共查询到8条相似文献,搜索用时 0 毫秒
1.
Benjamin Gilbert Tyler D. Tunney Kevin S. McCann John P. DeLong David A. Vasseur Van Savage Jonathan B. Shurin Anthony I. Dell Brandon T. Barton Christopher D.G. Harley Heather M. Kharouba Pavel Kratina Julia L. Blanchard Christopher Clements Monika Winder Hamish S. Greig Mary I. O'Connor 《Ecology letters》2014,17(8):902-914
Changing temperature can substantially shift ecological communities by altering the strength and stability of trophic interactions. Because many ecological rates are constrained by temperature, new approaches are required to understand how simultaneous changes in multiple rates alter the relative performance of species and their trophic interactions. We develop an energetic approach to identify the relationship between biomass fluxes and standing biomass across trophic levels. Our approach links ecological rates and trophic dynamics to measure temperature‐dependent changes to the strength of trophic interactions and determine how these changes alter food web stability. It accomplishes this by using biomass as a common energetic currency and isolating three temperature‐dependent processes that are common to all consumer–resource interactions: biomass accumulation of the resource, resource consumption and consumer mortality. Using this framework, we clarify when and how temperature alters consumer to resource biomass ratios, equilibrium resilience, consumer variability, extinction risk and transient vs. equilibrium dynamics. Finally, we characterise key asymmetries in species responses to temperature that produce these distinct dynamic behaviours and identify when they are likely to emerge. Overall, our framework provides a mechanistic and more unified understanding of the temperature dependence of trophic dynamics in terms of ecological rates, biomass ratios and stability. 相似文献
2.
Mark Emmerson Martijn Bezemer† Mark D. Hunter‡ T. Hefin Jones§ 《Global Change Biology》2005,11(3):490-501
Recent research has generally shown that a small change in the number of species in a food web can have consequences both for community structure and ecosystem processes. However ‘change’ is not limited to just the number of species in a community, but might include an alteration to such properties as precipitation, nutrient cycling and temperature. How such changes might affect species interactions is important, not just through the presence or absence of interactions, but also because the patterning of interaction strengths among species is intimately associated with community stability. Interaction strengths encompass such properties as feeding rates and assimilation efficiencies, and encapsulate functionally important information with regard to ecosystem processes. Interaction strengths represent the pathways and transfer of energy through an ecosystem. We review the best empirical data available detailing the frequency distribution of interaction strengths in communities. We present the underlying (but consistent) pattern of species interactions and discuss the implications of this patterning. We then examine how such a basic pattern might be affected given various scenarios of ‘change’ and discuss the consequences for community stability and ecosystem functioning. 相似文献
3.
Samraat Pawar 《Journal of theoretical biology》2009,259(3):601-612
To understand the dynamics of natural species communities, a major challenge is to quantify the relationship between their assembly, stability, and underlying food web structure. To this end, two complementary aspects of food web structure can be related to community stability: sign structure, which refers to the distributions of trophic links irrespective of interaction strengths, and interaction strength structure, which refers to the distributions of interaction strengths with or without consideration of sign structure. In this paper, using data from a set of relatively well documented community food webs, I show that natural communities generally exhibit a sign structure that renders their stability sensitive to interaction strengths. Using a Lotka-Volterra type population dynamical model, I then show that in such communities, individual consumer species with high values of a measure of their total biomass acquisition rate, which I term “weighted generality”, tend to undermine community stability. Thus consumer species’ trophic modules (a species and all its resource links) should be “selected” through repeated immigrations and extinctions during assembly into configurations that increase the probability of stable coexistence within the constraints of the community's trophic sign structure. The presence of such constraints can be detected by the incidence and strength of certain non-random structural characteristics. These structural signatures of dynamical constraints are readily measurable, and can be used to gauge the importance of interaction-driven dynamical constraints on communities during and after assembly in natural communities. 相似文献
4.
Theory suggests that variation in resource supply should propagate up trophic webs influencing plant–herbivore interactions and abundances. Community regulation models have been tested in several ecosystems, but benthic marine ecologists have largely overlooked bottom‐up factors except at the largest spatial scales. We used naturally occurring variation in nutrient supply associated with upwelling intensity (over 10s of kilometre) to test community regulation models. Higher upwelling intensity was strongly associated with increased abundance of late‐successional, corticated algae, which in turn had apparent negative effects on ephemeral algae. Corticated algae were resistant to extant levels of herbivory. As a result, corticated algae were more abundant at sites of high upwelling intensity, while ephemeral algae were more abundant at sites of low upwelling intensity. We speculate that human removal of large grazers that can feed on corticated algae may interact with natural variation in nutrient supply to shift community structure over mesoscales. 相似文献
5.
Food web structure and climate effects on the dynamics of small mammals and owls in semi-arid Chile 总被引:5,自引:0,他引:5
Population dynamics of small mammals and predators in semi-arid Chile is positively correlated with rainfall associated with incursions of El Niño (El Niño Southern Oscillation: ENSO). However, the causal relationships between small mammal fluctuations, predator oscillations, and climatic disturbances are poorly understood. Here, we report time series models for three species of small mammal prey and two species of owl predators. The large differences in population fluctuations between the three small mammal species are related to differences in their respective feedback structures. The analyses reveal that per capita growth rate of the leaf-eared mouse is a decreasing function of log density and of log barn owl abundance together with a positive rainfall effect. In turn, per capita population growth rate ( R -function) of the barn owl is a negative function of log barn owl abundance and a positive function of leaf-eared mouse abundance, suggesting a predator–prey interaction. The dramatic population fluctuations exhibited by leaf-eared mouse ( Phyllotis darwini ) are caused by climate effects coupled with a complex food web architecture. 相似文献
6.
Classic local stability theory predicts that complex ecological networks are unstable and are unlikely to persist despite empiricists' abundant documentation of such complexity in nature. This contradiction has puzzled biologists for decades. While some have explored how stability may be achieved in small modules of a few interacting species, rigorous demonstrations of how large complex and ecologically realistic networks dynamically persist remain scarce and inadequately understood. Here, we help fill this void by combining structural models of complex food webs with nonlinear bioenergetic models of population dynamics parameterized by biological rates that are allometrically scaled to populations' average body masses. Increasing predator–prey body mass ratios increase population persistence up to a saturation level that is reached by invertebrate and ectotherm vertebrate predators when being 10 or 100 times larger than their prey respectively. These values are corroborated by empirical predator–prey body mass ratios from a global data base. Moreover, negative effects of diversity (i.e. species richness) on stability (i.e. population persistence) become neutral or positive relationships at these empirical ratios. These results demonstrate that the predator–prey body mass ratios found in nature may be key to enabling persistence of populations in complex food webs and stabilizing the diversity of natural ecosystems. 相似文献
7.
Ian Donohue Owen L. Petchey Sonia Kéfi Alexandre Génin Andrew L. Jackson Qiang Yang Nessa E. O'Connor 《Global Change Biology》2017,23(8):2962-2972
Ecological networks are tightly interconnected, such that loss of a single species can trigger additional species extinctions. Theory predicts that such secondary extinctions are driven primarily by loss of species from intermediate or basal trophic levels. In contrast, most cases of secondary extinctions from natural systems have been attributed to loss of entire top trophic levels. Here, we show that loss of single predator species in isolation can, irrespective of their identity or the presence of other predators, trigger rapid secondary extinction cascades in natural communities far exceeding those generally predicted by theory. In contrast, we did not find any secondary extinctions caused by intermediate consumer loss. A food web model of our experimental system—a marine rocky shore community—could reproduce these results only when biologically likely and plausible nontrophic interactions, based on competition for space and predator‐avoidance behaviour, were included. These findings call for a reassessment of the scale and nature of extinction cascades, particularly the inclusion of nontrophic interactions, in forecasts of the future of biodiversity. 相似文献
8.
Understanding food‐web dynamics requires knowing whether species assemblages are compartmentalized into distinct energy channels, and, if so, how these channels are structured in space. We used isotopic analyses to reconstruct the food web of a Kenyan wooded grassland. Insect prey were relatively specialized consumers of either C3 (trees and shrubs) or C4 (grasses) plants. Arboreal predators (arthropods and geckos) were also specialized, deriving c. 90% of their diet from C3‐feeding prey. In contrast, ground‐dwelling predators preyed considerably upon both C3‐ and C4‐feeding prey. This asymmetry suggests a gravity‐driven subsidy of the terrestrial predator community, whereby tree‐dwelling prey fall and are consumed by ground‐dwelling predators. Thus, predators in general couple the C3 and C4 components of this food web, but ground‐dwelling predators perform this ecosystem function more effectively than tree‐dwelling ones. Although prey subsidies in vertically structured terrestrial habitats have received little attention, they are likely to be common and important to food‐web organization. 相似文献