首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overexpression of some ATP-binding cassette (ABC) membrane transporters such as ABCB1/P-glycoprotein/MDR1 and ABCC1/MRP1 causes multidrug resistance in cancer chemotherapy. It has been thought that half-ABC transporters with one nucleotide-binding domain and one membrane-spanning domain (MSD) likely work as dimers, whereas full-length transporters with two nucleotide-binding domains and two or three MSDs function as monomers. In this study, we examined the oligomeric status of the human full-length ABC transporter ABCC1/MRP1 using several biochemical approaches. We found 1) that it is a homodimer, 2) that the dimerization domain is located in the amino-terminal MSD0L0 (where L0 is loop 0) region, and 3) that MSD0L0 has a dominant-negative function when coexpressed with wild-type ABCC1/MRP1. These findings suggest that ABCC1/MRP1 may exist and function as a dimer and that MSD0L0 likely plays some structural and regulatory functions. It is also tempting to propose that the MSD0L0-mediated dimerization may be targeted for therapeutic development to sensitize ABCC1/MRP1-mediated drug resistance in cancer chemotherapy.  相似文献   

2.
Yang Y  Mo W  Zhang JT 《Biochemistry》2010,49(51):10854-10861
Resistance to multiple anticancer agents is a major obstacle in the successful treatment of cancers. Overexpression of some ATP-binding cassette (ABC) membrane transporters such as ABCC1 has been shown to be a major contributor of multidrug resistance (MDR) in both laboratory cell line models and the clinical setting. ABCC1 has been thought to function as a homodimer with a putative dimerization domain located in the first 281 amino acid residues, including MSD0 and L0 domains. In this study, we further mapped in detail the dimerization site and placed it in TM5 and ECL3 in MSD0 using co-expression and co-immunoprecipitation of a series of deletion constructs. TM5 and ECL3 in one subunit appear to interact with TM5 and ECL3 in the opposing subunit in a sequence-independent manner, but their physical location together with the hydrophobicity of TM5 and the length of ECL3 appears to be important contributors to the dimerization ability of ABCC1.  相似文献   

3.
Multidrug resistance protein (MRP)1/ABCC1 transports organic anionic conjugates and confers resistance to cytotoxic xenobiotics. In addition to two membrane spanning domains (MSDs) typical of most ATP-binding cassette (ABC) transporters, MRP1 has a third MSD (MSD0) of unknown function. Unlike some topologically similar ABCC proteins, removal of MSD0 has minimal effect on function, nor does it prevent MRP1 from trafficking to basolateral membranes in polarized cells. However, we find that independent of cell type, the truncated protein accumulates in early/recycling endosomes. Using a real-time internalization assay, we demonstrate that MSD0 is important for MRP1 retention in, or recycling to, the plasma membrane. We also show that MSD0 traffics independently to the cell surface and promotes membrane localization of the core-region of MRP1 when the two protein fragments are coexpressed. Finally, we demonstrate that MSD0 becomes essential for trafficking of MRP1 when the COOH-terminal region of the protein is mutated. These studies demonstrate that MSD0 and the COOH-terminal region contain redundant trafficking signals, which only become essential when one or the other region is missing or is mutated. These data explain apparent differences in the trafficking requirement for MSD0 and the COOH-terminal region of MRP1 compared with other ABCC proteins.  相似文献   

4.
Multidrug resistance-associated protein 1 (MRP1) is a member of the ATP-binding cassette membrane transport superfamily and is responsible for multidrug resistance in cancer cells. Currently, there are nine known human MRPs. Distinct from many other members of the ATP-binding cassette superfamily, human MRP1 and four other MRPs have an additional membrane-spanning domain (MSD) with a putative extracellular amino terminus. The functional significance of this additional MSD (MSD1) is currently unknown. To understand the role of MSD1 in human MRP1 structure and function, we studied the amino-terminal 33 amino acids. We found that the amino terminus of human MRP1 has two cysteine residues (Cys(7) and Cys(32)) that are conserved among the five human MRPs that have MSD1. Mutation analyses of the two cysteines in human MRP1 revealed that the Cys(7) residue is critical for the MRP1-mediated drug resistance and leukotriene C(4) transport activity. On the other hand, mutation of Cys(32) reduced only moderately the MRP1 function. The effect of Cys(7) mutation on MRP1 activity appears to be due to the 5-7-fold decrease in the maximal transport rate V(max). We also found that mutation of Cys(7) changed the amino-terminal conformation of MRP1. This conformational change is likely responsible for the decrease in V(max) of LTC(4) transport mediated by the mutant MRP1. Based on these studies, we conclude that the amino terminus of human MRP1 is important and that the Cys(7) residue plays a critical role in maintaining the proper structure and function of human MRP1.  相似文献   

5.
Subfamily C of the human ABC (ATP-binding cassette) superfamily contains nine proteins that are often referred to as the MRPs (multidrug-resistance proteins). The 'short' MRP/ABCC transporters (MRP4, MRP5, MRP8 and ABCC12) have a typical ABC structure with four domains comprising two membrane-spanning domains (MSD1 and MSD2) each followed by a nucleotide-binding domain (NBD1 and NBD2). The 'long' MRP/ABCCs (MRP1, MRP2, MRP3, ABCC6 and MRP7) have five domains with the extra domain, MSD0, at the N-terminus. The proteins encoded by the ABCC6 and ABCC12 genes are not known to transport drugs and are therefore referred to as ABCC6 and ABCC12 (rather than MRP6 and MRP9) respectively. A large number of molecules are transported across the plasma membrane by the MRPs. Many are organic anions derived from exogenous sources such as conjugated drug metabolites. Others are endogenous metabolites such as the cysteinyl leukotrienes and prostaglandins which have important signalling functions in the cell. Some MRPs share a degree of overlap in substrate specificity (at least in vitro), but differences in transport kinetics are often substantial. In some cases, the in vivo substrates for some MRPs have been discovered aided by studies in gene-knockout mice. However, the molecules that are transported in vivo by others, including MRP5, MRP7, ABCC6 and ABCC12, still remain unknown. Important differences in the tissue distribution of the MRPs and their membrane localization (apical in contrast with basolateral) in polarized cells also exist. Together, these differences are responsible for the unique pharmacological and physiological functions of each of the nine ABCC transporters known as the MRPs.  相似文献   

6.
Chen Q  Yang Y  Liu Y  Han B  Zhang JT 《Biochemistry》2002,41(29):9052-9062
Human multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette (ABC) transport superfamily which also includes human multidrug resistance 1 (MDR1) gene product P-glycoprotein (Pgp). Overexpression of MRP1 or Pgp causes multidrug resistance in cancer cells. Different from Pgp, MRP1 contains an extra membrane-spanning domain (MSD1) with a putative extracellular amino terminus in addition to the core structure of two MSDs and two NBDs (nucleotide-binding domains). The structural and functional significance of the additional MSD1 in MRP1 remains elusive. In this study, we generated an IgG1 subclass monoclonal antibody, IU2H10, specific to the amino terminus of human MRP1 and mapped its epitope to 10 amino acids (S8ADGSDPLWD17). It can be used for Western blot, immunoprecipitation, and indirect immunofluorescence studies of human MRP1. However, surprisingly we found that IU2H10 cannot react with MRP1 unless cells are permeabilized. Furthermore, the IU2H10 epitope is exposed extracellularly when the carboxyl-terminal core domain of human MRP1 is deleted. Examination of the amino-terminal sequence of human MRP1 suggests that it consist of mainly coiled structures. These observations provide evidence for a model that is different from the prevailing extracellular location of the amino terminus of human MRP1. It is possible that part of the amino terminus of human MRP1, following exposure to the lumen of the endoplasmic reticulum, is retracted to the cytoplasm.  相似文献   

7.
Human ABCC1 is a member of the ATP-binding cassette (ABC) transporter superfamily, and its overexpression has been shown to cause multidrug resistance by active efflux of a wide variety of anticancer drugs. ABCC1 has been shown to exist and possibly function as a homodimer. However, a possible heterocomplex involving ABCC1 has been indicated. In this study, we performed an interactive proteomics study to examine proteins that bind to and form heterocomplexes with ABCC1 using coimmunoprecipitation and tandem mass spectrometry (MS/MS) analyses. We found that ATP synthase α binds to ABCC1 in plasma membranes with a ratio of 2:1. The ATP synthase α binding site in ABCC1 is located in the linker domain at the carboxyl core of ABCC1, and phosphorylation of the linker domain at the protein kinase A site enhances ATP synthase α binding. The interaction between ABCC1 and ATP synthase α in a heterocomplex may indicate a novel function of ABCC1 in regulating extracellular ATP level and purinergic signaling cascade.  相似文献   

8.
The dimerization of their two nucleotide binding domains (NBDs) in a so-called "nucleotide-sandwich" is the hallmark of ATP cassette binding (ABC) proteins and the basis of their catalytic activities. The major disease-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7), deletion of Phe508 in NBD1, does not grossly alter the structure of that domain but prevents conformational maturation of the whole CFTR protein, possibly by disrupting the native interaction between NBD1 and NBD2. However, the role of inter-domain interactions in CFTR folding has been brought into question by a recent report that all CFTR domains fold independently. Here we show that in addition to domain folding, correct inter-domain assembly is essential to form a stable unit that satisfies endoplasmic reticulum (ER) quality control. N-terminal domains depend on their more C-terminal neighbors, most essentially the second membrane-spanning domain (MSD2) but significantly, not NBD2. Wild-type C-terminal truncation constructs, completely devoid of NBD2 are transported out of the ER and to the cell surface where they form characteristic CFTR chloride channels with low open probability. The DeltaNBD2 wild-type protein matures and has similar stability as its full-length counterpart. Therefore, the catalytically crucial inter-NBD associations are not required to satisfy ER quality control mechanisms. The DeltaF508 mutation arrests the maturation of DeltaNBD2 just as it does full-length CFTR, indicating that DeltaF508 perturbs other portions of the molecule in addition to NBD2. We find that the mutation prevents formation of a compact MSD1, reflected in its susceptibility to protease digestion. This perturbation of MSD1 may in turn prevent its normal integration with MSD2. The dispensability of NBD2 in the folding of more N-terminal domains stands in contrast to the known hypersensitivity to proteolysis of NBD2 in the DeltaF508 protein.  相似文献   

9.
The ATP-binding cassette (ABC) transporter ABCB6 is a mitochondrial porphyrin transporter that activates porphyrin biosynthesis. ABCB6 lacks a canonical mitochondrial targeting sequence but reportedly traffics to other cellular compartments such as the plasma membrane. How ABCB6 reaches these destinations is unknown. In this study, we show that endogenous ABCB6 is glycosylated in multiple cell types, indicating trafficking through the endoplasmic reticulum (ER), and has only one atypical site for glycosylation (NXC) in its amino terminus. ABCB6 remained glycosylated when the highly conserved cysteine (Cys-8) was substituted with serine to make a consensus site, NXS. However, this substitution blocked ER exit and produced ABCB6 degradation, which was mostly reversed by the proteasomal inhibitor MG132. The amino terminus of ABCB6 has an additional highly conserved ER luminal cysteine (Cys-26). When Cys-26 was mutated alone or in combination with Cys-8, it also resulted in instability and ER retention. Further analysis revealed that these two cysteines form a disulfide bond. We discovered that other ABC transporters with an amino terminus in the ER had similarly configured conserved cysteines. This analysis led to the discovery of a disease-causing mutation in the sulfonylurea receptor 1 (SUR1)/ABCC8 from a patient with hyperinsulinemic hypoglycemia. The mutant allele only contains a mutation in a conserved amino-terminal cysteine, producing SUR1 that fails to reach the cell surface. These results suggest that for ABC transporters the propensity to form a disulfide bond in the ER defines a unique checkpoint that determines whether a protein is ER-retained.  相似文献   

10.
The ATP binding cassette (ABC) transporter, multidrug resistance protein 1 (MRP1/ABCC1), transports a broad spectrum of conjugated and unconjugated compounds, including natural product chemotherapeutic agents. In this study, we have investigated the importance of the COOH-terminal region of MRP1 for transport activity and basolateral plasma membrane trafficking. The COOH-terminal regions of some ABCC proteins have been implicated in protein trafficking, but the function of this region of MRP1 has not been defined. In contrast to results obtained with other ABCC proteins, we found that the COOH-proximal 30 amino acids of MRP1 can be removed without affecting trafficking to basolateral membranes. However, the truncated protein is inactive. Furthermore, removal of as few as 4 COOH-terminal amino acids profoundly decreases transport activity. Although amino acid sequence conservation of the COOH-terminal regions of ABC proteins is low, secondary structure predictions indicate that they consist of a broadly conserved helix-sheet-sheet-helix-helix structure. Consistent with a conservation of secondary and tertiary structure, MRP1 hybrids containing the COOH-terminal regions of either the homologous MRP2 or the distantly related P-glycoprotein were fully active and trafficked normally. Using mutated proteins, we have identified structural elements containing five conserved hydrophobic amino acids that are required for activity. We show that these are important for binding and hydrolysis of ATP by nucleotide binding domain 2. Based on crystal structures of several ABC proteins, we suggest that the conserved amino acids may stabilize a helical bundle formed by the COOH-terminal three helices and may contribute to interactions between the COOH-terminal region and the protein's two nucleotide binding domains.  相似文献   

11.
Müller M  Yong M  Peng XH  Petre B  Arora S  Ambudkar SV 《Biochemistry》2002,41(31):10123-10132
To enable cell surface localization of the human multidrug resistance protein (MRP1, ABCC1) and to assess the role of the extracellular domains of this transporter, the FLAG epitope tag was introduced into different extracellular loops of the three membrane-spanning domains (MSDs) of the transporter. We constructed and expressed various partially and fully glycosylation-deficient, FLAG-tagged MRP1 proteins in a Vaccinia virus-based transient expression system, and the cell surface expression level of MRP1 on intact cells was followed by flow cytometry, using the FLAG tag specific monoclonal antibody M2. We also expressed the wild-type MRP1 protein and some of the FLAG-tagged mutants in stably transfected HEK293 cells, and followed the cell surface expression and the transport function of MRP1 both by monitoring the efflux of fluorescent substrate and by their ability to confer resistance to HEK293 transfectants to anticancer agents such as daunorubicin and etoposide. When we inserted the FLAG epitope in extracellular loops of the MSD1 or MSD3, the tag was accessible upon removal of N-glycosylation sites (N --> Q at positions 17, 23, and 1006, respectively), whereas the FLAG epitope placed in the MSD2 was not accessible even after removal of all three N-glycosylation sites, indicating that MSD2 region is deeply buried in the plasma membrane. However, all FLAG tagged MRP1 mutants were expressed at the cell surface to the same extent as the wild-type protein and also exhibited normal transport function. Our results demonstrate that the accessibility of the external FLAG epitope is strongly dependent on the position of the tag and the glycosylation state of the different FLAG-tagged MRP1s, and the conformation of extracellular loops in MSD1 and MDS3 does not appear to contribute to the functional status of MRP1.  相似文献   

12.
Frelet A  Klein M 《FEBS letters》2006,580(4):1064-1084
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.  相似文献   

13.
14.
Mutations in ABCC6 are responsible for pseudoxanthoma elasticum (PXE), a rare genetic disease affecting the elastic tissues of the body. ABCC6 encodes a 1503 amino acid long ABC transporter, ABCC6/MRP6. The functional link between the impaired activity of the protein and the disease is not known. We have built a homology model of this transporter, and analyzed the distribution of the known 119 missense PXE-associated mutations within the predicted structure. Significant clustering of the missense mutations has been found at complex domain-domain interfaces: at the transmission interface that involves four intracellular loops and the two ABC domains as well as at the ABC-ABC interacting surfaces. The mutations affecting these regions are 2.75 and 3.53-fold more frequent than the average mutational rate along the transporter protein sequence. These data provide a genetic proof of the importance of these domain-domain interactions in the ABCC6 transporter.  相似文献   

15.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette (ABC) polytopic membrane transporter of considerable clinical importance that confers multidrug resistance on tumor cells by reducing drug accumulation by active efflux. MRP1 is also an efficient transporter of conjugated organic anions. Like other ABC proteins, including the drug resistance conferring 170-kDa P-glycoprotein (ABCB1), the 190-kDa MRP1 has a core structure consisting of two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD). However, unlike P-glycoprotein and most other ABC superfamily members, MRP1 contains a third MSD with five predicted transmembrane segments with an extracytosolic NH(2) terminus. Moreover, the two nucleotide-binding domains of MRP1 are considerably more divergent than those of P-glycoprotein. In the present study, the first structural details of MRP1 purified from drug-resistant lung cancer cells have been obtained by electron microscopy of negatively stained single particles and two-dimensional crystals formed after reconstitution of purified protein with lipids. The crystals display p2 symmetry with a single dimer of MRP1 in the unit cell. The overall dimensions of the MRP1 monomer are approximately 80 x 100 A. The MRP1 monomer shows some pseudo-2-fold symmetry in projection, and in some orientations of the detergent-solubilized particles, displays a stain filled depression (putative pore) appearing toward the center of the molecule, presumably to enable transport of substrates. These data represent the first structural information of this transporter to approximately 22-A resolution and provide direct structural evidence for a dimeric association of the transporter in a reconstituted lipid bilayer.  相似文献   

16.
We investigated the membrane topology of Bves/Pop1A as a foundation to dissect the molecular basis and function of Bves/Pop1A trafficking during development. Bves contains two asparagine-linked glycosylation sites within the amino terminus and three putative membrane domains. Therefore, glycosylation assays were performed to determine if the amino terminus of Bves is delivered into the endoplasmic reticulum lumen and glycosylated. We establish that Bves from chick heart and transfected cells is glycosylated, implying that the amino terminus of cell surface molecules is extracellular. Three biochemically distinct approaches were utilized to determine the orientation of the carboxyl terminus of Bves. First, glycosylation of Bves at exogenous sites within the carboxyl terminus was only observed in a construct that lacked the third membrane domain, which presumably reversed the orientation of the carboxyl terminus. Second, co-expression of full-length Bves with soluble, carboxyl-terminal Bves constructs that reside in different subcellular compartments revealed that Bves-Bves interactions occur in the cytoplasm. Third, the immunoreactivity of endogenous Bves at the cell surface of epicardial cells was dramatically enhanced with detergent. These results suggest that the membrane topology of cell surface Bves/Pop1A is composed of an extracellular amino terminus, three transmembrane domains, and a cytoplasmic carboxyl terminus. We therefore hypothesize that the carboxyl terminus regulates the cellular distribution of Bves/Pop1A during coronary vessel development.  相似文献   

17.
Structure-function analyses of K+ channels identify a common pore architecture whose gating depends on diverse signal sensing elements. The "gatekeepers" of the long, ATP-inhibited KIR6.0 pores of KATP channels are ABC proteins, SURs, receptors for channel opening and closing drugs. Several competing models for SUR/KIR coupling exist. We show that SUR TMD0, the N-terminal bundle of five transmembrane helices, specifically associates with KIR6.2, forcing nearly silent pores to burst like native KATP channels and enhancing surface expression. Inclusion of adjacent submembrane residues of L0, the linker between TMD0 and the stimulatory nucleotide- and drug-binding ABC core, generates constitutively active channels, whereas additional cytoplasmic residues counterbalance this activation establishing a relationship between the mean open and burst times of intact pores. SUR fragments, lacking TMD0, fail to modulate KIR. TMD0 is thus the domain that anchors SUR to the KIR pore. Consistent with data on chimeric ABCC/KIRs and a modeled channel structure, we propose that interactions of TMD0-L0 with the outer helix and N terminus of KIR bidirectionally modulate gating. The results explain and predict pathologies associated with alteration of the 5' ends of clustered ABCC8 (9)/KCNJ11 (8) genes.  相似文献   

18.
Westlake CJ  Qian YM  Gao M  Vasa M  Cole SP  Deeley RG 《Biochemistry》2003,42(48):14099-14113
Multidrug resistance protein (MRP) 1 is a member of the ABCC branch of the ATP binding cassette (ABC) transporter superfamily that can confer resistance to natural product chemotherapeutic drugs and transport a variety of conjugated organic anions, as well as some unconjugated compounds in a glutathione- (GSH-) dependent manner. In addition to the two tandemly repeated polytopic membrane-spanning domains (MSDs) typical of ABC transporters, MRP1 and its homologues MRP2, -3, -6, and -7 contain a third NH(2)-terminal MSD. The cytoplasmic loop (CL3) connecting this MSD, but apparently not the MSD itself, is required for MRP1 leukotriene C(4) (LTC(4)) transport activity, substrate binding and appropriate trafficking of the protein to the basolateral membrane. We have used a baculovirus dual-expression system to produce various functionally complementing fragments of MRP1 in insect Sf21 cells to precisely define the region in CL3 that is required for activity and substrate binding. Using a parallel approach in polarized MDCK-I cells, we have also defined the region of CL3 that is required for basolateral trafficking. The CL3 NH(2)- and COOH-proximal functional boundaries have been identified as Cys(208) and Asn(260), respectively. Cys(208) also corresponds to the NH(2)-proximal boundary of the region required for basolateral trafficking in MDCK-I cells. However, additional residues downstream of the CL3 COOH-proximal functional boundary extending to Lys(270) were found to be important for basolateral localization. Finally, we show that regions in CL3 necessary for LTC(4) binding and transport are also required for binding of the photoactivatable GSH derivative azidophenacyl-GSH.  相似文献   

19.
Expression of multidrug resistance ABC transporters has been suggested as a functional marker and chemoprotective element in early human progenitor cell types. In this study we examined the expression and function of the key multidrug-ABC transporters, ABCB1, ABCC1 and ABCG2 in two human embryonic stem (HuES) cell lines. We detected a high level ABCG2 expression in the undifferentiated HuES cells, while the expression of this protein significantly decreased during early cell differentiation. ABCG2 in HuES cells provided protection against mitoxantrone toxicity, with a drug-stimulated overexpression of the transporter. No significant expression of ABCB1/ABCC1 was found either in the undifferentiated or partially differentiated HuES cells. Examination of the ABCG2 mRNA in HuES cells indicated the use of selected promoter sites and a truncated 3' untranslated region, suggesting a functionally distinct regulation of this transporter in undifferentiated stem cells. The selective expression of the ABCG2 multidrug transporter indicates that ABCG2 can be applied as a marker for undifferentiated HuES cells. Moreover, protection of embryonic stem cells against xenobiotics and endobiotics may depend on ABCG2 expression and regulation.  相似文献   

20.
Mutations in the gene coding for a human ABC transporter protein, ABCC6 (MRP6), are responsible for the development of pseudoxanthoma elasticum. Here, we demonstrate that human ABCC6, when expressed by retroviral transduction in polarized mammalian (MDCKII) cells, is exclusively localized to the basolateral membrane. The human ABCC6 in MDCKII cells was found to be glycosylated, in contrast to the underglycosylated form of the protein, as expressed in Sf9 cells. In order to localize the major glycosylation site(s) in ABCC6, we applied limited proteolysis on the fully glycosylated and underglycosylated forms, followed by immunodetection with region-specific antibodies for ABCC6. Our results indicate that Asn15, which is located in the extracellular N-terminal region of human ABCC6, is the only N-glycosylation site in this protein. The polarized mammalian expression system characterized here provides a useful tool for further examination of routing, glycosylation, and function of the normal and pathological variants of human ABCC6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号