首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The poly(A) polymerases from the cytosol and ribosomal fractions of Ehrlich ascites tumour cells are isolated and partially purified by DEAE-cellulose and phosphocellulose column chromatography. Two distinct enzymes are identified: (a) a cytosol Mn2+-dependent poly(A) polymerase (ATP:RNA adenylyltransferase) and (b) a ribosome-associated enzyme defined tentatively as ATP(UTP): RNA nucleotidyltransferase. The cytosol poly(A) polymerase is strictly Mn2+-dependent (optimum at 1 mM Mn2+) and uses only ATP as substrate, poly(A) is a better primer than ribosomal RNA. The purified enzyme is free of poly(A) hydrolase activity, but degradation of [3H]poly(A) takes place in the presence of inorganic pyrophosphate. Most likely this enzyme is of nuclear origin. The ribosomal enzyme is associated with the ribosomes but it is found also in free state in the cytosol. The purified enzyme uses both ATP and UTP as substrates. The substrate specificity varies depending on ionic conditions: the optimal enzyme activity with ATP as substrate is at 1 mM Mn2+, while that with UTP as substrate is at 10--20 mM Mg2+. The enzymes uses both ribosomal RNA and poly(A) [but not poly(U)] as primers. The purified enzyme is free of poly(A) hydrolase activity.  相似文献   

2.
K A Maguire  S T Jacob 《Biochemistry》1986,25(7):1515-1519
Previous studies in this laboratory suggested that in adult liver, either the gene for the tumor-type poly(A) polymerase is poorly transcribed or the mRNA for this enzyme is largely not expressed. To test these possibilities, total RNA from rat liver and Morris hepatoma 3924A RNA were isolated by using a guanidine thiocyanate method; poly(A+) RNA and poly(A-) RNA were separated by oligo(dT)-cellulose chromatography and used for translation in a rabbit reticulocyte lysate system. After in vitro translation, the products were immunoprecipitated with either purified anti-tumor poly(A) polymerase antibodies or control immunoglobulins. When the polypeptides translated from poly(A+) or poly(A-) hepatoma RNA were precipitated with immune sera, a unique [35S]methionine-labeled 35-kilodalton (kDa) protein was observed. This band was not apparent when control serum was used for the immunoprecipitation. The radiolabeled 35-kDa polypeptide was not evident when the products were incubated with highly purified tumor nuclear poly(A) polymerase prior to immunoprecipitation. Prior incubation of the translation products with bovine serum albumin instead of poly(A) polymerase had no effect on the immunoprecipitation. This 35-kDa protein was not apparent when liver poly(A+) RNA was used to direct translation. These data demonstrate that (a) the tumor enzyme is not synthesized as a precursor, (b) tumor mRNA, but not normal liver mRNA, contains detectable sequences coding for tumor-type poly(A) polymerase, and (c) poly(A) polymerase mRNA also exists as a poly(A-) population.  相似文献   

3.
1. Various types of nuclear preparations, with different ratios of neuronal to glial nuclei, were isolated from guinea-pig cerebral grey matter and ox cerebral grey matter and white matter. Conditions appropriate for the separate assay of RNA and poly A formation were described. Comparative rates of RNA and poly A formation were studied in cerebral and liver nuclei. 2. RNA polymerase activity per nucleus is higher in neuronal nuclei than in glial nuclei. In liver nuclei, the activity is much lower than in cerebral nuclei. The physical relationship between RNA polymerase and deoxyribonucleoprotein seems to differ in neuronal, glial and liver nuclei. 3. Poly A polymerase activity in liver nuclei is selectively activated by Mn(2+) and inhibited by GTP, CTP and UTP. On a DNA basis, the activity in an aggregate enzyme is the same as in intact nuclei. Poly A polymerase activity per nucleus is much higher in liver nuclei than in neuronal nuclei. Glial nuclei show an intermediate activity. 4. It is suggested that, in neuronal nuclei, the synthesis of RNA is more prominent than that of poly A under conditions where both polymers are formed simultaneously. This contrasts with liver nuclei, where more poly A is made than RNA. 5. In neuronal nuclei, the rate of CTP incorporation is much higher than in glial and liver nuclei. This incorporation is most probably due to poly C synthesis.  相似文献   

4.
5.
6.
The activity levels of the enzyme poly(A)polymerase and the levels of protein synthesis primed by endogenous messenger RNA (mRNA) as well as polyuridylic acid, poly(U) directed polyphenylalanine synthesis, were determined in lymphocytic extracts from 17 patients with chronic lymphocytic leukemia of the B cell type. The enzyme activity values have not been found to correlate with the poly(U)-protein synthesis, whereas a positive linear correlation has been established between the activity levels of poly(A)polymerase and the endogenous mRNA-primed protein synthesis (r = 0.735, p less than 0.01). This difference between exogenously and endogenously primed protein synthesis in concern with poly(A)polymerase is discussed.  相似文献   

7.
8.
9.
10.
N Shimamoto  C W Wu 《Biochemistry》1980,19(5):842-848
A non-steady-state kinetic method has been developed to observe the initiation of long RNA chains by Escherichia coli RNA polymerase without the enzyme turnover. This method was used to determine the order of binding of the first two nucleotides to the enzyme in RNA synthesis with the first two nucleotides to the enzyme in RNA synthesis with poly(dA-dT) as the template. It was shown that initiator [ATP, uridyly(3'-5')adenosine, or adenyly(3'-5')uridylyl-(3'-5')adenosine] binds first to the enzyme-template complex, followed by UTP binding. The concentration dependence of UTP incorporation into the initiation complex suggests that more than one UTP molecule may bind to the enzyme-DNA complex during the initiation process. Comparison of the kinetic parameters derived from these studies with those obtained under steady-state conditions indicates that the steps involving binding of initiator or UTP during initiation cannot be rate limiting in the poly(dA-dT)-directed RNA synthesis. The non-steady-state technique also provides a method for active-site titration of RNA polymerase. The results show that only 36 +/- 9% of the enzyme molecules are active in a RNA polymerase preparation of high purity and specific activity. In addition, the minimal length of poly(dA-dT) involved in RNA synthesis by one RNA polymerase molecule was estimated to be approximately 500 base pairs.  相似文献   

11.
Purified vaccinia virus treated with Triton X-100 catalyzes the incorporation of ATP into an acid-insoluble product. The enzymatic activity responsible for the ATP polymerization is demonstrated to be different from vaccinia RNA polymerase in its preferential use of ATP as substrate and on the basis of heat stability, pH optima, and metal ion requirement. The ATP polymerization reaction is stimulated 10-fold by the addition of rA(pA)(5.) In accordance with our earlier terminology, we call this Mn(2+)-dependent enzyme terminal riboadenylate transferase to distinguish it from Mg(2+)-dependent poly A polymerase.  相似文献   

12.
13.
Poly(A) polymerase activity was first detected in yeast extracts, primarily in association with the ribosomal fraction, by Twu and Bretthauer in 1971 (Twu, J. S., and Bretthauer, RK. (1971) Biochemistry 10, 1576-1582). This activity has now been separated into three distinct enzymes by chromatography on DEAE-cellulose. Each of the three enzymes can catalyze the incorporation of adenylate residues from ATP into a polyadenylate (poly(A)) tract at the 3' terminus of a primer RNA. Enzyme I elutes at 0.07 M ammonium sulfate from the DEAE-cellulose column, utilizes the mixed polynucleotide poly(A,G,C,U) or ribosomal RNA most efficiently in vitro, and may be responsible in vivo for the initiation of the poly(A) tracts found on yeast messenger RNA. Enzyme II elutes from the column at 0.20 M ammonium sulfate, requires poly(A) itself or an RNA primer containing a 3'-oligo(A) tract, and may be responsible in the nucleus for the elongation of tracts initiated by enzyme I. Enzyme III elutes from the column at 0.56 M ammonium sulfate and is present in low amounts in nuclear extracts. It may be involved in adding poly(A) tracts to messenger RNA in mitochondria. These enzymes also have the intrinsic capacity for the incorporation of cytidylate residues from CTP, which correlates with the finding of cytidylate residues in the poly(A) tracts present in the yeast RNA which is rapidly labeled in vivo. About 75% of the total poly(A) polymerase activity of yeast is enzyme I, most of which is present in the soluble protein fraction of the whole yeast extract. About 20% of the total poly(A) polymerase is enzyme II, and 1 to 5% is enzyme III. All three of the yeast poly(A) polymerases require an RNA primer with a free 3'-hydroxyl group, show no requirement for a DNA template, require Mn-2+ for optimal activity, have pH optima of 8.5, and are inhibited by GTP, CTP, UTP, and native yeast DNA. Polymerases I and II have similar molecular weights by gel filtration.  相似文献   

14.
Many steps in nuclear RNA processing, surveillance, and degradation require TRAMP, a complex containing the poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for decay or trimming by the nuclear exosome. It has been unclear how polyadenylation by TRAMP differs from polyadenylation by conventional poly(A) polymerase, which produces poly(A) tails that stabilize RNAs. Using reconstituted S. cerevisiae TRAMP, we show that TRAMP inherently suppresses poly(A) addition after only 3-4 adenosines. This poly(A) tail length restriction is controlled by Mtr4p. The helicase detects the number of 3'-terminal adenosines and, over several adenylation steps, elicits precisely tuned adjustments of ATP affinities and rate constants for adenylation and TRAMP dissociation. Our data establish Mtr4p as a critical regulator of polyadenylation by TRAMP and reveal that an RNA helicase can control the activity of another enzyme in a highly complex fashion and in response to features in RNA.  相似文献   

15.
The mechanism by which glucocorticoids inhibit RNA polymerase A activity, and hence rRNA synthesis, in rat thymus cells has been investigated. Studies of the intranuclear distribution of RNA polymerase A between chromatin bound ("engaged") and unbound ("free") forms revealed that the steroid-mediated inhibition of the activity of the "engaged" form of the enzyme was not accompanied by significant changes in "free" pool activity. In the presence of rifamycin AF/0-13, an inhibitor of re-initiation of RNA polymerase A, the rate of [3H]UMP incorporation into RNA was slower in nuclei from steroid-treated cells than in those from control cells, although in both conditions similar plateau levels of UMP incorporation were attained. Direct measurements of the numbers of transcribing RNA polymerase A molecules and of elongation rates showed that the inhibition of pre-rRNA synthesis was the result of a decrease in enzyme elongation rate; no significant change was observed in the number of transcribing enzymes. The steroid-induced inhibition of pre-rRNA synthesis was selectively abolished by mild proteolysis of nuclei, suggesting the involvement of a labile, regulatory glucocorticoid-induced protein. It is concluded that glucocorticoid treatment of rat thymus cells decreases 45S rRNA synthesis primarily by decreasing the polyribonucleotide elongation rate of RNA polymerase A, possibly by modification of the enzyme.  相似文献   

16.
17.
A high molecular weight membrane-bound DNA polymerase from the mouse myeloma, MOPC-104E, has been purified extensively, and characterized with regard to physical and reaction properties. This enzyme, which is readily distinguishable from other myeloma enzymes that are analogous to the recognized forms of cellular DNA polymerase, is ddesignated DNA polymerase III. DNA polymerase III activity in whole homogenates from MOPC-104E was solubilized and then prurifed using a series of ion-exchange chromatographic procedures followed by DNA-cellulose chromatography and glycerol gradient centrifugation; the enzyme activity as measured with poly(rA)-(dT)12-18 as template-primer and Mn2+ as divalent cation, was purified as much as 18,000-fold. In the final stages of the pruification, DNA polymerase III possessed no detectable RNA polymerase activity, nucleoside diphosphokinase activity, or nucease activity toward DNA or single- and double-stranded RNA...  相似文献   

18.
Association of poly(A) polymerase with U1 RNA   总被引:3,自引:0,他引:3  
Previous studies (Stetler, D. A., and Jacob, S. T. (1984) J. Biol. Chem. 259, 7239-7244) have shown that poly(A) polymerase from adult rat liver (liver-type) is structurally and immunologically distinct from the corresponding rat hepatoma (tumor-type) enzyme. When hepatoma 7777 (McA-RH 7777) cells were labeled with [32P]inorganic phosphate, followed by immunoprecipitation with anti-hepatoma poly(A) polymerase antibodies and analysis of the RNAs in the immunoprecipitate, only one labeled small nuclear RNA corresponding to U1 RNA was found. Preimmune sera did not form a complex with U1 RNA. Hepatoma poly(A) polymerase antisera did not immunoprecipitate U1 RNA or any other small nuclear RNA from a cell line (H4-11-EC3) which does not contain the tumor-type poly(A) polymerase. Immunoblot analysis of hepatoma 7777 nuclear extract or purified poly(A) polymerase with anti-ribonucleoprotein antisera did not show any cross-reactivity of the latter sera with poly(A) polymerase. The major RNA immunoprecipitated from the hepatoma nuclear extracts using trimethyl cap (m3G) antisera corresponded to the RNA immunoprecipitated with poly(A) polymerase antisera. These data indicate that U1 RNA is closely associated with poly(A) polymerase and suggest the potential involvement of this RNA in the cleavage/polyadenylation of mRNA precursor.  相似文献   

19.
A nuclear poly(A) polymerase has been isolated from oviducts of immature quails. It could be purified 4300-fold. The enzyme depends specifically on ATP as substrate and requires Mg2+. The most effective primer for the enzyme is a polynucleotide, isolated from oviduct tissue. A poly(A) sequence to a maximum of 60 AMP residues is covalently linked per primer molecule. The poly(A)-rich product of the enzymatic reaction can be annealed to oligo(dT)-cellulose. The purest fraction does not contain any detectable poly(A)-degrading enzyme activity. Only very low activities of RNA polymerase are present. The poly(A polymerase activity in the assay with ATP is reduced by the ATP analogue, beta, lambda-ATP-methylene-diphosphonate. Both K-m and V are lowered. The ATP analogue is incorporated to a smaller extent into the poly(A) sequence, synthesized by the enzyme. Several other analogues of adenine, adenine nucleosides and adenine nucleotides are without effect on the enzymatic reaction. By these properties poly(A) polymerase can be distinguished from RNA polymerases form I and form II, isolated from the same tissue. Actinomycin D and alpha-amanitin failed to inhibit poly(A) polymerase activity. The activity of poly(A) polymerase has been determined during primary stimulation with the estrogen analogue diethylstilbestrol (daily injection for 5 days), after withdrawal of the hormone for 17 days and after secondary stimulation with the hormone analogue. The enzyme activity does not change during primary stimulation, withdrawal of the hormone or secondary stimulation. However the activity of a poly(A) degrading enzyme, localized in the nucleus, is reduced in oviducts from hormone-treated quails.  相似文献   

20.
Although cordycepin 5'-triphosphate (3'-dATP), at low concentrations, preferentially inhibits chromatin-associated poly(A) synthesis in isolated nuclei, higher levels of the inhibitor prevent both rRNA (RNA polymerase I activity) and hnRNA (RNA polymerase II activity) synthesis in vitro (Rose, K.M., Bell, L.E. and Jacob, S.T. (1977) Nature 267, 178-180). The present studies demonstrate that this nucleotide can also inhibit tRNA and 5 S RNA synthesis (RNA polymerase III activity). At 50-200 microgram/ml, 3'-dATP inhibits incorporation of [3H]UTP into tRNA and 5 S RNA by approximately 65%, whereas the syntheses of these RNAs were completely blocked when [3H]GTP was used as the substrate. These data suggest the formation of poly(U) in the tRNA and 5 S RNA regions, which is resistant to 3'-dATP. In contrast, another ATP analog, Ara-ATP, which selectively inhibits poly(A) synthesis, does not block tRNA and 5 S RNA synthesis in isolated nuclei. The production of these RNA species in isolated nuclei is also insensitive to Ara-CTP and 2'-dATP. These data suggest that 3'-dATP exerts general inhibitory effects on RNA synthesis and further substantiate the conclusion that Ara-ATP is a selective inhibitor of the polyadenylation reaction in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号