共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Küchler AM Gjini E Peterson-Maduro J Cancilla B Wolburg H Schulte-Merker S 《Current biology : CB》2006,16(12):1244-1248
Lymphangiogenesis results in the formation of a vascular network distinct from arteries and veins that serves to drain interstitial fluid from surrounding tissues and plays a pivotal role in the immune defense of vertebrates as well as in the progression of cancer and other diseases . In mammals, lymph vessels are lined by endothelial cells possibly sprouting from embryonic veins, and their development appears to be critically dependent on the function of PROX1 and VEGFC signaling . The existence of a lymphatic system in teleosts has been a matter of debate for decades. Here we show on the morphological, molecular, and functional levels that zebrafish embryos develop a lymphatic vasculature that serves to retrieve components of the interstitium to the lymph system. We demonstrate the existence of vessels that are molecularly and functionally distinct from blood vessels and show that the development of these vessels depends on Vegfc and VEGFR-3/Flt4 signaling. These findings imply that the molecular components controlling lymphangiogenesis in zebrafish and mammals are conserved and that the zebrafish lymphatic system develops early enough to allow in vivo observations, lineage tracing, and genetic as well as pharmacological screens. 相似文献
3.
This review captures the anabolic and stimulatory effects observed with inhibition of the transforming growth factor β superfamily in muscle, blood, and bone. New medicinal substances that rectify activin, myostatin, and growth differentiation factor 11 signaling give hope to the many whose lives are affected by deterioration of these tissues. The review first covers the origin, structure, and common pathway of activins, myostatin, and growth differentiation factor 11 along with the pharmacodynamics of the new class of molecules designed to oppose the activin receptor signaling pathway. Current terminology surrounding this new class of molecules is inconsistent and does not infer functionality. Adopting inhibitors of the activin receptor signaling pathway (IASPs) as a generic term is proposed because it encapsulates the molecular mechanisms along the pathway trajectory. To conclude, a pragmatic classification of IASPs is presented that integrates functionality and side effects based on the data available from animals and humans. This provides researchers and clinicians with a tool to tailor IASPs therapy according to the need of projects or patients and with respect to side effects. 相似文献
4.
5.
6.
We have analyzed the effect of various inhibitors of cellular secretion and motility on the cytolytic activity of human natural killer (NK) cells. As effector cells we used highly purified peripheral blood lymphocytes consisting of 75–85% large granular lymphocytes (LGL) that have previously been shown to be responsible for the NK activity in man. Treatment of the effector cells with a carboxylic ionophore monensin inhibited irreversibly the NK-cell-mediated killing. This drug is known to interrupt the vesicular traffic of Golgi-derived vesicles and thus the results strongly suggested that secretory processes are required in the cytolytic activity of human NK cells. In the monensin-treated effector cells large amounts of glycoprotein accumulated in the Golgi area within 24 hr of incubation. The lytic activity did not require intact microtubules since effector cells in which vinblastine-induced tubulin-containing paracrystals were demonstrated still mediated normal NK activity. Energy was required in the human NK-cell-mediated cytolysis. The lethal hit stage of the cytolytic activity was preceded by formation of intimate contacts between effector and target cells and required active cell movement and divalent cations. 相似文献
7.
Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. 总被引:4,自引:0,他引:4
Recent studies have implicated the signaling factor Sonic hedgehog (Shh) as a negative regulator of pancreatic development, but as a positive regulator of pancreas function in amniotes [1-4]. Here, using genetic analysis, we show that specification of the pancreas in the teleost embryo requires the activity of Hh proteins. Zebrafish embryos compromised in Hh signaling exhibit disruption in the expression of the pancreas-specifying homeobox gene pdx-1 and concomitantly show almost complete absence of the endocrine pancreas. Reciprocally, ubiquitous activation of the Hh pathway in wild-type embryos causes ectopic induction of endodermal pdx-1 expression and the differentiation of supernumerary endocrine cells. Our results suggest that Hh proteins influence pancreas specification via inductive interactions from the axial midline rather than through their localized expression in the endodermal cells themselves. 相似文献
8.
Vocal communication between zebra finches includes the exchange of long calls (LCs) as well as song. By using this natural call behavior and quantifying the LCs emitted in response to playbacks of LCs of other birds, we have previously shown that adult male zebra finches have a categorical preference for the LCs of females over those of males. Female LCs are acoustically simpler than male LCs, which include complex acoustic features that are learned during development. Production of these male-typical features requires an intact nucleus RA, the sexually dimorphic source of the main telencephalic projection to brainstem vocal effectors. We have now made bilateral lesions of RA in 17 adult males and tested their discrimination behavior in the call response situation. Lesioned birds continue to call, but lose the male-typical preference for female LCs. The degree of loss is correlated with the extent of RA damage. Further, the simplified LCs of males with RA lesions have a variable duration that is correlated with stimulus features. In effect, the call response behavior of lesioned males becomes like that of females. Apparently, in the absence of RA, the remaining intact structures receive different call information than RA normally does, and/or process it differently. This suggests that the vocal motor nucleus RA could play a role in the transformation of a signal encoding the salience of stimulus parameters into a control signal that modulates the probability and strength of responding. 相似文献
9.
ABCB4/MDR3 is located in the canalicular membrane of hepatocytes and translocates PC-lipids from the cytoplasmic to the extracellular leaflet. ABCB4 is an ATP-dependent transporter that reduces the harsh detergent effect of the bile salts by counteracting self-digestion. To do so, ABCB4 provides PC lipids for extraction into bile. PC lipids account for 40% of the entire pool of lipids in the canalicular membrane with an unknown distribution over both leaflets. Extracted PC lipids end up in so-called mixed micelles. Mixed micelles are composed of phospholipids, bile salts, and cholesterol. Ninety to ninety-five percent of the phospholipids are members of the PC family, but only a subset of mainly 16.0-18:1 PC and 16:0-18:2 PC variants are present. To elucidate whether ABCB4 is the key discriminator in this enrichment of specific PC lipids, we used in vitro studies to identify crucial determinants in substrate selection. We demonstrate that PC-lipid moieties alone are insufficient for stimulating ABCB4 ATPase activity, and that at least two acyl chains and the backbone itself are required for a productive interaction. The nature of the fatty acids, like length or saturation has a quantitative impact on the ATPase activity. Our data demonstrate a two-step enrichment and protective function of ABCB4 to mitigate the harsh detergent effect of the bile salts, because ABCB4 can translocate more than just the PC-lipid variants found in bile. 相似文献
10.
11.
We have previously demonstrated that activin is likely an ovarian mediator of pituitary gonadotropin(s) and local epidermal growth factor in their stimulating oocyte maturation and maturational competence in the zebrafish. However, the downstream events controlled by activin remain unknown. One possible mechanism is that activin may directly work on the oocytes to promote the development of oocyte maturational competence. To substantiate this hypothesis, we performed the present study to demonstrate the expression of the activin system in different compartments of zebrafish follicles, namely, the follicle cells and oocytes. The proteins examined include activin subunits (betaA and betaB), activin-binding protein (follistatin), activin type II receptors (type IIA and IIB), the type I activin receptor-like kinases (ALK1-like, ALK2-like, and ALK4-like), and the intracellular activin signaling molecules (Smad2, Smad3, Smad4, and Smad7). The results showed that the entire activin signaling system is expressed by the full-grown immature zebrafish oocytes ( approximately 0.65 mm in diameter), including ALK4-like (ActRIB), ALK2-like (ActRIA), ActRIIA, ActRIIB, Smad2, Smad3, Smad4, and Smad7, therefore supporting our hypothesis that the oocytes are one of the direct targets of activin actions in the zebrafish ovary. In contrast, activin itself (betaA and betaB) and ALK1-like type I receptor are predominantly expressed in the follicle cells surrounding the oocytes. Interestingly, although follistatin is expressed in both the follicle cells and oocytes, its level of expression is significantly higher in the oocytes than the follicle cells, implying that follistatin may serve as a signal from the oocytes to modulate the activity of activin produced by the follicle cells. Taken together, the present study provides convincing evidence that although all members of the activin system are expressed in the whole follicle, they exhibit distinct spatial patterns of expression among different compartments of the follicle. It is likely that activin works directly on the oocytes in a paracrine manner to promote oocyte maturation and maturational competence. On the other hand, instead of being controlled passively by the follicle cells, the oocytes may actively participate in the regulation of follicle development by releasing various modulating molecules such as follistatin. 相似文献
12.
13.
14.
15.
《Genomics》2023,115(2):110578
DEAH-box helicase 15 (DHX15) is ATP-dependent RNA helicase which is known for its role in RNA metabolism. Recent studies reported DHX15 involves in the intestinal immunity. However, the role of DHX15 (or RNA helicase) in intestinal development is poorly understood. Here, we revealed an unidentified role for dhx15 in regulating zebrafish intestinal development. We found the profound intestinal defects in dhx15 knockout zebrafish. Decreased proliferation and increased apoptosis of the intestine cells were observed when dhx15 were deleted. Further RNA genome wide analysis and qRT-PCR analysis showed the Wnt signaling pathway is down-regulated in the dhx15 knockout zebrafish. Thus, we concluded that dhx15 regulates zebrafish intestinal development through the Wnt signaling pathway. Here, we provided new insights into the role of dhx15 in intestinal development beyond its well-characterized role in intestinal immunity. 相似文献
16.
V Miller-Bertoglio A Carmany-Rampey M Fürthauer E M Gonzalez C Thisse B Thisse M E Halpern L Solnica-Krezel 《Developmental biology》1999,214(1):72-86
The dorsal-ventral axis of vertebrate embryos is thought to be specified by a gradient of bone morphogenetic protein (BMP) activity, which, in part, arises through the interaction of dorsally expressed antagonists Chordin and Noggin with the ventralizing BMPs. The zebrafish mercedes(tm305), ogon(m60), and short tail(b180) mutations produce ventralized phenotypes, including expanded bmp2b/4 expression domains. We find that the three mutations are allelic and that the locus they define, renamed ogon (ogo), maps to linkage group 25. The ogo(m60) and ogo(b180) mutations are deficiencies and thus represent null alleles, whereas the ENU-induced allele ogo(tm305) retains partial function. Aspects of the ogo(m60) and ogo(tm305) mutant phenotypes are fully suppressed by overexpression of BMP antagonists. Moreover, swirl(tc300), a null mutation in bmp2b, is epistatic to ogo(m60) mutation, providing further evidence that ogo normally functions in a BMP-dependent manner. Embryonic patterning is highly sensitive to maternal and zygotic ogo gene dosage, especially when the level of zygotic chordin activity is also reduced. However, elimination of the zygotic activity of both genes does not result in a completely ventralized embryo. Thus, while ogo and chordin are required to limit activity of BMPs, additional mechanisms must exist to block these ventralizing signals. We have ruled out zebrafish noggin homologues as candidates for the ogo gene, including a newly identified gene, nog1, which is specifically expressed in the gastrula organizer. The results suggest that ogo encodes an as yet unidentified dorsalizing factor that mediates dorsoventral patterning by directly or indirectly antagonizing BMP activity. 相似文献
17.
Enrico Moro Andrea Vettori Patrizia Porazzi Marco Schiavone Elena Rampazzo Alessandro Casari Olivier Ek Nicola Facchinello Matteo Astone Ilaria Zancan Martina Milanetto Natascia Tiso Francesco Argenton 《Molecular genetics and genomics : MGG》2013,288(5-6):231-242
In the last years, we have seen the emergence of different tools that have changed the face of biology from a simple modeling level to a more systematic science. The transparent zebrafish embryo is one of the living models in which, after germline transformation with reporter protein-coding genes, specific fluorescent cell populations can be followed at single-cell resolution. The genetically modified embryos, larvae and adults, resulting from the transformation, are individuals in which time lapse analysis, digital imaging quantification, FACS sorting and next-generation sequencing can be performed in specific times and tissues. These multifaceted genetic and cellular approaches have permitted to dissect molecular interactions at the subcellular, intercellular, tissue and whole-animal level, thus allowing integration of cellular and developmental genetics with molecular imaging in the resulting frame of modern biology. In this review, we describe a new step in the zebrafish road to system biology, based on the use of transgenic biosensor animals expressing fluorescent proteins under the control of signaling pathway-responsive cis-elements. In particular, we provide here the rationale and details of this powerful tool, trying to focus on its huge potentialities in basic and applied research, while also discussing limits and potential technological evolutions of this approach. 相似文献
18.
19.
Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway 总被引:4,自引:0,他引:4
Compared to mammals, insects, and plants, relatively little is known about innate immune responses in the nematode Caenorhabditis elegans. Previous work showed that Salmonella enterica serovars cause a persistent infection in the C. elegans intestine that triggers gonadal programmed cell death (PCD) and that C. elegans cell death (ced) mutants are more susceptible to Salmonella-mediated killing. To further dissect the role of PCD in C. elegans innate immunity, we identified both C. elegans and S. enterica factors that affect the elicitation of Salmonella-induced PCD. Salmonella-elicited PCD was shown to require the C. elegans homolog of the mammalian p38 mitogen-activated protein kinase (MAPK) encoded by the pmk-1 gene. Inactivation of pmk-1 by RNAi blocked Salmonella-elicited PCD, and epistasis analysis showed that CED-9 lies downstream of PMK-1. Wild-type Salmonella lipopolysaccharide (LPS) was also shown to be required for the elicitation of PCD, as well as for persistence of Salmonella in the C. elegans intestine. However, a presumptive C. elegans TOLL signaling pathway did not appear to be required for the PCD response to Salmonella. These results establish a PMK-1-dependant PCD pathway as a C. elegans innate immune response to Salmonella. 相似文献
20.
Shi Y Bao YL Wu Y Yu CL Huang YX Sun Y Zheng LH Li YX 《Journal of biomolecular screening》2011,16(5):525-535
It has been suggested that deregulation of activin signaling contributes to tumor formation. Activin signaling is blocked in cancer cells due to the complex formed by Cripto-1, activin, and activin receptor type II (ActRII). In this study, the authors used a mammalian two-hybrid system to construct a drug screening model to obtain a small molecular inhibitor capable of interrupting the interaction between Cripto-1 and ActRII. They screened 300 natural components and identified alantolactone. Data suggested that alantolactone induced activin/SMAD3 signaling in human colon adenocarcinoma HCT-8 cells. The authors also found that alantolactone exhibited antiproliferative function specific to tumor cells, with almost no toxicity to normal cells at a concentration of 5 μg/mL. Furthermore, they proved that the antiproliferative function of alantolactone was activin/SMAD3 dependent. These results suggest that alantolactone performs its antitumor effect by interrupting the interaction between Cripto-1 and the activin receptor type IIA in the activin signaling pathway. Moreover, screening for inhibitors of Cripto-1/ActRII is a potentially beneficial approach to aid in discovering novel cancer treatment. 相似文献