspects of sexual differentiation in the developing mouse brain.  相似文献   

12.
Sexual behavior in female rats, typified by the lordosis reflex, is dependent upon estrogen action in the ventromedial nucleus of the hypothalamus (VMH) and its surrounding neuropil. However, the synaptic organization of this brain region remains unclear. Pseudorabies virus (PRV) was used to transneuronally label the neural network that innervates the lumbar epaxial muscles that execute the lordosis response. PRV-labeled neurons were identified within and subjacent to the VMH four days after injection of PRV into the back muscles. The pattern of labeling was defined in relation to three landmarks: the VMH core, as defined by Crystal Violet staining; the shell, as defined by the oxytocin fiber tract; and the cluster of estrogen receptor-containing cell nuclei. The pattern of PRV labeling in the VMH displayed a striking rostral-caudal gradient. In general, many of the PRV-labeled neurons were found in the oxytocin fiber tract, with far fewer in the core of the VMH. Furthermore, PRV-labeled neurons were rarely found in the cluster of estrogen receptor-containing neurons, and less than 3% of the PRV-labeled neurons were double labeled for estrogen receptor. The results suggest that oxytocin may directly influence these lordosis-relevant VMH projection neurons, whereas estrogen may have transsynaptic effects.  相似文献   

13.
Noradrenergic mechanisms in the hypothalamus may be involved in counterregulatory responses to glucoprivic episodes. After 2-deoxy-D-glucose (2-DG; 1.2 mmol/kg iv), extracellular norepinephrine (NE) concentration in the ventromedial hypothalamus (VMN) increased in a bimodal fashion to 251 +/- 39% (P < 0.001) and 150 +/- 17% (P < 0.001) of baseline during the first 30 min. In the lateral hypothalamus (LHA), NE decreased by 30 min (61 +/- 4%, P < 0.001) and no consistent changes were measured in the paraventricular nucleus (PVN). Because the NE response in the VMN after 2-DG followed the same pattern as GABA, the interaction between NE and GABA was evaluated. In the VMN, GABA had little effect on extracellular NE concentrations but NE increased GABA concentrations 166 +/- 13%, (P < 0.01). In the presence of yohimbine (alpha(2)-adrenoceptor antagonist) the first GABA peak after 2-DG was absent, and the second GABA peak was absent in the presence of timolol (beta-adrenoceptor antagonist). These results support an interaction among noradrenergic and GABAergic systems in the VMN during glucoprivation and that increased NE mediates the increase in extracellular GABA after 2-DG.  相似文献   

14.
The retrograde tracer, FluoroGold, was used to trace the neuronal inputs from the septum, hypothalamus, and brain stem to the region of the GnRH neurons in the rostral preoptic area of the ram and to compare these imputs with those in the ewe. Sex differences were found in the number of retrogradely labeled cells in the dorsomedial and ventromedial nuclei. Retrogradely labeled cells were also observed in the lateral septum, preoptic area, organum vasculosum of the lamina terminalis, bed nucleus of the stria terminalis, stria terminalis, subfornical organ, periventricular nucleus, anterior hypothalamic area, lateral hypothalamus, arcuate nucleus, and posterior hypothalamus. These sex differences may partially explain sex differences in how GnRH secretion is regulated. Fluorescence immunohistochemistry was used to determine the neurochemical identity of some of these cells in the ram. Very few tyrosine hydroxylase-containing neurons in the A14 group (<1%), ACTH-containing neurons (<1%), and neuropeptide Y-containing neurons (1-5%) in the arcuate nucleus contained FluoroGold. The ventrolateral medulla and parabrachial nucleus contained the main populations of FluoroGold-containing neurons in the brain stem. Retrogradely labeled neurons were also observed in the nucleus of the solitary tract, dorsal raphe nucleus, and periaqueductal gray matter. Virtually all FluoroGold-containing cells in the ventrolateral medulla and about half of these cells in the nucleus of the solitary tract also stained for dopamine beta-hydroxylase. No other retrogradely labeled cells in the brain stem were noradrenergic. Although dopamine, beta-endorphin, and neuropeptide Y have been implicated in the regulation of GnRH secretion in males, it is unlikely that these neurotransmitters regulate GnRH secretion via direct inputs to GnRH neurons.  相似文献   

15.
Prolactin (Prl) is released by electrical stimulation in the turkey hypothalamus and preoptic area (POA). Possible trajectories for POA efferents to the median eminence (ME) were tested by placing lesions in the POA, the lateral hypothalamus (LHy), or the ventromedial nucleus of the hypothalamus (VMN) of reproductively quiescent turkey hens, then subjecting them to long photoperiods while monitoring their blood Prl levels and nesting activities. In addition, lesions were made in the VMN of a group of incubating hens to learn whether the lesions would cause the elevated Prl levels to fall or interfere with incubation behavior. Lesions in medial POA, LHy, or VMN prevented the onset of incubation and prevented the large rise in Prl associated with it. However, these lesions did not interfere with the initial, more gradual Prl rise caused by increasing daylengths. Lesions in LHy or VMN appeared to interfere with a pathway lying laterally from POA to ME. Electrical stimulation in medial POA, which caused an increase in circulating Prl, failed to do so in hens with LHy or VMN lesions. Lesions in the VMN of incubating hens caused them to leave the nest and suffer a large decline in Prl, both within 48 h. It is tentatively suggested that incubation behavior and its associated elevated Prl are prevented by the POA lesions and that lesions in LHy or VMN, which mimic POA lesion effects, interfere with POA efferents projecting to ME.  相似文献   

16.
Norepinephrinergic function in the medial hypothalamus is important for the regulation of feeding behavior in chicks as well as in rats. This study was conducted to clarify the variation of extracellular norepinephrine (NE) in the medial hypothalamus, including the paraventricular nucleus (PVN) and the ventromedial hypothalamic nucleus (VMN), during feeding behavior of layer-type chicks. To measure extracellular NE and 4-hydroxy-3-methoxyphenylglycol (MHPG), a major metabolite of NE, we used microdialysis and high-pressure liquid chromatography (HPLC) with electrochemical detection. After the collection of baseline samples, food-deprived animals were allowed access to the food for 3 h. Extracellular NE significantly increased during the first hour of access to food, and then returned to baseline levels. MHPG also increased during the feeding, but its increase continued throughout the remainder of the experiment. This study suggests that the variation of NE in the medial hypothalamus may be involved in the control of feeding in layer-type chicks.  相似文献   

17.
A Sahu  P S Kalra  S P Kalra 《Peptides》1988,9(1):83-86
We have studied the effects on neuropeptide Y (NPY) concentration in six hypothalamic nuclei, viz. medial preoptic area (MPOA), paraventricular nucleus (PVN), median eminence (ME), arcuate nucleus (ARC), ventromedial nucleus (VMN) and dorsomedial nucleus (DMN) of food deprivation (FD) for 2, 3, or 4 days or FD for 4 days followed by one day ad lib food intake (FI) in male rats. Hypothalamic nuclei were microdissected by the technique of Palkovits and processed for measurement of NPY immunoreactivity by RIA. NPY-like immunoreactivity in the ME, VMN and DMN was unaffected by FD or FI, but the remaining three nuclei--the ARC, MPOA and NPY--displayed a different pattern of changes in NPY levels in response to either FD or FD followed by FI. In the ARC, NPY levels rose significantly at day 3 and 4 after FD and remained elevated even after one day of FI. In the MPOA, while FD for 4 days had no effect, NPY concentration increased significantly in response to FI. In contrast, in the PVN, a site implicated in the control of feeding behavior, the NPY response to FD and FI was markedly different. FD elicited a gradual, time-related increase in NPY levels to reach highest concentration on day 4 and thereafter, following one day of FI, NPY levels fell dramatically to the range found in control satiated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The prohormone convertases (PCs), PC1/3 and PC2, are involved in the tissue-specific endoproteolytic posttranslational processing of many hormonal precursors within the secretory pathway. One important prohormone, pro-thyrotropin-releasing hormone (TRH), is expressed in both hypophysiotropic (where it regulates the secretion of thyroid-stimulating hormone) and nonhypophysiotropic regions of the brain. Pro-TRH is processed at specific sites in the secretory pathway, primarily by PC1/3 followed by PC2. We hypothesized that thyroid hormone status in specific nuclei of the brain would alter pro-TRH processing by inducing changes in PC1/3 and PC2 expression. Therefore, we examined pro-TRH, PC1/3, and PC2 coexpression and coregulation in the paraventricular nucleus (PVN), lateral hypothalamus (LH), and ventromedial nucleus (VMN) of hypothyroid and euthyroid rats. Our results show that 6-n-propyl-2-thiouracil (PTU) treatment producing hypothyroidism induced a significant increase in the expression of PC1/3, PC2, and pro-TRH in the PVN and LH, but not VMN. When confocal studies were performed, an increase in colocalization of PC1/3 or PC2 in pro-TRH was observed only in PVN, a response that was especially prominent in the ventral and medial areas of the PVN. PTU did not regulate colocalization in the VMH or LH. Regulation of colocalization of processing enzyme and prohormone expression is a novel mechanism to alter hormonal biosynthesis.  相似文献   

19.
In estrogen-treated, ovariectomized rats, selective transections were used to interrupt, together or separately, the medial and lateral pathways by which efferent fibers from the ventromedial nucleus (VMN) of the hypothalamus reach the lower brain stem. Dorsal hemisections placed to interrupt both projections reduced or eliminated lordotic behavior. Transections placed to intercept all of the medially descending fibers, but spare the lateral pathway, did not reduce lordosis in mating or manual stimulation tests. The lateral pathway was interrupted at two different locations. Parasagittal transections at the level of the VMN showed that the lateral pathway, as a whole, was not required for lordosis when the medial pathway was left intact. Also, no particular subset of fibers assuming a lateral trajectory from the VMN to the brain stem was required for the display of lordosis. However, the fibers running through the lateral brain stem do play some role in the expression of the reflex, and more caudal bilateral lateral transections did reduce lordotic behavior. The absence of lordosis in mating tests was not a result of a systematic increase in rejecting behaviors. The observation of intermittent lordotic responses, or improved lordotic behavior following additional treatment with estrogen and/or progesterone revealed that these laterally transected animals were still able to produce the motor pattern of lordosis. The deficits seen were attributed to the interruption of fibers mediating the control of lordosis by the hypothalamus. This role of the ventromedial nucleus can be described as a tonic, estrogen-dependent facilitation of supraspinal mechanisms which control lordosis and are located more caudally in the brain stem. The laterally descending VMN efferents may play a quantitatively more important role in the control of lordosis than the medially descending fibers.  相似文献   

20.
Brain-derived neurotrophic factor (BDNF) plays a crucial role in human obesity. Yet, the neural circuitry supporting the BDNF-mediated control of energy homeostasis remains largely undefined. To map key regions that might provide inputs to or receive inputs from the paraventricular nucleus (PVN) BDNF neurons, a key type of cells in regulating feeding and thermogenesis, we used rabies virus-based transsynaptic labeling and adeno-associated virus based anterograde tracing techniques to reveal their whole-brain distributions. We found that dozens of brain regions provide dense inputs to or receive dense inputs from PVN BDNF neurons, including several known weight control regions and several novel regions that might be functionally important for the BDNF-mediated regulation of energy homeostasis.Interestingly, several regions show very dense reciprocal connections with PVN BDNF neurons, including the lateral septum, the preoptic area, the ventromedial hypothalamic nucleus, the paraventricular thalamic nucleus, the zona incerta, the lateral parabrachial nucleus, the subiculum, the raphe magnus nucleus, and the raphe pallidus nucleus. These strong anatomical connections might be indicative of important functional connections. Therefore, we provide an outline of potential neural circuitry mediated by PVN BDNF neurons, which might be helpful to resolve the complex obesity network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号