首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Hsp70 content (ng Hsp70 μg total protein−1) in the liver and brain of control and adrenalectomized male rats was investigated by Western Blotting after heat stress (40°C) or endotoxin-induced fever (E. coli lipopolysaccharide injection). The increase in rectal temperature was higher after heat stress than after LPS injection. Heat stress affected Hsp70 content of the liver, but not of the brain; however adrenalectomy did not influence any parameter. These results suggest that, under these circumstances, there is no relationship between the hypothalamic–pituitary–adrenal axis and Hsp70 synthesis in liver and brain.  相似文献   

2.
Intracellular levels of the heat stress protein Hsp70 are elevated following exposure to elevated temperature. The cochaperone HspBP1 is an intracellular protein that is known to bind to and regulate Hsp70 activity. The purpose of this study was to determine if HspBP1 levels changed when Hsp70 levels were altered. Heat stress resulted in an increase in Hsp70 levels but no change in HspBP1 levels. Treatment of cells with the apoptosis inducing drug camptothecin lowered Hsp70 levels but again had no effect on HspBP1 levels. Cells treated with camptothecin plus heat stress did not exhibit an increase in Hsp70 levels. Over-expression in cells stably transfected with HspBP1 cDNA resulted in a 290% increase in HspBP1 levels without a similar change in Hsp70 levels. These results demonstrate that Hsp70 and HspBP1 are not coordinately regulated but provide evidence that an increase in the ratio of HspBP1 to Hsp70 correlates with apoptosis, in a similar way to reducing the amount of Hsp70.  相似文献   

3.
4.
5.
Heat shock suppresses the permeability transition in rat liver mitochondria   总被引:8,自引:0,他引:8  
Heat shock proteins inhibit apoptotic and necrotic cell death in various cell types. However, the specific mechanism underlying protection by heat shock proteins remains unclear. To test the hypothesis that heat shock proteins inhibit cell death by blocking opening of mitochondrial permeability transition (MPT) pores, mitochondria from heat-preconditioned rat livers were isolated by differential centrifugation. Heat shock inhibited MPT pore opening induced by 50 microm CaCl(2) plus 5 microm HgCl(2) or 1 microm mastoparan and by 200 microm CaCl(2) alone. Half-maximal swelling was delayed 15 min or more after heat shock compared with control. Heat shock also increased the threshold of unregulated (Ca(2+)-independent and cyclosporin A-insensitive) MPT pore opening induced by higher doses of HgCl(2) and mastoparan. Heat shock treatment decreased mitochondrial reactive oxygen species formation by 27% but did not change mitochondrial respiration, membrane potential, Ca(2+) uptake, or total glutathione in mitochondrial and cytosolic extracts of liver. Western blot analysis showed that mitochondrial Hsp25 increased, whereas Hsp10, Hsp60, Hsp70, Hsp75, cyclophilin D, and voltage-dependent anion channel did not change after heat shock. These results indicate that heat shock causes resistance to opening of MPT pores, which may contribute to heat shock protection against cellular injury.  相似文献   

6.
Heat shock protein 70 (Hsp70), a protein induced in cells exposed to sublethal heat shock, is present in all living cells and has been highly conserved during evolution. The aim of the current study was to determine the role of heat shock proteins in the resistance of prostate carcinoma cell line spheroids to hyperthermia. In vitro, the expression of Hsp70 by the DU 145 cell line, when cultured as monolayer or multicellular spheroids, was studied using Western blotting and enzyme-linked immunosorbent assay methods. The level of Hsp70 in spheroid cultures for up to 26 days at 37 degrees C remained similar to monolayer cultures. However, in samples treated with hyperthermia at 43 degrees C for 120 min, the spheroid cultures expressed a higher level of Hsp70 as compared to monolayer culture. Under similar conditions of heat treatment, the spheroids showed more heat resistance than monolayer cultures as judged by the number of colonies that they formed in suspension cultures. The results suggest that cells cultured in multicellular spheroids showed more heat resistance as compared to monolayer cultures by producing higher levels of Hsp70.  相似文献   

7.
The response to exercise stress is characterized by an increase in circulating catecholamines and rapid synthesis of the inducible member of the 70 kDa family of heat shock proteins (Hsp70). Cell culture studies indicate that Hsp70 expression is influenced by beta-adrenergic receptor intermediates including cyclic AMP (cAMP) and cAMP dependent protein kinase (PKA). Thus, in the present investigation, the effect of a beta-adrenergic agonist, isoproterenol (ISO; 10 mg/kg) and a beta-adrenergic antagonist, nadolol (NAD; 25 mg/kg), on the in vivo expression of Hsp70 in rodent cardiac and skeletal muscle following moderate (MOD; 17 m/min) and exhaustive (EXH; 30 m/min) exercise was examined. While ISO alone did not induce Hsp70 synthesis, ISO treatment potentiated Hsp70 expression following MOD in the white vastus and heart (395+/-29 and 483+/-29% greater than control respectively, P < 0.05). Furthermore, this effect was reversed with combined beta-adrenergic agonist and antagonist treatment (ISO+NAD) indicating that the isoproterenol induced increase in post-exercise Hsp70 expression was mediated via beta-adrenergic receptor activity. However, there were no differences in Hsp70 levels among treatment groups following EXH. The failure of NAD to attenuate Hsp70 accumulation following EXH suggests that beta-adrenergic receptor activity is not the main signal in the induction of Hsp70 following exercise. Hsp70 induction was dependent on exercise intensity and ISO administration prior to MOD resulted in Hsp70 levels similar to those observed following EXH. The results from the present investigation indicate that beta-adrenergic receptor stimulation does not induce Hsp70 synthesis per se, but may be one factor involved in the complex regulation of the stress response to exercise in vivo.  相似文献   

8.
9.
There is growing evidence that cell shape regulates both proliferation and differentiated gene expression in a variety of cell types. We have explored the relationship between the morphology of articular chondrocytes in culture and the amount and type of proteoglycan they synthesize, using cytochalasin D to induce reversible cell rounding. When chondrocytes were prevented from spreading or when spread cells were induced to round up, 35SO4 incorporation into proteoglycan was stimulated. Incorporation into the cell layer was stimulated more than into the medium. When the cells were allowed to respread by removing cytochalasin D, proteoglycan synthesis returned to control levels. Cytochalasin D-induced stimulation of 35SO4 incorporation reflected an increase in core protein synthesis rather than lengthening of glycosaminoglycan chains, because [3H]serine incorporation into core protein was also stimulated. The observed stimulation of proteoglycan synthesis was not due to an overall stimulation of protein synthesis, to inhibition of DNA synthesis, or to accumulation of cells in one phase of the cell cycle. Cytochalasin D-treatment of cells in suspension caused no further stimulation of 35SO4 incorporation, suggesting that the observed effects were due to cell rounding rather than exposure to cytochalasin D per se; nevertheless, we cannot completely rule out other, nonspecific, effects of the drug. Fibroblasts and chondrocytes that had been passaged to stimulate dedifferentiation did not incorporate more 35SO4 when treated with cytochalasin D, suggesting that increased proteoglycan synthesis in response to rounding may itself be a differentiated property of chondrocytes.  相似文献   

10.
11.
In chondrocytes, a low-amplitude intermittent hydrostatic pressure induces production of extracellular matrix molecules, while high hydrostatic pressure inhibits it. High pressure increases cellular heat shock protein 70 level in a number of cell types on account of increased stabilisation of the heat shock protein 70 mRNA. In our experiments, only bovine primary chondrocytes, but not an immortalized chondrocytic cell line, could resist the induction of the stress response in the presence of continuous 30 MPa hydrostatic pressure. We have recently shown that protein synthesis is required for the stabilization. According to two-dimensional gel electrophoresis the synthesis of heat shock protein 90 was also increased in a chondrocytic cell line and in HeLa cells, and mass spectrometric analysis suggested that the induction was rather due to increase in heat shock protein 90beta than in heat shock protein 90alpha. The stress response was rather intense in HeLa cells, therefore, we investigated the effect of continuous 30 MPa hydrostatic pressure on the expression of the two heat shock protein 90 genes in HeLa cells using Northern and Western blot analyses. Heat shock protein 90beta mRNA level increased within 6 hours of exposure to 30 MPa hydrostatic pressure, while hsp90alpha level remained stable. At protein level there was a clear increase in the heat shock protein 90beta/heat shock protein 90alpha ratio, too. These results show a specific regulation of stress proteins in cells exposed to high hydrostatic pressure.  相似文献   

12.
In a previous study, we found that at low concentrations, safrole oxide (SFO) could induce vascular endothelial cell (VEC) transdifferentiation into neuron-like cells; however, whether SFO could induce bone-marrow mesenchymal stem cell (BMSC) neural differentiation was unknown. Here, we found that SFO could effectively induce BMSC neural differentiation in the presence of serum and fibroblast growth factor 2 and did not affect cell viability at low concentrations. The levels of neuron-specific enolase and neurofilament-L were increased greatly, but that of glial fibrillary acidic protein was absent with SFO treatment for 48 h. Furthermore, SFO could increase the level of heat shock protein 70 (Hsp70), an important factor in neuronal differentiation. Knockdown of Hsp70 by its small interfering RNA blocked SFO-induced BMSC differentiation. Thus, SFO is a novel inducer of BMSC differentiation to neuron-like cells and Hsp70 is implicated in the differentiation process. We provide a new tool for obtaining neuron-like cells from BMSCs and for further investigating the new effect of Hsp70 on BMSC neuronal differentiation.  相似文献   

13.
14.
Caulobacter crescentus cells respond to a sudden increase in temperature by transiently inducing the synthesis of several polypeptides. Two of the proteins induced, Hsp62 and Hsp70, were shown to be analogous to the heat shock proteins of Escherichia coli, GroEL and DnaK, respectively, by immunological cross-reactivity with antibodies raised against the E. coli proteins. Two-dimensional gel electrophoretic resolution of extracts of cells labeled with [35S]methionine during heat shock led to the identification of 20 distinct Hsps in C. crescentus which are coordinately expressed, in response to heat, at the various stages of the cell division cycle. Thus, a developmental control does not seem to be superimposed on the transient activation of the heat shock genes. Nonetheless, under normal temperature conditions, four Hsps (Hsp70, Hsp62, Hsp24b, and Hsp23a) were shown to be synthesized, and their synthesis was cell cycle regulated.  相似文献   

15.
Apart from energy generation, mitochondria perform a signalling function determining the life and death of a cell under stress exposure. In the present study we have explored patterns of heat-induced synthesis of Hsp101, Hsp70, Hsp17.6 (class I), Hsp17.6 (class II) and Hsp60, and the development of induced thermotolerance in Arabidopsis thaliana cell culture under conditions of mitochondrial dysfunction. It was shown that treatment by mitochondrial inhibitors and uncouplers at the time of mild heat shock downregulates HSP synthesis, which is important for induced thermotolerance in plants. The exposure to elevated temperature induced an increase in cell oxygen consumption and hyperpolarization of the inner mitochondrial membrane. Taken together, these facts suggest that mitochondrial functions are essential for heat-induced HSP synthesis and development of induced thermotolerance in A. thaliana cell culture, suggesting that mitochondrial-nuclear cross-talk is activated under stress conditions. Treatment of Arabidopsis cell culture at 50 degrees C initiates a programmed cell death determined by the time course of viability decrease, DNA fragmentation and cytochrome c release from mitochondria. As treatment at 37 degrees C protected Arabidopsis cells from heat-induced cell death, it may be suggested that Hsp101, Hsp70 and small heat-shock proteins, the synthesis of which is induced under these conditions, are playing an anti-apoptotic role in the plant cell. On the other hand, drastic heat shock upregulated mitochondrial Hsp60 synthesis and induced its release from mitochondria to the cytosol, indicating a pro-apoptotic role of plant Hsp60.  相似文献   

16.
17.
Fever has been associated with shortened duration and improved survival in infectious disease. The mechanism of this beneficial response is still poorly understood. The heat-inducible 70-kDa heat shock protein (Hsp70) has been associated with protection of leukocytes against the cytotoxicity of inflammatory mediators and with improved survival of severe infections. This study characterizes the induction of Hsp70 by feverlike temperatures in human leukocytes in vitro and in vivo. Using flow cytometry, Hsp70 expression was determined in whole blood samples. This approach eliminated cell isolation procedures that would greatly affect the results. Heat treatment of whole blood in vitro for 2 hours at different temperatures revealed that Hsp70 expression depends on temperature and cell type; up to 41 degrees C, Hsp70 increased only slightly in lymphocytes and polymorphonuclear leukocytes. However, in monocytes a strong induction was already seen at 39 degrees C, and Hsp70 levels at 41 degrees C were 10-fold higher than in the 37 degrees C control. To be as close as possible to the physiological situation during fever, we immersed healthy volunteers in a hot water bath, inducing whole body hyperthermia (39 degrees C), and measured leukocyte Hsp70 expression. Hsp70 was induced in all leukocytes with comparable but less pronounced cell type-specific variations as observed in vitro. Thus, a systemic increase of body temperature as triggered by fever stimulates Hsp70 expression in peripheral leukocytes, especially in monocytes. This fever-induced Hsp70 expression may protect monocytes when confronted with cytotoxic inflammatory mediators, thereby improving the course of the disease.  相似文献   

18.
Heat shock protein 70 (Hsp70) is thought to play a critical role in the thermotolerance of mammalian cells, presumably due to its chaperone activity. We examined the chaperone activity and cellular heat resistance of a clonal cell line in which overexpression of Hsp70 was transiently induced by means of the tetracycline-regulated gene expression system. This single-cell-line approach circumvents problems associated with clonal variation and indirect effects resulting from constitutive overexpression of Hsp70. The in vivo chaperone function of Hsp70 was quantitatively investigated by using firefly luciferase as a reporter protein. Chaperone activity was found to strictly correlate to the level of Hsp70 expression. In addition, we observed an Hsp70 concentration dependent increase in the cellular heat resistance. In order to study the contribution of the Hsp70 chaperone activity, heat resistance of cells that expressed tetracycline-regulated Hsp70 was compared to thermotolerant cells expressing the same level of Hsp70 plus all of the other heat shock proteins. Overexpression of Hsp70 alone was sufficient to induce a similar recovery of cytoplasmic luciferase activity, as does expression of all Hsps in thermotolerant cells. However, when the luciferase reporter protein was directed to the nucleus, expression of Hsp70 alone was not sufficient to yield the level of recovery observed in thermotolerant cells. In addition, cells expressing the same level of Hsp70 found in heat-induced thermotolerant cells containing additional Hsps showed increased resistance to thermal killing but were more sensitive than thermotolerant cells. These results suggest that the inducible form of Hsp70 contributes to the stress-tolerant state by increasing the chaperone activity in the cytoplasm. However, its expression alone is apparently insufficient for protection of other subcellular compartments to yield clonal heat resistance to the level observed in thermotolerant cells.  相似文献   

19.
20.
Heat shock stress induces some heat shock proteins, including Hsp70, and activates sodium-dependent glucose transport in porcine renal LLC-PK(1) cells, but its mechanisms have not been described in detail. We investigated whether sodium-dependent glucose transporter (SGLT1) interacts with Hsp70 to increase SGLT1 activity. Heat shock stress increased SGLT1 activity without changing SGLT1 expression. The increase of SGLT1 activity was completely inhibited by an anti-transforming growth factor-beta1 (TGF-beta1) antibody. Instead of heat shock stress, TGF-beta1 increased SGLT1 activity dose- and time-dependently without changing SGLT1 expression. We found that the amount of Hsp70 immunoprecipitated from TGF-beta1-treated cells with an anti-SGLT1 antibody was higher than that of the control cells. Transfection of an anti-Hsp70 antibody into the cells inhibited the increase of SGLT1 activity. With confocal laser microscopy, both SGLT1 and Hsp70 was localized near the apical membrane in the TGF-beta1-treated cells, and an anti-Hsp70 antibody disturbed this localization. Furthermore, we clarified that an anti-Hsp70 antibody inhibited interaction of SGLT1 with Hsp70 in vitro. These results suggest that Hsp70 forms a complex with SGLT1 and increases the expression level of SGLT1 in the apical membrane, resulting in up-regulation of glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号