首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heparin-released triglyceride lipase from three sources, adipose tissue, liver, and postheparin plasma, was compared. Heparin-released triglyceride lipase from liver differed in several major respects from that in adipose tissue. These differences included response to inhibitors and to high density lipoprotein in the incubation media. Heparin-released triglyceride lipase from liver, when compared with that from adipose tissue, was relatively inactive against lipoprotein substrates. The triglyceride lipase from postheparin plasma exhibited properties more like those of liver. These studies raise the possibility that triglyceride lipase in postheparin plasma may be heterogeneous and that levels of the enzyme in postheparin plasma may not accurately reflect the capacity for clearance of triglyceride from the plasma.  相似文献   

2.
Chylomicrons labeled with [3H]arachidonic and [14C]linoleic acid were incubated with bovine milk lipoprotein lipase or rat postheparin plasma, containing both lipoprotein lipase and hepatic lipase. During incubation with bovine lipoprotein lipase, [3H]arachidonic acid was released from chylomicron triacylglycerols at a slower rate than [14C]linoleic acid. Only small amounts of [14C]linoleic acid were found as 1,2(2,3)-diacylglycerols, whereas a transient accumulation as [14C]monoacylglycerols was observed. In contrast, significantly more [3H]arachidonic acid was found as 1,2(2,3)-diacylglycerols than as monoacylglycerols at all time intervals investigated. The initial pattern of triacylglycerol hydrolysis by postheparin plasma was similar to that of bovine lipoprotein lipase. However, in contrast to the results obtained with bovine lipoprotein lipase, little [3H]1,2(2,3)-diacylglycerol accumulated. The addition of antiserum to hepatic lipase increased the amount of 3H found in 1,2(2,3)-diacylglycerols and inhibited the formation of free [3H]arachidonic acid. The antiserum also caused a significant inhibition of the hydrolysis of [3H]-but not of [14C]triacylglycerol. With regard to chylomicron phospholipids, the rate of hydrolysis of [14C]linoleoyl phosphatidylcholine with milk lipoprotein lipase was twofold higher than that of the [3H]arachidonyl phosphatidylcholine. However, the hepatic lipase of postheparin plasma had similar activity towards the two phosphatidylcholine species. Postheparin plasma rapidly hydrolyzed chylomicron 3H-labeled and 14C-labeled phosphatidylethanolamine to the same degree, and lipoprotein lipase similarly hydrolyzed 3H-labeled and 14C-labeled phosphatidylethanolamine at approximately equal rates. Antiserum to hepatic lipase inhibited the postheparin plasma hydrolysis of phosphatidylethanolamine and 3H-labeled phosphatidylcholine by about 60%, but the 14C-labeled phosphatidylcholine by only 27%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In an investigation of alterations in cholesterol metabolism during contraceptive steroid use, we studied plasma clearance of chylomicron remnants. Six healthy women were studied on and off contraceptive steroid therapy. Remnant clearance was measured from the disappearance of retinyl palmitate administered intravenously in plasma endogenously labeled with retinyl palmitate. We also measured cholesterol in HDL and its subfractions and postheparin lipoprotein lipase and hepatic triglyceride lipase activities. Plasma decay of retinyl palmitate was biexponential. The rapid component, reflecting chylomicron remnant removal, accounted for about 90% of the total clearance in all studies. During contraceptive steroid intake, both rapid and slow decay constants and the calculated plasma clearance rates were significantly increased (mean values: rapid decay constant, control 0.048 versus treated 0.101 min-1, P less than 0.05; slow decay constant, 0.004 versus 0.014 min-1, P less than 0.01; plasma clearance 74 versus 115 ml/min, P less than 0.025) indicating enhanced hepatic uptake of chylomicron remnants and probably an increased hepatic uptake of higher density lipoproteins (d greater than 1.006 g/ml). Total postheparin lipolytic activity and lipoprotein lipase activity were depressed in all six women (P less than 0.05) and hepatic triglyceride lipase activity was increased in four of five subjects. Contraceptive steroids also caused a decrease in the HDL2/HDL3 cholesterol ratio (P less than 0.05), implying impaired peripheral lipoprotein triglyceride hydrolysis and/or increased HDL2 clearance by hepatic triglyceride lipase. In conclusion, during intake of contraceptive steroids, the plasma clearance of chylomicron remnants and higher density lipoproteins was increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of dietary sucrose and starch with and without exogenous cholesterol on postheparin plasma lipoprotein lipase (PHLA) and hepatic lipase (HLA) were studied in cynomolgus monkeys. Serum triglyceride levels were higher in sucrose-fed animals than starch and exogenous cholesterol lowered serum triglyceride levels when added to sucrose diet but not starch diets. Sucrose markedly increased insulin levels, more so than starch; however, dietary cholesterol lowered insulin levels in sucrose diet but increased the levels in starch diet. PHLA activity was increased two- to threefold greater in sucrose than in starch diets. Exogenous cholesterol lowered PHLA activity in sucrose diet but increased PHLA activity in starch diet. HLA activity was increased with sucrose more than starch. Lecithin:cholesterol acyltransferase (LCAT) activity was significantly higher in sucrose diets than in the starch diet. Addition of cholesterol to either of these diets lowered the LCAT activity. These results indicate that PHLA, HLA, and LCAT activities not only are affected by the nature of carbohydrates, but also are related to triglyceride metabolism. The interaction of carbohydrates and cholesterol in the diet by influencing these selected enzymes plays an integrated role in lipoprotein particle interconversion processes.  相似文献   

5.
Lipoprotein lipase and hepatic lipase were measured in rat plasma using specific antisera. Mean values for lipoprotein lipase in adult rats were 1.8-3.6 mU/ml, depending on sex and nutritional state. Values for hepatic lipase were about three times higher. Lipoprotein lipase activity in plasma of newborn rats was 2-4-times higher than in adults. In contrast, hepatic lipase activity was lower in newborn than in adult rats. Following functional hepatectomy there was a progressive increase in lipoprotein lipase activity in plasma, indicating that transport of the enzyme from peripheral tissues to the liver normally takes place. Lipoprotein lipase, but not hepatic lipase, increased in plasma after a fat meal. An even more marked increase, up to 30 mU/ml, was seen after intravenous injection of Intralipid. Plasma lipase activity decreased in parallel with clearing of the injected triacylglycerol. 125I-labeled lipoprotein lipase injected intravenously during the hyperlipemia disappeared somewhat slower from the circulation than in fasted rats, but the uptake was still primarily in the liver. Hyperlipemia, or injection of heparin, led to increased lipoprotein lipase activity in the liver. This was seen even when the animals had been pretreated with cycloheximide to inhibit synthesis of new enzyme protein. These results suggest that during hypertriglyceridemia lipoprotein lipase binds to circulating lipoproteins/lipid droplets which results in increased plasma levels of the enzyme and increased transport to the liver.  相似文献   

6.
Chronic alcohol intake is associated with an increase in fasting plasma high density lipoproteins (HDL). To study alcohol's acute effects on plasma lipoproteins, we measured plasma lipoprotein concentrations and activities of postheparin plasma lipases in nine normolipemic males after ingestion of 40 g of ethanol (as whiskey). After alcohol there was no change in lipoprotein lipase activity but hepatic lipase was decreased to 67% of baseline at 6 hr. There were associated increases in HDL phospholipids (12 mg/dl) and cholesterol (10 mg/dl) resulting in prominence of larger, lipid-enriched HDL particles. Changes were most pronounced in the HDL3 and HDL2a subclasses. Very low density lipoprotein (VLDL) phospholipids and cholesterol were also increased by 13 and 9 mg/dl, respectively, with no significant change in triglycerides. Changes in lipoproteins and lipase were largely reversed 10 hr after alcohol intake. The transient increases in VLDL and HDL lipids after alcohol may result in part from acute inhibition of hepatic lipase activity. The results suggest a role of hepatic lipase in the catabolism of phospholipids of VLDL and possibly HDL.  相似文献   

7.
Conditions for measurement of the lipolytic activities, lipoprotein lipase and hepatic triacylglycerol lipase in cynomolgus monkey postheparin plasma are described. The two activities are separable by heparin-Sepharose chromatography. Goat anti-human hepatic triacylglycerol lipase serum inhibits monkey hepatic triacylglycerol lipase activity and allows direct measurement of lipoprotein lipase in post-heparin plasma. While both human and homologous serum can be used as a source of activator apolipoprotein, homologous serum produces a much greater activation.  相似文献   

8.
Within the first day in culture, human monocytes begin to synthesize and secrete a triglyceride lipase. The designation of this activity as lipoprotein lipase is based upon: 1) a requirement of serum or apolipoprotein C-II for full activity; 2) inhibition by 1M NaCl or apolipoprotein C-III2; 3) a pH optimum of 8; and 4) binding to endothelial cells that is releasable by heparin. The enzyme also exhibits immunological cross reactivity with antibody to purified bovine milk lipoprotein lipase as does human postheparin plasma lipoprotein lipase. Lymphocytes and polymorphonuclear leukocytes do not appear to contain this enzyme.  相似文献   

9.
We have developed a sandwich-enzyme immunoassay (EIA) for the quantification of lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) in human postheparin plasma (PHP) using monoclonal antibodies (MAbs) directed against the corresponding enzymes purified from human PHP. The sandwich-EIA for LPL was performed by using the combination of two distinct types of anti-LPL MAbs that recognize different epitopes on the LPL molecule. The immunoreactive mass of LPL was specifically measured using a beta-galactosidase-labeled anti-LPL MAb as an enzyme-linked MAb, an anti-LPL MAb linked with the bacterial cell wall as an insolubilized MAb, and purified human PHP-LPL as a standard. The sandwich-EIA for HTGL was carried out by using two distinct anti-HTGL MAbs that recognize different epitopes on HTGL. The limit of detection was 20 ng/ml for LPL and 60 ng/ml for HTGL. Each method yielded a coefficient of variation of less than 6% in intra- and inter-assays, and a high concentration of triglyceride did not interfere with the assays. The average recovery of purified human PHP-LPL and -HTGL added to human PHP samples was 98.8% and 97.5%, respectively. The immunoreactive masses of LPL and HTGL in PHP samples, obtained at a heparin dose of 30 IU/kg, from 34 normolipidemic and 20 hypertriglyceridemic subjects were quantified by the sandwich-EIA. To assess the reliability of the measured mass values, they were compared with the corresponding enzyme activities measured by selective immunoinactivation assay using rabbit anti-human PHP-LPL and -HTGL polyclonal antisera. Both assay methods yielded a highly significant correlation in either normolipidemic (r = 0.945 for LPL; r = 0.932 for HTGL) or hypertriglyceridemic subjects (r = 0.989 for LPL; r = 0.954 for HTGL). The normal mean (+/- SD) level of lipoprotein lipase mass and activity in postheparin plasma was 223 +/- 66 ng/ml and 10.1 +/- 2.9 mumol/h per ml, and that of hepatic triglyceride lipase mass and activity was 1456 +/- 469 ng/ml and 26.4 +/- 8.7 mumol/h per ml, respectively. The present sandwich-enzyme immunoassay methods make it possible to study the molecular nature of LPL and HTGL in PHP from patients with either primary or secondary hyperlipoproteinemia.  相似文献   

10.
Exposure of sated rats to 45% N2 in air for 5h increased serum triglyceride levels by 212% over the levels in normoxic rats. This increase in triglyceride levels was accompanied by a decrease in plasma triglyceride hydrolase activity after intravenous injection of heparin. Further fractionation of the activity by inhibition of lipoprotein lipase indicated that the low triglyceride hydrolase activity is mainly due to a reduction in hepatic triglyceride lipase, which is inversely correlated with the serum triglyceride level. The hypoxic exposure decreased the arterial blood [acetoacetate]/[beta-hydroxybutyrate] ratio in the sated rats, which is believed to reflect the oxidation-reduction state in hepatic mitochondria, but did not affect the level of serum enzymes indicative of tissue damage. On the other hand, triglyceride levels did not change during hypoxic exposure in fasted rats. Thus, hypertriglyceridemia in sated rats following exposure to hypoxia may result from impaired removal of circulating triglycerides by hepatic triglyceride lipase located in the sinusoidal surface of the liver.  相似文献   

11.
Inhibition of human and rat lipoprotein lipase by high-density lipoprotein   总被引:1,自引:0,他引:1  
The hydrolysis in vitro of preactivated Intralipid (an artificial triacylglycerol-phospholipid emulsion) by rat adipose tissue lipoprotein lipase is inhibited by rat high-density lipoprotein (HDL). The aim of this work was to investigate whether human lipoprotein lipase was also inhibited, the mechanism of inhibition of the rat enzyme by HDL, and the role of the various individual apolipoproteins. Both human and rat lipoprotein lipase from post-heparin plasma are inhibited by HDL. This inhibition is considerably decreased if the HDL is first made 'apolipoprotein poor' by removal of some transferable apolipoproteins. In contrast, both native and apolipoprotein poor HDL inhibit the hydrolysis of Intralipid by rat hepatic lipase. Apolipoproteins C and E, either free in solution or attached to lipid vesicles, inhibit the hydrolysis of activated Intralipid by rat lipoprotein lipase to a maximum of 85% and 50%, respectively. Apolipoprotein A attached to vesicles gives little inhibition. HDL apolipoprotein and apolipoprotein C compete with the substrate for binding to lipoprotein lipase with apolipoprotein C having a higher affinity for the enzyme than HDL apolipoprotein. The inhibition of lipoprotein lipase by HDL can be explained by the association of the constituent apolipoproteins, in particular apolipoprotein C, with the enzyme so that there is less enzyme available to act on substrate.  相似文献   

12.
Human lipoprotein lipase and hepatic triglyceride lipase were purified to homogeneity from post-heparin plasma. These enzymes were purified 250,000- and 100,000-fold with yields of 27 +/- 15 and 19 +/- 6%, respectively. Molecular weight determination by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and reducing agents yielded Mr of 60,500 +/- 1,800 and 65,200 +/- 400, respectively, for lipoprotein lipase and hepatic triglyceride lipase. These lipase preparations were shown to be free of detectable antithrombin by measuring its activity and by probing of Western blots of lipases with a monospecific antibody against antithrombin. In additions, probing of Western blots with concanavalin A revealed no glycoproteins corresponding to the molecular weight of antithrombin. Four stable hybridoma-producing distinct monoclonal antibodies (mAb) to hepatic triglyceride lipase were isolated. The specificity of one mAb, HL3-5, was established by its ability to immunoprecipitate hepatic triglyceride lipase catalytic activity. Interaction of HL3-5 with this lipase did not inhibit catalytic activity. The three other mAb interacted with hepatic triglyceride lipase only after denaturation of the enzyme with detergents. The relatedness of these two enzymes was examined by comparing under the same conditions the thermal inactivation, the sensitivity to sulfhydryl and reducing agents, amino acid composition, and the mobility of peptide fragments generated by cyanogen bromide cleavage. The results of these studies strongly support the view that the two enzymes are different proteins. Immunological studies confirm this conclusion. Four mAb to hepatic triglyceride lipase did not interact with lipoprotein lipase in Western blots, enzyme-linked immunosorbent assay, and immunoprecipitation experiments. These immunological studies demonstrate that several epitopes of the hepatic triglyceride lipase protein moiety are not present in the lipoprotein lipase molecule.  相似文献   

13.
Hepatic lipase activity is detectable in liver but also in adrenal glands, ovaries, and plasma. The subunit size of hepatic lipase in liver, adrenal glands, and nonheparin plasma was compared. Hepatic lipase in liver and adrenal glands appeared as a 55 kDa band. In liver, a faint band of lower size was also detected. In nonheparin plasma, hepatic lipase appeared as a doublet of 57 kDa and 59 kDa. When activity/mass ratio was calculated, similar values were obtained for liver and adrenal glands. In plasma this value was much lower. After heparin administration in vivo, hepatic lipase activity in plasma increased nearly 100-fold with appearance of an additional 55 kDa band in postheparin plasma. This band coeluted with activity after preparative polyacrylamide gel electrophoresis. Differences in size persisted after digestion with peptide-N-glycosidase F. A progressive increase in 57 kDa and 59 kDa in postheparin plasma followed disappearance of the 55 kDa band, suggesting that these larger bands originate from the smaller form. In plasma, both smaller and larger forms were associated with HDL, but not with LDL or VLDL. We conclude that rat plasma contains a larger form of hepatic lipase that is inactive in in vitro assay.  相似文献   

14.
The possibility that impaired removal of lipoprotein triglyceride from the circulation may be a participating factor in the hypertriglyceridemia of the obese Zucker rat was examined. We found no significant differences in the heparin-released lipoprotein lipase (LPL) activities of the adipose tissue, skeletal muscle, and heart (expressed per gram of tissue) from the lean and obese Zucker rats. Furthermore, the kinetic properties of adipose tissue and heart LPL from the lean and obese rats were similar, indicating that the catalytic efficiency of the enzyme was unaltered in the obese animals. The postheparin plasma LPL activities of lean and obese rats were also similar. However, the postheparin plasma hepatic triglyceride lipase (H-TGL) activity in the obese rats was elevated. The higher activity of H-TGL could not alleviate the hypertriglyceridemia in these animals. Since hypertriglyceridemia in the obese rats could also be due to the hepatic production of triglyceride-rich lipoproteins which are resistant to lipolysis, we therefore isolated very low density lipoproteins (VLDL) from lean and obese rat liver perfusates and examined their degradation by highly purified human milk LPL. Although certain differences were observed in hepatic VLDL triglyceride fatty acid composition, the kinetic patterns of LPL-catalyzed triglyceride disappearance from lean and obese rat liver perfusate VLDL were similar. The isolated liver perfusate VLDL contained sufficient apolipoprotein C-II for maximum lipolysis. These results indicate that impaired lipolysis is not a contributing factor in the genesis of hypertriglyceridemia in the genetically obese Zucker rat. The hyperlipemic state may be attributed to hypersecretion of hepatic VLDL and consequent saturation of the lipolytic removal of triglyceride-rich lipoproteins from the circulation.  相似文献   

15.
A large family is reported with familial hepatic triglyceride lipase (HTGL) deficiency and with the coexistence of reduced lipoprotein lipase (LPL) similar to the heterozygote state of LPL deficiency. The proband was initially detected because of hypertriglyceridemia and chylomicronemia. He was later demonstrated to have beta-VLDL despite an apo E3/E3 phenotype and the lack of stigmata of type III hyperlipoproteinemia. The proband had no HTGL activity in postheparin plasma. Two of his half-sisters had very low HTGL activity (39 and 31 nmol free fatty acids/min/ml; normal adult female greater than 44). His son and daughters had decreased HTGL activity (normal male and preadolescent female greater than 102), which would be expected in obligate heterozygotes for HTGL deficiency. Low HTGL activity was associated with LDL particles which were larger and more buoyant. Several family members, including the proband, had reduced LPL activity and mass less than that circumscribed by the 95% confidence-interval ellipse for normal subjects and had hyperlipidemia similar to that described in heterozygote relatives of patients with LPL deficiency. All the sibs with hyperlipidemia had a reduced LPL activity and mass, while subjects with isolated reduced HTGL (with normal LPL activity) had normal lipid phenotypes. Analysis of genomic DNA from these subjects by restriction-enzyme digestion revealed no major abnormalities in the structure of either the HTGL or the LPL gene. Compound heterozygotes for HTGL and LPL deficiency show lipoprotein physiological characteristics typical for HTGL deficiency, while their variable lipid phenotype is typical for LPL deficiency.  相似文献   

16.
Mice (SC), fed a semipurified diet containing cholesterol, cholic acid and sucrose, exhibited, in comparison to control animals (S), an increase in cholesterol, phospholipid and protein of VLDL, LDL1 and LDL2, but triglyceride of the same lipoproteins decreased, as did total plasma triglycerides. Postheparin plasma lipoprotein lipase activity of SC animals was 1.72 times that of S mice. At the same time Intralipid half-life in SC mice was decreased by 52%. Triglyceride secretion rate, after Triton WR 1339 treatment, and liver triglyceride content were reduced in SC animals. HDL mass was decreased in SC mice. Mice (AC) fed a standard diet containing cholesterol showed, in comparison to normal fed animals (A), an increase in cholesterol of VLDL, LDL1 and LDL2 but triglyceride of the same lipoproteins decreased as did total plasma triglycerides. Postheparin plasma lipoprotein lipase activity of AC animals was unmodified as was Intralipid half-life. In AC animals triglyceride secretion rate, after Triton WR 1339 treatment, was reduced but in a less extent than in SC mice. Liver triglyceride was unmodified. HDL mass was decreased in AC mice.  相似文献   

17.
Protease inhibitor-based highly active antiretroviral therapy (PI-HAART) has been implicated in dyslipidemia, peripheral insulin resistance, and abnormal adipose tissue deposition in human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome, or AIDS. In vitro evidence indicates that some PIs reduce adipocyte lipoprotein (LPL) and hepatic lipase (HL) expression and activities. We examined whether LPL and HL activities are reduced in HIV-infected patients with dyslipidemia. Fasting serum lipids, glucoregulatory hormones, and postheparin LPL and HL activities, as well as whole body and regional adiposity, were measured in 19 HIV-seronegative controls, 9 HIV+ patients naive to all anti-HIV medications, 9 HIV+ patients naive to PIs, 9 HIV+ patients with prior PI experience but not currently receiving PIs, and 47 HIV+ patients receiving PI-HAART. The PI-HAART group had low LPL and HL activities. However, multiple linear regression analysis indicated that low postheparin LPL activity contributed only partially to HIV-dyslipidemia. Central adiposity and high C-peptide levels (an indicator of high insulin secretion) were stronger predictors of HIV-dyslipidemia. Low LPL and HL activities, by themselves, were insufficient to explain HIV-dyslipidemia because the PI-naive group had low LPL and HL activities but had normal adiposity, C-peptide levels, and serum lipid and lipoprotein levels. HDL-cholesterol was lower in PI-HAART and PI-naive groups than seronegative controls and was directly associated with LPL activity. These findings suggest that HIV-dyslipidemia is mediated primarily by factors that influence triglyceride and lipoprotein synthesis (e.g., central adiposity and hyperinsulinemia) and mediated only partially by factors that influence triglyceride clearance (e.g., lipase activity).  相似文献   

18.
These studies examined the proposition that the small particle size of HDL3 in the plasma of hypertriglyceridemic subjects is the consequence of the sequential actions of lipid transfer protein and hepatic lipase on HDL. Incubation of unmodified total HDL or HDL3 in the presence of hepatic lipase resulted in a depletion of phospholipid, but little change in the size of the particles. On the other hand, HDL3 that had first been depleted of cholesteryl ester and enriched with triglyceride and phospholipid, during prior incubation with Intralipid and a source of lipid transfer protein, were much more susceptible to the action of hepatic lipase. When these modified HDL3 were incubated with hepatic lipase there was a depletion of the triglyceride and phospholipid content and a conversion into much smaller particles the same size as those predominant in hypertriglyceridemic subjects. These very small particles were derived from a population of modified particles that were larger than the original HDL3 and were within the size range of HDL2. It is proposed, therefore, that in the plasma of hypertriglyceridemic subjects there exists a dynamic balance between the formation of enlarged triglyceride-rich HDL and a secondary conversion of these particles by hepatic lipase to form populations of very small HDL.  相似文献   

19.
A selective deficiency of hepatic triacylglycerol lipase in guinea pigs   总被引:1,自引:0,他引:1  
The properties of postheparin plasma triacylglycerol-hydrolyzing enzymes were investigated in guinea pig and rat. In rat, lipoprotein lipase and hepatic triacylglycerol lipase were separated on a heparin-Sepharose affinity chromatography. In postheparin plasma of guinea pig, however, hepatic triacylglycerol lipase was almost completely absent, while lipoprotein lipase was present. Hepatic triacylglycerol lipase was also deficient in the liver tissue extract of guinea pig. Plasma lipoprotein compositions of high-fat fed and control guinea pigs were analyzed. One of the outstanding changes found in high-fat fed animals was the presence of chylomicronemia. One guinea pig showed gross hyperlipemia with triacylglycerol concentrations of 2715 mg/100 ml. Plasma triacylglycerol concentrations of each lipoprotein fraction of very low density, intermediate density, low density and high density lipoproteins from high-fat fed animals were almost the same as those of the corresponding lipoprotein fractions from controls. Discussion was focused on the development of chylomicronemia in relation to the defects of triacylglycerol-hydrolyzing enzyme systems in this animal.  相似文献   

20.
To address the question whether an increase in insulinemia and/or glycemia affects the total activity of lipoprotein lipase (LPL) in circulation, the enzyme activity was measured after periods of hyperinsulinemia (HI), hyperglycemia (HG), and combined hyperinsulinemia and hyperglycemia (HIHG) induced by euglycemic hyperglycemic clamp, hyperglycemic clamp with the infusion of somatostatin to inhibit endogenous insulin secretion, and hyperglycemic clamp, respectively. The results obtained were compared to those after saline infusion (C). Twelve healthy normolipidemic and non-obese men with normal glucose tolerance were included in the study. At the end of each clamp study, LPL activity was determined first in vivo using an intravenous fat tolerance test and then in vitro in postheparin plasma. Whereas isolated HI had no effect on LPL activity in postheparin plasma, both HG and HIHG reduced LPL activity to 60 % and 56 % of that observed after saline infusion. Similarly, the k2 rate constant determined in intravenous fat tolerance test was reduced to 95 %, 84 %, and 54 % after periods of HI, HG, and HIHG, respectively. The activity of hepatic lipase, another lipase involved in lipoprotein metabolism, was not affected by hyperinsulinemia and/or hyperglycemia. In conclusion, our data suggest that hyperglycemia per se can downregulate the total LPL activity in circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号