首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial (mt) DNA is damaged by free radicals. Recent data also show that there are cell type-dependent differences in mtDNA repair capacity. In this study, we explored the effects of xanthine oxidase (XO), which generates superoxide anion directly, and menadione, which enhances superoxide production within mitochondria, on mtDNA in pulmonary arterial (PA), microvascular (MV), and pulmonary venous (PV) endothelial cells (ECs). Both XO and menadione damaged mtDNA in the EC phenotypes, with a rank order of sensitivity of (from most to least) PV > PA > MV for XO and MV = PV > PA for menadione. Dimethylthiourea and deferoxamine blunted menadione- and XO-induced mtDNA damage, thus supporting a role for the iron-catalyzed formation of hydroxyl radical. Damage to the nuclear vascular endothelial growth factor gene was not detected with either XO or menadione. PAECs and MVECs, but not PVECs, repaired XO-induced mtDNA damage quickly. Menadione-induced mtDNA damage was avidly repaired in MVECs and PVECs, whereas repair in PAECs was slower. Analysis of mtDNA lesions at nucleotide resolution showed that damage patterns were similar between EC phenotypes, but there were disparities between XO and menadione in terms of the specific nucleotides damaged. These findings indicate that mtDNA in lung vascular ECs is damaged by XO- and menadione-derived free radicals and suggest that mtDNA damage and repair capacities differ between EC phenotypes.  相似文献   

2.
Reactive oxygen species (ROS) have been implicated in the regulation of matrix metalloproteinases (MMPs). The xanthine/xanthine oxidase (X/XO) reaction has been widely used as a source of exogenous ROS in studying MMPs, but commercial XO has also been known to be contaminated by proteolytic activity, and MMPs are protease sensitive substrate. We have investigated the activation of proMMP-2 by X/XO in cultured vascular smooth muscle cells (SMCs). SMCs were incubated with X/XO (unpurified or purified) or XO alone for 24h. X/XO activated proMMP-2 in a dose-dependent manner. A similar profile was observed using XO. Purified XO produced lower amounts of active MMP-2 compared to unpurified XO. EPR study showed that X/XO, not XO itself, produced superoxide anion, which was completely scavenged by SOD. However, X/XO-induced proMMP-2 activation could not be inhibited by combination of SOD and catalase. Incubation with XO either in cell-free conditioned media or in cells resulted in similar amounts of active MMP-2, suggesting that membrane-type-MMPs were not involved in proMMP-2 activation. This was further confirmed by the lack of inhibitory effect of hydroxamate MMP inhibitor, BB1101. Aprotinin blocked unpurified XO-induced proMMP-2 activation in a dose-dependent manner, demonstrating the proteolytic activity contained in XO is essential. We conclude that proteolytic activity contained in XO, rather the ROS derived from X/XO, is responsible for proMMP-2 activation in cultured SMCs. The results also suggest that caution needs to be taken when interpreting the reported results on activation of MMPs where X/XO had been used as an "authentic" source of superoxide anion.  相似文献   

3.
Incubation of rat brain synaptosomes with xanthine and xanthine oxidase (X/XO) resulted in an inhibition of gamma-aminobutyric acid (GABA) uptake. The inhibitory effects of X/XO were temperature- and time-dependent, and were characterized by an increased Km for GABA and a decreased Vmax. Inhibition of GABA uptake by X/XO was associated with both the formation of malonyldialdehyde (MDA) and conjugated dienes, indicating that lipid peroxidation was involved. Studies with catalase, superoxide dismutase (SOD), mannitol, and chelated iron suggested that hydroxyl radical (OH X) was probably responsible for the initiation of lipid peroxidation. Both the peroxidation of synaptosomal membranes and the inhibition of GABA uptake by X/XO were enhanced by the addition of ADP and FeCl2. The X/XO-induced inhibition of GABA uptake by synaptosomes could be prevented by preincubation of synaptosomes with certain glucocorticoids prior to X/XO exposure. Methylprednisolone sodium succinate (MPSS), dexamethasone sodium phosphate (DMSP), and prednisolone sodium succinate (PSS) all prevented the inhibition of GABA uptake by X/XO. MPSS was most effective at concentrations around 100 microM, DMSP was slightly more potent, and PSS was optimal at around 300 microM. On the other hand, hydrocortisone sodium succinate (HCSS) was ineffective at preventing X/XO-induced inhibition of GABA uptake at concentrations up to 3 mM. The steroids are presumed to work through a mechanism that blocked the formation of lipid peroxides, as MPSS inhibited the formation of conjugated dienes in synaptosomes exposed to X/XO at a concentration that also protected GABA uptake.  相似文献   

4.
Muraoka S  Miura T 《Life sciences》2004,74(13):1691-1700
We examined if phytic acid inhibits the enzymatic superoxide source xanthine oxidase (XO). Half inhibition of XO by phytic acid (IC50) was about 30 mM in the formation of uric acid from xanthine, but generation of the superoxide was greatly affected by phytic acid; the IC50 was about 6 mM, indicating that the superoxide generating domain of XO is more sensitive to phytic acid. The XO activity in intestinal homogenate was also inhibited by phytic acid. However, it was not observed with intestinal homogenate that superoxide generation was more sensitive to phytic acid compared with the formation of uric acid as observed with XO from butter milk. XO-induced superoxide-dependent lipid peroxidation was inhibited by phytic acid, but not by myo-inositol. Reduction of ADP-Fe3+ caused by XO was inhibited by superoxide dismutase, but not phytic acid. The results suggest that phytic acid interferes with the formation of ADP-iron-oxygen complexes that initiate lipid peroxidation. Both phytic acid and myo-inositol inhibited XO-induced superoxide-dependent DNA damage. Mannitol inhibited the DNA strand break. Myo-inositol may act as a hydroxyl radical scavenger. The antioxidative action of phytic acid may be due to not only inhibiting XO, but also preventing formation of ADP-iron-oxygen complexes.  相似文献   

5.
Reactive oxygen species have been shown to play an important role in the pathogenesis of lung injury. This study was designed to clarify the role of intrapulmonary neutrophils in the development of xanthine/xanthine oxidase (X/XO)-induced lung injury in isolated buffer-perfused rabbit lungs. We measured microvascular fluid filtration coefficient (K(f)) and wet-to-dry weight ratio to assess lung injury. X/XO induced a significant increase in K(f) and wet-to-dry weight ratio in neutrophil-replete lungs, whereas the lung injury was attenuated in neutrophil-depleted lungs. A neutrophil elastase inhibitor, ONO-5046, also attenuated the lung injury. In addition, X/XO induced a transient pulmonary arterial pressure (P(pa)) increase. The thromboxane inhibitor OKY-046 attenuated the P(pa) increase but did not alter the increase in permeability. Neutrophil depletion reduced the K(f) increase but had no effect on the P(pa) increase. These results suggest that intrapulmonary neutrophils activated by X/XO play a major role in development of the lung injury, that neutrophil elastase is involved in the injury, and that the X/XO-induced vasoconstriction is independent of intrapulmonary neutrophils.  相似文献   

6.
Exposure of red blood cells to oxygen radicals can induce hemoglobin damage and stimulate protein degradation, lipid peroxidation, and hemolysis. To determine if these events are linked, rabbit erythrocytes were incubated at 37 degrees C with various oxygen radical-generating systems and antioxidants. Protein degradation, measured by the production of free alanine, increased more than 11-fold in response to xanthine (X) + xanthine oxidase (XO). A similar increase in proteolysis occurred when the cells were incubated with acetaldehyde plus XO, with ascorbic acid plus iron (Asc + Fe), or with hydrogen peroxide (H2O2) alone. Upon addition of XO, increased proteolysis was evident within 5 min and was linear for up to 5 h. In contrast, lipid peroxidation, as shown by the production of malonyldialdehyde, conjugated dienes, or lipid hydroperoxides was observed only after 2 h of incubation with X + XO, acetaldehyde + XO, or H2O2. Ascorbate plus Fe2+ induced both protein degradation and lipid peroxidation; however, the addition of various antioxidants (urate, xanthine, glucose, or butylated hydroxytoluene) decreased lipid peroxidation without affecting proteolysis. Thus, these processes seem to occur by distinct mechanisms. Furthermore, at low concentrations of XO, protein degradation was clearly increased in the absence of detectable lipid peroxidation products. Hemolysis occurred only in a small number of cells (9%) and followed the appearance of lipid peroxidation products. Thus, an important response of red cells to oxygen radicals is rapid degradation of damaged cell proteins. Increased proteolysis seems to occur independently of membrane damage and to be a more sensitive indicator of cell exposure to oxygen radicals than is lipid peroxidation.  相似文献   

7.
We previously demonstrated that intestinal epithelial cell apoptosis in weaned piglets is much more serious than that observed in sucking piglets and is related to oxidative stress during weaning. It is difficult to study the apoptosis mechanisms only using in vivo methods because of the limit of existing research technology. An in vitro cellular system is required for piglet intestinal epithelial cell apoptosis research. In this study, a non-tumorigenic epithelial cell line, IPEC-J2 cells, was employed as a cell model. Hydrogen peroxide and xanthine/xanthine oxidase (X/XO) were both used and compared for apoptosis modeling. The concentrations of hydrogen peroxide and XO were selected and verified using cell viability analysis, the comet assay and flow cytometry. Intracellular ROS were measured using fluorescent probes. Additionally, the expression levels of the apoptosis-related genes Fas, Bcl-2, P53, Caspase 3, Caspase 8, and Caspase 9 were analyzed using quantitative RT-PCR. The results indicated the optimal modeling method is a final concentration of 0.5 mM H2O2 incubated with IPEC-J2 cells for 1 h at 37 °C in 5 % CO2 for hydrogen peroxide-induced apoptosis modeling, and a final concentration of 250 μM X/50 U/L XO incubated with IPEC-J2 cells for 6 h at 37 °C in 5 % CO2 for X/XO-induced apoptosis modeling. For the apoptotic pathway, the X/XO modeling method is more similar to 21 days weaning piglets. Therefore, we suggest that X/XO modeling with IPEC-J2 cells be used as an in vitro cell culture model for weaning piglet intestinal epithelial cell apoptosis.  相似文献   

8.
Reactive oxygen species alter pulmonary arterial vascular tone and cause changes in pulmonary vascular resistance. The objective of this investigation was to determine direct effects of oxygen radicals on the contractile properties of pulmonary arterial smooth muscle. Isolated pulmonary arterial rings from Sprague-Dawley rats were placed in tissue baths containing Earle's balanced salt solution (gassed with 95% O2 - 5% CO2, 37 degrees C, pH 7.4). Vessels were contracted with 80 mM KCl to establish maximum active force production (Po). All other responses were normalized as percentages of Po for comparative purposes. Reactive oxygen metabolites were generated enzymatically with either the xanthine oxidase (XO) reaction or the glucose oxidase (GO) reaction, or hydrogen peroxide (H2O2) was added directly to the muscle bath. Exposure to XO, GO, or to H2O2 resulted in a contractile response that was sustained during the 30-min exposure period. The muscle fully relaxed following removal of the reactive oxygen species. Resting tension remained unchanged throughout the experimental period, suggesting no functional change in membrane potential. The contractile response was dose dependent and was not prevented by either cyclooxygenase or lipoxygenase inhibition, or by removal of the endothelium. Pretreatment of vessels with superoxide dismutase (SOD) partially blocked the XO-induced contraction, while mannitol or deferoxamine had no effect on the response to XO. However, pretreatment with catalase (CAT) completely blocked the XO-induced contraction. These data suggest that superoxide ions and hydrogen peroxide are the major causative agents. Following O2-radical exposure, vessels showed a decrease in contractile responsiveness to 80 mM KCl (recovery response), suggesting damage to the smooth muscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In rat cultured pulmonary arterial (PA), microvascular, and venous endothelial cells (ECs), the rate of mitochondrial (mt) DNA repair is predictive of the severity of xanthine oxidase (XO)-induced mtDNA damage and the sensitivity to XO-mediated cell death. To examine the importance of mtDNA damage and repair more directly, we determined the impact of mitochondrial overexpression of the DNA repair enzyme, Ogg1, on XO-induced mtDNA damage and cell death in PAECs. PAECs were transiently transfected with an Ogg1-mitochondrial targeting sequence construct. Mitochondria-selective overexpression of the transgene product was confirmed microscopically by the observation that immunoreactive Ogg1 colocalized with a mitochondria-specific tracer and, with an oligonucleotide cleavage assay, by a selective enhancement of mitochondrial Ogg1 activity. Overexpression of Ogg1 protected against both XO-induced mtDNA damage, determined by quantitative Southern analysis, and cell death as assessed by trypan blue exclusion and MTS assays. These findings show that mtDNA damage is a direct cause of cell death in XO-treated PAECs.  相似文献   

10.
Evidence indicates that both the Rho/Rho kinase signaling pathway and reactive oxygen species (ROS) such as superoxide and H(2)O(2) are involved in the pathogenesis of hypertension. This study aimed to determine whether ROS-induced vascular contraction is mediated through activation of Rho/Rho kinase. Rat aortic rings (endothelium denuded) were isolated and placed in organ chambers for measurement of isometric force development. ROS were generated by a xanthine (X)-xanthine oxidase (XO) mixture. The antioxidants tempol (3 mM) and catalase (1,200 U/ml) or the XO inhibitor allopurinol (400 microM) significantly reduced X/XO-induced contraction. A Rho kinase inhibitor, (+)-(R)-trans-4-(1-aminoethyl-N-4-pyridil)cyclohexanecarboxamide dihydrochloride (Y-27632), decreased the contraction in a concentration-dependent manner; however, the Ca(2+)-independent protein kinase C inhibitor rottlerin did not have an effect on X/XO-induced contraction. Phosphorylation of the myosin light chain phosphatase target subunit (MYPT1) was increased by ROS, and preincubation with Y-27632 blocked this increased phosphorylation. Western blotting for cytosolic and membrane-bound fractions of Rho showed that Rho was increased in the membrane fraction by ROS, suggesting activation of Rho. These observations demonstrate that ROS-induced Ca(2+) sensitization is through activation of Rho and a subsequent increase in Rho kinase activity but not Ca(2+)-independent PKC.  相似文献   

11.
Free radical scavenging efficiency of Nano-Se in vitro   总被引:6,自引:0,他引:6  
In this study, we showed that smaller size particles of Nano-Se have better scavenging effects on the following free radicals: carbon-centered free radicals (R*) generated from 2,2'-azo-bis-(2-amidinopropane) hydrochloride (AAPH), the relatively stable free radical 1,1-diphenyl-2-picryhydrazyl (DPPH), the superoxide anion (O2*-) generated from the xanthine/xanthine oxidase (X/XO) system, singlet oxygen (1O2) generated by irradiated hemoporphyrin. Furthermore, the three sizes of Nano-Se studied also show protective effects against the oxidation of DNA. The three samples all have potential size-dependent characteristics on scavenging the free radicals. Although in this study we regarded Nano-Se as a whole without considering interactions between BSA and the red selenium nano-particles, there is the possibility that the apparent free radical scavenging effects may be partially contributed by such interactions.  相似文献   

12.
《Free radical research》2013,47(9):699-709
Abstract

In response to infection, neutrophils employ various strategies to defend against the invading microbes. One of such defense mechanisms is the formation of neutrophil extracellular traps (NETs). Recent studies suggest that reactive oxygen species is a signal critical to NET formation. This prompts us to examine whether neutrophils from individuals with glucose-6-phosphate dehydrogenase (G6PD) Taiwan-Hakka variant, which are prone to oxidative stress generation, have altered ability to form NET. We adopted an image-based method to study the NET formation potential in neutrophils from G6PD-deficient patients. Neutrophils from either normal or G6PD-deficient individuals underwent NETosis in response to phorbol 12-myristate 13-acetate (PMA). The extent of NETosis in the former did not significantly differ from that of the latter. Diphenyleneiodonium sulfate (DPI) and 3-methyladenine (MA) inhibited PMA-stimulated NET formation in these cells, suggesting the involvement of NADPH oxidase and autophagy in the process. Glucose oxidase (GO) and xanthine oxidase/xanthine (XO/X) could induce a similar extent of NET formation in normal and G6PD-deficient neutrophils. GO- or XO-induced NETosis was not inhibitable by MA, implying that reactive oxygen species (ROS) can act as an independent signal for activation of NETosis. Mechanistically, enhanced superoxide production in neutrophils was associated with increases in levels of NAD+ and NADP+, as well as activation of NAD+ kinase. Taken together, these findings suggest that G6PD-deficient neutrophils are as equally efficient as normal cells in NET formation, and their deficiency in G6PD-associated NADPH regeneration capacity is largely compensated for by nicotinamide nucleotide biosynthesis.  相似文献   

13.
A differentiation-arrested primary cell culture model was used to examine the role of reactive oxygen species in the control of prostacyclin (PGI2) production in the perinatal rat lung. Coincubation of the lung cells with arachidonic acid (AA) and xanthine (X, 0.25 mM) plus xanthine oxidase (XO, 10 mU/ml) or with AA and glucose (25 mM) plus glucose oxidase (25 mU/ml) augmented the AA-induced PGI2 output. Superoxide dismutase (10 U/ml) did not alter the X + XO effect, whereas catalase (10 U/ml) eliminated both X + XO and glucose plus glucose oxidase effects. H2O2 (1-200 microM) showed a dose-related biphasic augmentation with peak stimulation at 20 microM. Catalase again blocked this effect, but dimethylthiourea, a hydroxyl radical scavenger, did not. A 20-min pretreatment of the cells with X + XO, glucose plus glucose oxidase, or H2O2, however, diminished the capacity of the cells to convert exogenous AA to PGI2. This pretreatment effect was also blocked by catalase. The responses were similar in lung cells obtained from day 20 rat fetuses (term = 22 days) and 1-day-old newborn rats. Lactate dehydrogenase release was not detected during treatment periods but increased significantly after exposure to reactive oxygen species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Abstract: Enhanced production of superoxide anion (O2) is considered to play a pivotal role in the pathogenesis of CNS neurons. Here, we report that O2 generated by xanthine (XA) + xanthine oxidase (XO) triggered cell death associated with nuclear condensation and DNA fragmentation in cerebellar granule neuron. XA + XO induced significant increases in amounts of intracellular reactive oxygen species (ROS) before initiating loss of cell viability, as determined by measurement of 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) (C-DCDHF-DA) for O2 and other ROS and hydroethidine (HEt) specifically for O2 by using fluorescence microscopy and flow cytometry. Catalase, but not superoxide dismutase (SOD), significantly protected granule neurons from the XA + XO-induced cell death. Catalase effectively reduced C-DCDHF-DA but not HEt fluorescence, whereas SOD reduced HEt but not C-DCDHF-DA fluorescence, indicating that HEt and C-DCDHF-DA fluorescence correlated with O2 and hydrogen peroxide, respectively. The NMDA antagonist MK-801 prevented the death. XA + XO induced an increase in l -glutamate release from cerebellar granule neurons. These results indicate that elevation of O2 induces cell death associated with increasing ROS production in cerebellar granule neurons and that XA + XO enhanced release of l -glutamate.  相似文献   

16.
Evidence is presented that oxygen products generated from xanthine oxidase (XO) may also be involved in the pathogenesis of neutrophil-mediate lung injury following intravascular activation of complement with cobra venom factor (CVF). CVF injection in rats resulted a rapid increase in plasma of both XO activity (but not xanthine dehydrogenase) and its reaction product, uric acid. These changes were greatly attenuated in allopurinol-treated animals. The apperance of XO activity was paralleled by a raise in plasma of histamine. Prevention of histamine release by pretreatment of rats withy cromolyn abolished both the rise in plasma histamine and the increase in XO activity. Since we have previously shown that histamine can enhance XO activity in vitro and in vivo (Am. J. Pathol. 135:203, 1989), these observations suggest that the increase in plasma XO activity following CVF injection is related to the appearance in plasma of histamine. Accordingly, pretreatment of rats with xanthine oxidase inhibitors (allopurinol, lodoxamine) or prevention of histamine release by pretreatment with cromolyn significantly attenuated development of lung injury following injection of CVF. Our data support the concept that oxygen radicals derived from both neutrophils and XO are playing a role in the CVF-induced acute lung injury.  相似文献   

17.
Oxidant-induced death and dysfunction of pulmonary vascular cells play important roles in the evolution of acute lung injury. In pulmonary artery endothelial cells (PAECs), oxidant-mediated damage to mitochondrial DNA (mtDNA) seems to be critical in initiating cytotoxicity inasmuch as overexpression of the mitochondrially targeted human DNA repair enzyme, human Ogg1 (hOgg1), prevents both mtDNA damage and cell death (Dobson AW, Grishko V, LeDoux SP, Kelley MR, Wilson GL, and Gillespie MN. Am J Physiol Lung Cell Mol Physiol 283: L205-L210, 2002). The mechanism by which mtDNA damage leads to PAEC death is unknown, and the present study tested the specific hypothesis that enhanced mtDNA repair suppresses PAEC mitochondrial dysfunction and apoptosis evoked by xanthine oxidase (XO). PAECs transfected either with an adenoviral vector encoding hOgg1 linked to a mitochondrial targeting sequence or with empty vector were challenged with ascending doses of XO plus hypoxanthine. Quantitative Southern blot analyses revealed that, as expected, hOgg1 overexpression suppressed XO-induced mtDNA damage. Mitochondrial overexpression of hOgg1 also suppressed the XO-mediated loss of mitochondrial membrane potential. Importantly, hOgg1 overexpression attenuated XO-induced apoptosis as detected by suppression of caspase-3 activation, by reduced DNA fragmentation, and by a blunted appearance of condensed, fragmented nuclei. These observations suggest that mtDNA damage serves as a trigger for mitochondrial dysfunction and apoptosis in XO-treated PAECs.  相似文献   

18.
In human airways, oxidative stress-induced submucosal gland cell hypertrophy and hyperplasia, histological features of chronic bronchitis, have been linked to epidermal growth factor receptor (EGFR) activation. To explore mechanisms of oxidative stress-induced EGFR activation and signaling, primary cultures of human tracheal submucosal gland (SMG) cells were used to assess EGFR ligand release, EGFR phosphorylation, p44/42 MAPK phosphorylation, and mucin 5AC synthesis in response to reactive oxygen species generated by xanthine/xanthine oxidase (X/XO). Exposure to X/XO increased release of epidermal growth factor (EGF) from these cells, thereby activating EGFR, phosphorylating MAPK, and increasing mucin 5AC production. The importance of EGF was confirmed by transfection of small interfering RNA inhibiting pro-EGF production, which resulted in inhibition of EGFR and MAPK phosphorylation despite X/XO exposure. Blocking signaling by using specific protease inhibitors showed that tissue kallikrein (TK) processed pro-EGF in response to X/XO. Airway TK is bound and inactivated by luminal hyaluronan (HA), and treatment of submucosal gland cells with X/XO induced HA depolymerization and TK activation. These events were blocked by reactive oxygen species scavengers and addition of exogenous excess HA and TK inhibitors. Thus, HA plays a crucial role in regulating airway TK activity and thereby TK-mediated release of active EGF from human SMG cells. Sustained HA depolymerization is expected to cause TK activation, EGF release, and EGFR signaling and to lead to SMG cell hypertrophy and hyperplasia as well as mucus hypersecretion with subsequent airflow obstruction.  相似文献   

19.
Preincubation of rat brain synaptosomes with xanthine and xanthine oxidase (X/XO) in Ca2+-free Krebs buffer resulted in a 27% inhibition of synaptosomal gamma-aminobutyric acid (GABA) uptake. Addition of 1.5 mM CaCl2 increased the inhibition with X/XO to 46%, and inhibition was essentially complete when the calcium ionophore A23187 also was included. In other studies, preincubation of purified rat brain mitochondria with the combination of X/XO and 4 microM CaCl2 produced a significant (38%) decrease in state 3 respiration with glutamate/malate as substrate that was not seen with either X/XO or Ca2+ alone. Similar results were obtained using cultured mouse spinal cord neurons in which incubation with X/XO/ADP/FeCl2 and A23187 produced membrane damage as assessed by a 32% reduction of neuronal Na+, K+-ATPase activity. Neither X/XO/ADP/FeCl2 nor A23187 alone caused detectable inhibition. These results demonstrate the synergistic damaging effect of free radicals and Ca2+ on membrane function. In addition, they suggest that free radical-induced peroxidation of membrane lipid, occurring focally during complete or nearly complete ischemia in vivo, could result in intense cellular perturbation when coupled with increased intracellular Ca2+.  相似文献   

20.
In view of the potential role of free radicals in the genesis of cardiac abnormalities under different pathophysiological conditions and the importance of contractile proteins in determining heart function, this study was undertaken to examine the effects of oxygen free radicals on the rat heart myofibrils. Xanthine plus xanthine oxidase (X + XO) which is known to generate superoxide anions (O2-) and hydrogen peroxide (H2O2), an activated species of oxygen, was found to decrease Ca(2+)-stimulated ATPase activity, increase Mg(2+)-ATPase activity and reduce sulfhydryl (SH) group contents in myofibrils; these effects were completely prevented by superoxide dismutase (SOD) plus catalase (CAT). Both H2O2 and hypochlorous acid (HOCl), an oxidant, produced actions on cardiac myofibrils similar to those observed by X + XO. The effects of H2O2 and HOCl were prevented by CAT and L-methionine, respectively. N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), inhibitors of SH groups, also produced effects similar to those seen with X + XO. Dithiothreitol (DTT), a well known sulfhydryl-reducing agent, prevented the actions of X + XO, H2O2, HOCl, NEM and DTNB. These results suggest that marked changes in myofibrillar ATPase activities by different species of oxygen free radicals may be mediated by the oxidation of SH groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号