首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of 4 potentially selective agents for transformed cells, 3 antibiotics [kanamycin, geneticin (G418) and hygromycin] and bialaphos, as well as 2 antibiotics for eliminating Agrobacterium, carbenicillin and cefotaxime on growth and somatic embryogenesis of embryogenic calli of Muscari armeniacum cv. Blue Pearl were evaluated. Callus growth was completely inhibited by 75 mg dm−3 hygromycin or 4 mg dm−3 bialaphos, and somatic embryos were never produced on media containing 25 mg dm−3 hygromycin or 3 mg dm−3 bialaphos. Kanamycin and G418 less inhibited growth and somatic embryogenesis of the calli. On the contrary, carbenicillin and cefotaxime promoted both callus growth and somatic embryogenesis at all concentrations tested. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Ticarcillin/potassium clavulanate is a very effective combination of antibiotics to eliminate Agrobacterium tumefaciens during tomato transformation. It shows no toxicity to tomato tissues at a concentration of 150 mg/l and significantly promotes callus formation and shoot regeneration. The transformation frequency was raised more than 40% in comparison to cefotaxime. Cefotaxime itself did not inhibit callus growth in culture medium, but it clearly decreased shoot differentiation. Together with kanamycin, cefotaxime shows a strong negative effect on callus growth, shoot regeneration and transformation efficiency. Unlike the widely used carbenicillin and cefotaxime, ticarcillin/potassium clavulanate is light stable and resistant to inactivation by β-lactamase. Furthermore, ticarcillin/potassium clavulanate is more economical than carbenicillin and cefotaxime. In conclusion, ticarcillin/potassium clavulanate is a very good alternative to eliminate Agrobacterium tumefaciens in plant transformation and has the potential to be widely used for plants which are sensitive to carbenicillin and cefotaxime. Received: 22 September 1997 / Revision received: 7 November 1997 / Accepted: 15 December 1997  相似文献   

3.
The effect of five antibiotics: carbenicillin, chloramphenicol, cefotaxime, kanamycin and hygromycin on the organogenesis from callus cultures of Coryphantha elphantidens (Lem.) Lem. have been studied. Carbenicillin and cefotaxime stimulated shoot regeneration from callus. All antibiotics under study suppressed rooting of in vitro formed shoots. After five sequential subcultures on kanamycin supplemented medium, antibiotic resistant callus was obtained. To study the impact of kanamycin on resistant callus, total protein content was also studied. Selected callus showed a remarkable increase in callus mass. Antibiotic resistant plants have been selected by screening callus pieces on kanamycin supplemented media. Total protein content increased with subsequent subcultures in kanamycin resistant callus. The kanamycin selected shoots withstood the stability test after 2 months on antibiotic free medium. Plants were raised from the callus, which formed roots in 20 mg dm–3 kanamycin, which was under study.  相似文献   

4.
An efficient, highly reproducible system for plant regeneration via somatic embryogenesis was developed for Cenchrus ciliaris genotypes IG-3108 and IG-74. Explants such as seeds, shoot tip segments and immature inflorescences were cultured on Murashige and Skoog (MS) medium supplemented with 2.0–5.0 mg dm?3 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg dm?3 N6-benzyladenine (BA) for induction of callus. Callus could be successfully induced from all the three explants of both the genotypes. But the high frequency of embryogenic callus could be induced only from immature inflorescence explants. Somatic embryos were formed from nodular, hard and compact embryogenic calli when 2,4-D concentration was gradually reduced and BA concentration increased. Histological studies of somatic embryos indicated the presence of shoot apical meristem with leaf primordia. Ultrastructural details of globular and scutellar somatic embryos further validated successful induction and progression of somatic embryogenesis. Shoots were differentiated upon germination of somatic embryos on MS medium containing 2,4-D (0.25 mg dm?3) and BA or kinetin (1–5 mg dm?3). Roots were induced on ½ MS medium containing charcoal (0.8 %), and the regenerated plants transferred to pots and established in the soil showed normal growth and fertility.  相似文献   

5.
Efficient plant regeneration system from leaf base segments of wheat (Triticum aestivum L.) was developed. The factors affecting the callus formation and regeneration capacity of leaf segments of two genotypes; Bobwhite and Pavon 76, were investigated. The highest number of somatic embryos (SE) was obtained on Murashige and Skoog medium supplemented with 2 mg dm−3 2,4-dichlorophenoxyacetic acid + 1 mg dm−3 naphthalenacetic acid (14.7 SE per segment). Highest frequency of embryogenic callus (96 %) and somatic embryo formation (24.3 SE per segment) were achieved in the first segments. The highest plantlet regeneration was obtained after transfer of embryogenic calli to regeneration medium supplemented with 1 mg dm−3 kinetin (6.3 plantlets per segment).  相似文献   

6.
For maximum avoidance of somaclonal variation risks, the commonly used medium for somatic embryogenesis inPhoenix dactylifera has been lowered in growth regulators and activated charcoal. When initially cultured on MS basal medium containing only 150 mg dm?3 charcoal, 5 mg dm?3 2,4-dichlorophenoxyacetic acid (2,4-D) and 5 mg dm?3 benzylaminopurine (BAP), 10 to 20% of shoot-tip explants developed into embryogenic calli. The embryogenic potential has been maintained for over 24 months with no decline. In addition, this medium has been found to be more efficient than conventionaly one containing 3 g dm?3 charcoal, 100 mg dm?3 2,4-D and 3 mg dm?3 2-isopentyladenosine (2IP). Plantlet regeneration was achieved when somatic embryos were subcultured to medium with 0.1 mg dm?3 2,4-D and 0.5 mg dm?3 BAP or without growth regulators.  相似文献   

7.
Protoplasts of three carrot cultivars were isolated from in vitro-grown plantlets by overnight incubation in an enzyme mixture composed of 1% (w/v) cellulase Onozuka R-10 and 0.1% (w/v) pectolyase Y-23. After cell immobilization in modified thin alginate layers, three types of β-lactam antibiotics (cefotaxime, carbenicillin, or timentin) at five different concentrations (100, 200, 300, 400, or 500 mg L?1) were added to the culture medium. In 20-d-old cultures, a different number of cell colonies had formed and varied on average from 27 to 56% in carbenicillin- and cefotaxime-containing media, respectively. Supplementation of the culture media with antibiotics at concentrations higher than 100 mg L?1 resulted in a decrease in plating efficiency in comparison with the controls. However, from all antibiotic treatments, except carbenicillin at concentrations of 400–500 mg L?1, efficient plant regeneration occurred. For this reason, we believe that cefotaxime and timentin in the concentrations analyzed here may be used in complex in vitro procedures or valuable carrot cultures as a prophylactic agent for prevention against occasional contaminations.  相似文献   

8.
The changes in the activities of antioxidant enzymes and amounts of proteins, phenols, and flavonoids in regenerating and non-regenerating calli during organogenesis of Sterculia urens were monitored. Maximum growth of calli and the most efficient regeneration of shoots occurred on Murashige and Skoog (MS) medium supplemented with 0.5 mg dm?3 benzylaminopurine (BAP) + 2 or 4 mg dm?3 naphtalene acetic acid (NAA). Peroxidase (POD), catalase, and superoxide dismutase activities increased in the regenerating calli but decreased in the non-regenerating calli. Six POD isoenzymes were detected. Protein content decreased in the non-regenerating calli and increased significantly during regeneration of shoots from callus. Total phenols and flavonoids increased in the non regenerating calli. SDS-PAGE analysis revealed a role of many proteins in organogenesis.  相似文献   

9.
The investigations of nanotechnology with the application on agricultural products also have been few reported, especially the plant regeneration. The effects of activated charcoal and nanocarbon on the callus induction and plant regeneration of aromatic rice were studied. Activated charcoal was added into the callus induction and regeneration medium. The presence of activated charcoal in the callus induction medium (100–500 mg L?1), activated charcoal significantly reduced the percentage of the callus induction and biomass accumulation (fresh weight, dry weight and size). Whereas, the regeneration medium supplemented with 100 mg L?1 of activated charcoal showed the highest percentage of plant regeneration (61.90%) and the ratio of the number of seedlings to the number of regenerated calli (RSR; 3.06) that derived from the callus induction medium (without activated charcoal). Moreover, the induced calli derived from the callus induction medium supplemented with nanocarbon at 5 mg L?1 showed the highest percentage of callus induction (94.70%), the percentage of green spots (95.83%), the percentage of plant regeneration (60.42%) and the RSR (3.12) when transferred the calli into the regeneration medium (without nanocarbon). After that, nanocarbon was also added into the regeneration medium. The percentage of green spots (96.08%), the percentage of plant regeneration (62.75%) and the RSR (3.16) obtained from the regeneration medium supplemented with 20 mg L?1 of nanocarbon showed the highest values. This experiment showed that the optimum concentration of activated charcoal and nanocarbon had potential to enhance the callus induction and plant regeneration frequencies in tissue culture medium of aromatic rice.  相似文献   

10.
Gynogenesis of Chinese long cucumber (Cucumis sativus L.) was obtained from unpollinated ovules cultured on cucumber basal medium (CBM) supplemented with thidiazuron (TDZ) and in some experiments AgNO3. High induction frequencies (7.85–12.14 %) were induced from unpollinated ovules at the time of anthesis at 0.03–0.07 mg dm?3 TDZ. Histological analysis indicated that embryo sacs developed completely at the time of anthesis. Further, the highest plant regeneration rate was achieved at CBM supplemented with 0.05 mg dm?3 a-naphthaleneacetic acid, 0.2 mg dm?3 6-benzyladenine and 5–10 mg dm?3 AgNO3. Flow cytometry analysis showed that 80 % of the regenerated plants were haploid. Histological micrographs and ploidy level analyses clearly revealed initiation, development, and germination of embryos from the unpollinated ovules.  相似文献   

11.
The paper reports the in vitro cultivation of two commercial lines and 23 wild populations (with 10, 20 and 30 chromosomes) of Brachypodium distachyon. Callus induction was assayed on Murashige and Skoog medium containing 1 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) with 30 g dm−3 of sucrose (MSs) or maltose (MSm). No significant differences were seen between the two media with respect to callus induction. Calli were transferred to MSm medium without 2,4-D but containing 0.1 mg dm−3 of 6-benzylaminopurine for plant regeneration. The plant regeneration response was very variable depending on the original induction medium, although no overall preference for one or the other medium was seen. The three main culture stages (callus induction, plant regeneration, and green plantlets formation) are probably differently controlled in the plants with different chromosome numbers. This supports the idea that the three cytotypes of Brachypodium cultured actually belong to different species.  相似文献   

12.
Somatic embryogenesis and plant regeneration were successfully established on Nitsch and Nitsch (NN) medium from immature zygotic embryos of six genotypes of grapevine (Vitis vinifera). The optimum hormone combinations were 1.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) for callus induction and 1.0 mg dm−3 α-naphthalene acetic acid (NAA) + 0.5 mg dm−3 6-benzyladenine (BA) for embryos production and 0.03 mg dm−3 NAA + 0.5 mg dm−3 BA for embryos conversion and plant regeneration. The frequency of somatic embryogenesis varied from 10.5 to 37.5 % among six genotypes and 15.5–42.1 % of somatic embryos converted into normal plantlets. The analysis of DNA content determined by flow cytometry and chromosome counting of the regenerated plantlets clearly indicated that no ploidy changes were induced during somatic embryogenesis and plant regeneration, the nuclear DNA content and ploidy levels of the regenerated plants were stable and homogeneous to those of the donor plants. RAPD markers were also used to evaluate the genetic fidelity of plants regenerated from somatic embryos. All RAPD profiles from regenerated plants were monomorphic and similar to those of the field grown donor plants. We conclude that somaclonal variation is almost absent in our grapevine plant regeneration system.  相似文献   

13.
Effects of four amino acids, L-asparagine, L-cysteine, L-citrulline, and L-glutamine in different concentrations (0, 0.5, 1, and 2 mg dm-3) combined with 2 mg dm-3 indole-3-butyric acid, on in vitro rooting and biochemical constituents of cherry rootstocks CAB-6P (Prunus cerasus L.) and Gisela 6 (P. canescens × P. cerasus) were investigated. In CAB-6P, root number and root fresh mass (FM) were maximum at 0.5 mg dm-3 cysteine. All amino acids reduced root length in CAB-6P and root number as well as root FM in Gisela 6. In Gisela 6, 0.5 mg dm-3 asparagine or 2 mg dm-3 glutamine reduced root length. In CAB-6P, 100 % rooting was achieved in the control and with 1 and 2 mg dm-3 cysteine or 1 mg dm?3 citrulline. In Gisela 6, the rooting percentage was maximum (76.92 %) with 0.5 mg dm?3 asparagine. Callus FM in CAB-6P was the greatest at 1 mg dm?3 and in Gisela 6 at 2 mg dm?3 citrulline. Callusing was 100 % in the majority of treatments for CAB-6P and 92.31 % for Gisela 6 with 0.5 or 2 mg dm?3 citrulline. Cysteine, citrulline, and glutamine diminished chlorophyll content in Gisela 6 whereas in CAB-6P all four amino acids hardly affected it. Carotenoid and porphyrin content in CAB-6P was decreased due to asparagine (0.5 or 1 mg dm?3). Porphyrin content in CAB-6P was also reduced by adding 0.5 or 1 mg dm?3 cysteine or 2 mg dm?3 citrulline. In Gisela 6, all amino acids decreased carotenoid and porphyrin content. In CAB-6P, all treatments except 0.5 mg dm?3 glutamine or 2 mg dm?3 asparagine increased leaf sucrose content. In roots, both sucrose and proline content were increased only at 1 mg dm?3 cysteine whereas in leaves only 0.5 mg dm?3 asparagine caused a 3-fold increase in proline content. A decrease in root proline in CAB-6P was observed due to asparagine, citrulline, or glutamine. In Gisela 6, decreased leaf sucrose and proline content was recorded at 2 mg dm?3 cysteine. All amino acids did not alter root sugar content remarkably whereas root proline content was raised by adding 0.5 mg dm?3 glutamine or 1 mg dm?3 cysteine.  相似文献   

14.
An efficient plant regeneration system was established from immature leaflet-derived callus of Acacia confusa Merr, through organogenesis. Under optimized culture conditions, the high rate of callus induction and proliferation was obtained in 35 days on MMS medium supplemented with 2,4-D (3 mg l?1) + NAA (0.01 mg l?1) + Kin (0.05 mg l?1). The highest percentage of shoot regeneration response (95%) and greatest number of shoots (52.9) were obtained after the 46-day transfer of green nodular calli onto the shoot regeneration medium (WPM) supplemented with the BA 3 mg l?1 + NAA 0.05 mg l?1 + Zeatin 0.1 mg l?1 + AdSO4 5 mg l?1 combination. Efficient shoot elongation was achieved by transferring the clusters of adventitious shoot buds to medium (half-strength MS) containing GA, (1 mg l?1) and BA (0.05 mg l?1), within 30 days. The elongated shoots were rooted on half-strength MS medium supplemented with 4 mg l?1 IBA and 0.05 mg l?1 Kin in the 42-day culture. Rooted plantlets were hardened and successfully established in soil. The field-established plants were morphologically normal and fertile.  相似文献   

15.
The present study investigates the effects of indole-3-butyric acid (IBA) alone and in combination with myo-inositol on in vitro rooting and biochemical responses in the cherry rootstocks CAB-6P (Prunus cerasus L.) and Gisela 6 (Prunus cerasus × Prunus canescens). For the CAB-6P rootstock, the best results for root number (6.31), fresh mass (FM), dry mass (DM), and rooting percentage (100 %) were obtained on Murashige and Skoog (MS) medium with 2 mg dm?3 IBA and maximum root length (30.57 mm) was obtained at 1 mg dm?3 IBA. Myo-inositol suppressed the positive effects of IBA on root length. In the Gisela 6 explants, the inclusion of 2 mg dm?3 IBA together with 0.5 mg dm?3 of myo-inositol in the culture medium significantly enhanced root number (9.91) and root FM and DM. The root length was maximum in the combination of the lowest IBA and myo-inositol concentrations (0.5 mg dm?3). The rooting percentage was the greatest (100 %) with the application of 1 mg dm?3 IBA alone. In both explants, the application of IBA alone or in combination with myo-inositol resulted in a lower leaf proline content in comparison with the control (without growth regulators). The maximum leaf chlorophyll content was at 1 mg dm?3 IBA in the CAB-6P whereas at 2 mg dm?3 IBA and 1 mg dm?3 myo-inositol in Gisela 6. Addition of myo-inositol mostly increased sugar content in comparison with control or IBA alone in both rootstocks.  相似文献   

16.
Exposure of sunflower and maize plants to increasing concentrations of lithium (0?C50?mg Li dm?3) in a nutrient solution induced changes in biomass, leaf area and photosynthetic pigment accumulation, as well as levels of lipid peroxidation. The highest applied lithium dose (50?mg Li dm?3) evoked a significant reduction in the shoot biomass for both examined species, as well as necrotic spots and a reduction of the leaf area in sunflower plants. An enrichment of a nutrient solution with 5?C50?mg Li dm?3 did not significantly affect chlorophylls a and b and the carotenoid content in sunflower plants. However, in maize, a significant decrease in all pigment content under highest used lithium concentration was noted. The levels of lipid peroxidation of the cell membranes in leaves of sunflower plants and the roots of maize increased significantly in the presence of 50?mg Li dm?3, which suggests disturbances of the membrane integrity and pro-oxidant properties of the excess lithium ions. Nonetheless, in maize, an increase of shoot biomass and leaf area in the presence of 5?mg Li dm?3 was found. An analysis of the metal content indicated that lithium accumulated significantly in sunflower and maize shoots in a dose-dependent manner, but differences occurred between species. The sunflower plants accumulated considerably greater amounts of this metal than maize. The potassium content in shoots remained unchanged under lithium treatments, except for a significant increase in the potassium levels for sunflower plants grown in the presence of 50?mg Li dm?3. These results suggest that lithium at 50?mg Li dm?3 is toxic to both plant species, but the symptoms of toxicity are species-specific. Moreover, the lithium influence on plants is dose-dependent and its ions can exert toxicity at high concentrations (50?mg Li dm?3) or stimulate growth at low concentrations (5?mg Li dm?3).  相似文献   

17.
A cephalosporin antibiotic, cefotaxime (Omnatax™) promoted somatic embryogenesis and subsequent shoot regeneration in vitro from spindle in sugarcane irrespective of the genotypes as (CoJ 83, CoJ 88 and CoJ 64) culturered on MS medium with 2,4-D (2.5 mgl−1) and kinetin (0.5 mgl−1). Seven different concentrations of cefotaxime (100, 200, 300, 400, 500, 600 and 700 mgl−1) were tested to find the optimal concentration of cefotaxime for somatic embryogenesis from callus cultures. Among the three varieties, calli of variety CoJ 83 incubated on MS medium with 2,4-D (2.5 mgl−1) + kinetin (0.5 mgl−1) + cefotaxime (500 mgl−1) exhibited maximum somatic embryogenesis. To improve shoot regeneration, the callus was transferred to MS medium with BAP (0.5 mgl−1) + kinetin (0.5 mgl−1) in combination with different levels of cefotaxime. Highest frequency of shoot regeneration was observed in callus of CoJ 83 in the presence of 500 mgl−1 cefotaxime. The plantlets could be successfully hardened in polybags and transferred to soil, where they exhibited normal growth. Our results convincingly demonstrated that cefotaxime improves somatic embryogenesis from spindle and regeneration from embryogenic calli of sugarcane and hence can be strongly recommended for rapid and large scale multiplication of sugarcane.Key words: Saccharum officinarum L., leaf segments, callus, plant regeneration, antibiotic  相似文献   

18.
Improved Regeneration Efficiency from Mature Embryos of Barley Cultivars   总被引:6,自引:0,他引:6  
A reliable protocol for plant regeneration from mature embryo derived calli of nine barley (Hordeum vulgare) cultivars has been developed. The auxins 2,4-dichlorophenoxyacetic acid, picloram and dicamba proved effective in inducing callus from mature embryos of most of the barley cultivars. The induced primary callus was loose, friable and translucent. It ultimately yielded creamy white and compact callus after 2 - 3 transfers on fresh medium of the same composition. Callus induction and regeneration capacity were highly cultivar dependent. Addition of a high concentration of picloram (4 mg dm-3) promoted regeneration in 3 cultivars (Tallon, Grimmett and Sloop). In cv. Arapiles, abscisic acid and betaine were crucial in generating morphogenic callus from the mature embryos. Plants regenerated from these calli were hardy and developed roots readily when transferred to hormone free medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Plant regeneration was achieved from coleoptile tissue of wheat (Triticum aestivum L. cv. Kharachia-65). Coleoptiles (1.0 - 3.5 cm long) were excised from 2- to 5-d-old seedlings and cultured on Murashige and Skoog's (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D - 0.5, 2.5, and 5.0 mg dm-3). Cream, friable callus was obtained after 6 weeks of inoculation. This callus was sub-cultured on MS medium supplemented with 2,4-D (2.5 mg dm-3) and 5 % coconut water. After 6 weeks of sub-culturing white, cream or pale, friable, nodular callus was obtained. Plant regeneration occurred when this callus was sub-cultured on MS medium supplemented with 0.2 mg dm-3 1-naphthalene acetic acid + 1.0 mg dm-3 6-benzylaminopurine. For rooting, regenerated shoots or plantlets were transferred on MS medium supplemented with 0.5 mg dm-3 indole-3-acetic acid. Rooted plantlets were directly transferred into pots and grown under field conditions. Seed setting invariably occurred in all plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Sandalwood (Santalum album L.) is a small evergreen, hemi-parasitic tree having more than 18 woody species that are mostly distributed in South Asia, Australia, and Hawaii. Its economical importance is derived from its heartwood oil, but its difficult propagation makes conservation essential. The percentage of seed germination is poor and germination time exceeds 12 mo. Vegetative propagation can be accomplished by grafting, air layering, or with root suckers, but the production of clones is inefficient and time consuming. In this study, efficient plant regeneration was achieved via indirect organogenesis from callus cultures derived from leaf tissues of S. album. Callus induction was induced when leaf explants were cultured on woody plant media (WPM) supplemented with either thidiazuron (TDZ) or 2,4-dichlorophenoxyacetic acid. The highest callus frequency (100%) was obtained when leaf tissue was cultured in the medium with 0.4 mg?l?1 TDZ. Fresh weight (141.92 mg) and dry weight (47 mg) of leaf-derived callus were highest in the medium supplemented with 0.8 mg?l?1 TDZ. The WPM medium supplemented with 2.5 mg?l?1 BA?+?0.4 mg?l?1 NAA was the most effective, producing the highest number of shoot buds (24.6) per callus. The highest number of shoots per explant (20.67) and shoot length (5.17 cm) were observed in media supplemented with 5.0 mg?l?1 BA and 3.0 mg?1?1 Kn, respectively. Plantlets were rooted on WPM medium with different concentrations of indole-3-butyric acid (IBA). The highest rooting percentage (91.67) and survival were achieved using WPM media with 1.5 mg?l?1 IBA. All plantlets survived acclimatization, producing healthy plants in the greenhouse. The current investigation showed efficient in vitro regeneration capabilities of S. album from leaf explants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号