首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upon activation of human pepsinogen A at pH 2.0 in the presence of pepstatin, an intermediate form was generated together with pepsin A. This activation intermediate could be separated from pepsinogen A and pepsin A by DE-32 cellulose chromatography at pH 5.5. It had a molecular weight intermediate between those of pepsinogen A and pepsin A, and contained about half the number of basic amino acid residues in pepsinogen A. It had phenylalanine as the amino(N)-terminal amino acid, and was deduced to be generated by release of N-terminal 25 residue segment from pepsinogen A. Amino acid sequence determination of the N-terminal portions of pepsinogen A and the intermediate from enabled us to elucidate the entire acid sequence of the 47-residue activation peptide segment as follow: [Formula: see text]. On the other hand, upon activation of pepsinogen A at pH 2.0 in the absence of pepstatin, cleavage of the activation segment occurred at several additional bonds. In addition, upon activation both in the presence and in the absence of pepsitatin, an additional activation intermediate, designated pepsin A', was formed in minor quantities. This form was identical with pepsin A, except that it had an additional Pro-Thr-Leu sequence preceding the N-terminal valine of pepsin A.  相似文献   

2.
The amino-acid sequence of 96 residues in the N-terminal region of rat pepsinogen I was determined and the first 46 residues were found to constitute the activation peptide segment. There was high degree of homology between the activation segments of rat pepsinogen and some pepsinogens A (pig, cow, Japanese monkey and human). However, the number of residues substituted between rat and the other pepsinogens were considerably larger than those among pepsinogens A. In the N-terminal 24 residues of active pepsin, homology (88%) between rat pepsin and human gastricsin was higher than that (50%) between rat pepsin and pepsin A from human or pig. This strongly suggests that rat pepsin should be classified as pepsin C.  相似文献   

3.
A clone, pSPcA2, which carries the full-length swine pepsinogen cDNA was isolated. The coding sequence comprised the signal peptide [15 amino acids (aa)], the activation peptide segment (44 aa) and mature pepsin (327 aa). The deduced amino acid sequence agrees with the published sequence with two exceptions. Asparagine instead of aspartate is present at aa positions 19 and 308. Two types of plasmids, pAS and pUCtacSPc series, were constructed for expressing swine pepsinogen cDNA. These plasmids directed the synthesis of polypeptides which were detected by employing an antibody to swine pepsinogen. However, all the polypeptides formed aggregates and showed no acid protease activity. Only the protein directed by pAS5 regained the acid protease activity after renaturation procedures. The activity was completely inhibited by pepstatin. Furthermore, the renatured pAS5 protein was spontaneously converted to pepsin under acidic conditions. The presence of Arg-8 in the activation peptide segment appears important for the stabilization of the pepsinogen molecule.  相似文献   

4.
Primary structure of human pepsinogen gene   总被引:24,自引:0,他引:24  
A recombinant clone, which covers the pepsinogen gene in a single insert, has been isolated by screening a library of human genomic DNA, using a swine pepsinogen cDNA as a probe. Sequence analysis of coding DNA segments of the clone revealed that the pepsinogen gene occupies approximately 9.4-kilobase pairs of the genomic DNA and is separated into nine exons by eight introns of various lengths. The predicted amino acid sequence of human pepsinogen consists of 373 residues and is 82% homologous with that of swine pepsinogen. In addition, the predicted sequence contained a single sequence of 15 amino acid residues at the NH2 terminus, showing that the protein is synthesized as prepepsinogen. The structure of the gene, in which two homologous sequences including the two active site aspartyl residues of pepsin are present in different coding segments, is in support of the view that the pepsinogen gene evolved by duplication of a shorter ancestral gene.  相似文献   

5.
Summary An expression-secretion vector, pNU100, was constructed, utilizing the promoter and coding sequences for the signal peptide and nine amino-terminal amino acids of the middle wall protein, to produce foreign proteins by protein-producing Bacillus brevis. Expression of swine pepsinogen cDNA in B. brevis was examined with pNU100 as a vector. The recombinant swine pepsinogen synthesized by B. brevis was found to accumulate extracellularly in the form of a soluble protein and to have acid protease activity. The acid protease activity was completely inhibited by pepstatin. Furthermore, the recombinant pepsinogen was converted autocatalytically to pepsin under acidic conditions. This indicates that B. brevis produces a pepsinogen with the same conformation as authentic pepsinogen. Efficient production of the enzyme (11 mg/l) was achieved by regulating the pH of the medium. The enzyme produced by B. brevis remained stable on cultivation for a long period, up to 40 h. This is suggested to be due to a unique property of protein-producing B. brevis, i. e. a deficiency in extracellular protease production.  相似文献   

6.
When Japanese monkey pepsinogen was activated at pH 2.0 in the absence of pepstatin, the activation segment of the amino(N)-terminal 47 residues was released as a single intact polypeptide. This clearly shows that the pepsinogen was activated to pepsin directly. This direct activation was called a 'one-step' process. On the other hand, when pepsinogen was activated at pH 2.0 in the presence of pepstatin, an appreciable amount of pepsinogen was converted to an intermediate form between pepsinogen and pepsin, although a part of pepsinogen was activated directly to pepsin. The intermediate form was generated by releasing the N-terminal 25 residues of pepsinogen. This activation through the intermediate form is thought to be a 'two-step' or 'stepwise-activating' process involving a bimolecular reaction between pepstatin-bound pepsinogen and free pepsin.  相似文献   

7.
8.
The complete amino acid sequence of monkey pepsinogen A   总被引:2,自引:0,他引:2  
The complete amino acid sequence of pepsinogen A from the Japanese monkey (Macaca fuscata) was determined. After converting the pepsinogen to pepsin by activation, the pepsin moiety was reduced and carboxymethylated, cleaved by cyanogen bromide, and the amino acid sequences of the major fragments determined. These fragments were aligned with the aid of overlapping peptides isolated from a chymotryptic digest of intact pepsin. Since the sequence of the activation segment had been determined previously (Kageyama, T., and Takahashi, K. (1980) J. Biochem. (Tokyo) 88, 9-16), the 373-residue sequence of monkey pepsinogen A was established, consisting of the pepsin moiety of 326 residues and the activation segment of 47 residues. Three disulfide bridges and 1 phosphoserine residue were found to be present in the pepsinogen molecule. The molecular weight was calculated to be 40,027 including the phosphate group. Monkey pepsinogen A showed high homology with human (94% identity) and porcine (86% identity) pepsinogens A.  相似文献   

9.
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with alpha-, beta-, or kappa-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.  相似文献   

10.
Experiments were carried out on the effects of substrate or competitive inhibitor on the rate of appearance of N-terminal isoleucine residue of pepsin and peptides released from pepsinogen in its conversion to pepsin. Assumptions were made from these experiments, that an active site is initially formed in pepsinogen by acidification of its solution, and that peptide bond between 41-glutamyl and 42-isoleucyl residues locates in the juxtaposition to the active site forming an intramolecular enzyme-substrate complex. Thus, N-terminal tail of pepsinogen is released by a hydrolysis catalyzed by its own active site.

It was Indeed ascertained in this study that neither a small amount of pepsin which could be accompanied by pepsinogen preparation used contributes to the initial step of hydrolysis of pepsinogen nor pepsin formed accelerates the following activation process.

Therefore, it was concluded that the conversion of pepsinogen to pepsin is self-degrad-ation process.  相似文献   

11.
Conversion of pepsinogen into pepsin is not a one-step process.   总被引:3,自引:1,他引:2       下载免费PDF全文
By incubation of pepsinogen with pepstatin at pH2.5, the first 'active' protein generated on activation is trapped in an inactive complex. The first activation peptide liberated has been identified as residues 1-16 from the pepsinogen sequence. This suggests a sequential mechanism rather than a one-step formation of pepsin.  相似文献   

12.
Intramolecular pepsinogen activation is inhibited either by pepstatin, a potent pepsin inhibitor, or by purified globin from hemoglobin, a good pepsin substrate. Also, pepsinogen at pH 2 can be bound to a pepstatin-Sepharose column and recovered as native zymogen upon elution in pH 8 buffer. Kinetic studies of the globin inhibition of pepsinogen activation show that globin binds to a pepsinogen intermediate. This interaction gives rise to competitive inhibition of intramolecular pepsinogen activation. The evidence presented in this paper suggests that pepsinogen is converted rapidly upon acidification to the pepsinogen intermediate delta. In the absence of an inhibitor, the intermediate undergoes conformational change to bind the activation peptide portion of this same pepsinogen molecule in the active center to form an intramolecular enzyme-substrate complex (intermediate theta). This is followed by the intramolecular hydrolysis of the peptide bond between residues 44 and 45 of the pepsinogen molecule and the dissociation of the activation peptide from the pepsin. Intermediate delta apparently does not activate another pepsinogen molecule via an intermolecular process. Neither does intermediate delta hydrolyze globin substrate.  相似文献   

13.
Pepsinogen was isolated from the gastric mucosa of Trimeresurus flavoviridis (Habu snake) by DEAE-cellulose and DEAE-Sepharose ion-exchange chromatographies, and Sephacryl S-200 gel-chromatography. The yield calculated from the crude extract was 29% with 6.2-fold purification. The purified pepsinogen gave a single band on both native- and SDS-PAGE. As no other active enzyme was detected on the chromatographies, it was concluded that the Habu snake has one major pepsinogen. The molecular mass of the pepsinogen was estimated to be 38 kDa by SDS-PAGE. The sequence of the N-terminal 26 amino acid residues was determined and compared with those of other pepsinogens. The N-terminal structure of Habu snake pepsinogen was more homologous with those of mammalian pepsinogens C than those of mammalian pepsinogens A. The pepsinogen was rapidly converted to pepsin by way of an intermediate form induced by acidification. The optimum pH of Habu snake pepsin for bovine hemoglobin was 1.5-2.0, and it retained full activity at pH 6.2 and 30 degrees C on incubation for 30 min. The optimum temperature for the snake pepsin was 50 degrees C and it was stable at 40 degrees C on incubation for 10 min. The proteolytic activity of the pepsin toward bovine hemoglobin was about two times higher than that of porcine pepsin A, however, the activity toward oxidized bovine insulin B-chain was lower than that of porcine pepsin A, and it did not hydrolyze oligopeptides. The specificity for oxidized bovine insulin B-chain of the pepsin was different from that of porcine pepsin A. Habu snake pepsin was inhibited by pepstatin A but not by serine, cysteine, or metallo protease inhibitors.  相似文献   

14.
In order to carry out studies on structure and function relationships of porcine pepsinogen using site-directed mutagenesis approaches, the cDNA of this zymogen was cloned, sequenced, expressed in Escherichia coli, and the protein refolded, and purified to homogeneity. Porcine pepsinogen cDNA, obtained from a lambda gt10 cDNA library of porcine stomach contains 1364 base pairs. It contains leader, pro, and pepsin regions of 14, 44, and 326 residues, respectively. In addition, it also contains 5'- and 3'-untranslated regions. Four differences are present between the sequence deduced from the cDNA and the pepsinogen sequence determined previously by protein chemistry methods. Residues P19 (in the pro region) and 263 are asparagines in the cDNA sequence instead of aspartic acids. Isoleucine 230 is not present in the cDNA sequence and residue 242 is a tyrosine in the cDNA instead of an aspartic acid. Porcine pepsinogen cDNA was placed under the control of a tac promoter in a plasmid and expressed in E. coli. The synthesis of pepsinogen was optimized to about 50 mg/liter of culture. The recombinant (r-) pepsinogen, which was insoluble, was recovered by centrifugation, washed, dissolved in 6 M urea in Tris-HCl, pH 8, and refolded by rapid dilution. r-pepsinogen was purified to homogeneity after chromatography on Sephacryl S-300 and fast protein liquid chromatography on a monoQ column. r-pepsinogen contains an additional methionine residue at the NH2 terminus as compared to native (n-) pepsinogen. However, r- and n-pepsinogens are indistinguishable in their intramolecular activation constants. After activation, r- and n-pepsins have the same NH2-terminal sequences as well as Km values. Based on these data, r-pepsinogen was judged suitable for mutagenesis studies. A mutant pepsinogen (D32A) with the active site aspartic acid changed to an alanine was produced and purified. D32A-pepsinogen did not convert to pepsin in acid solution but it bound to pepstatin with an apparent KD of about 5 x 10(-10) M. D32A-pepsinogen possesses no detectable proteolytic activity. These results indicate that (i) intramolecular pepsinogen activation is accomplished by the pepsin active site, and (ii) unlike subtilisin (Carter, P., and Wells, J. A. (1988) Nature 332, 564-568), the active site mutant of pepsin is not enzymically active.  相似文献   

15.
Exposure of pepsinogen to acid for less than 2 min yields a product with proteolytic activity. This activity is due to intramolecular and intermolecular formation of pepsin from pepsinogen. We find no evidence for intermolecular proteolytic activity in the zymogen. These conclusions are based upon two sets of experiments. First, chemical cleavage of pepsinogen during short activation is demonstrated by quantitative analysis of the NH2-terminal 2 residues of the pepsin and pepsinogen in an activation mixture. In addition, quantitative NH2-terminal analyses after activation under different conditions confirm our previous inference that the product of unimolecular pepsinogen activation is homogeneous whereas bimolecular activation produces a pepsin product with a variety of NH2 termini. Second, spectral changes which occur upon acidification of a pepsinogen solution and are reversed by neutralization are shown to be consistent with the chemical cleavage of pepsinogen during acidification. The first order rate constant for pepsinogen activation, calculated from these spectral experiments, agrees well with the value we had determined previously.  相似文献   

16.
1. Two procedures were developed for the preparation of duck pepsinogen, an enzyme from the family of aspartic proteases (EC 3.4.23.1) and its zymogen. 2. The amino acid composition, sugar content and the partial N- and C-terminal sequences of both the enzyme and the zymogen were determined. These sequences are highly homologous with the terminal sequences of chicken pepsin(ogen). 3. Duck pepsinogen and pepsin are unlike other pepsin(ogen)s in being relatively stable in alkaline media: pepsinogen is inactivated at pH 12.1, pepsin at pH 9.6. 4. Duck pepsin is inhibited by diazoacetyl-D,L-norleucine methyl ester (DAN), 1,2-epoxy-3(p-nitrophe-noxy)propane (EPNP), pepstatin and a synthetic pepsin inhibitor Val-D-Leu-Pro-Phe-Phe-Val-D- Leu. The pH-optimum of duck pepsin determined in the presence of synthetic substrate is pH 4. 5. Duck pepsin has a marked milk-clotting activity whereas its proteolytic activity is lower than that of chicken pepsin. 6. The activation of duck pepsinogen is paralleled by two conformational changes. The activation half-life determined in the presence of a synthetic substrate at pH 2 and 14 degrees C is 20 sec.  相似文献   

17.
The amino acid sequences near the amino termini of human pepsin (34 residues) and gastricsin (24 residues) and the acid protease from Rhizopus chinensis (27 residues) have been determined using automated Edman degradation. From these results three additional observations were made. First, two structural variants have been observed for human gastricsin and for the Rhizopus protease. Both cases are apparently genetic in origin. Second, a stretch of sequence in the Rhizopus protease, residues 14 to 26, is highly homologous to the known sequence of porcine pepsin at the region of residues 11 to 23. Third, the sequences of the NH2-terminal region of human pepsin and gastrisin are homologous.  相似文献   

18.
Upon activation at pH 2.0 and 14°C, a significant portion of porcine pepsinogen was found to be converted directly to pepsin, releasing the 44-residue intact activation segment. The released segment was further cleaved to smaller peptides at pH 2.0, but at pH 5.5 it formed a tight complex with pepsin, and the complex was chromatographically indistinguishable from pepsinogen. This intact segment could be isolated for the first time. Thus one-step activation occurs in porcine pepsinogen along with the already known sequential activation.  相似文献   

19.
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with α-, β-, or κ-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.  相似文献   

20.
One of the histidine residues in swine pepsinogen can be modified in a rapid reaction with diethyl pyrocarbonate (DEP). At the same time, the potential proteolytic activity of the zymogen is reduced to 40% of its initial value. Reaction at the histine residue is reversed by neutral hydroxylamine, but the loss in activity is not. Fractionation of DEP-pepsinogen activation mixtures gave fully active pepsin in reduced yield, not modified enzyme with reduced specific activity. This was taken to indicate that the reaction had produced a mixture of products. Irreversible incorporation of [14C]DEP indicates that carbethoxy groups are incorporated into the molecule at amino acids other than histidine. The positions of these carbethoxy groups were determined by tryptic digestion and hplc. Modification was found to have occurred, in nonstoichiometric amounts, at lysine residues 3 and 9 and at leucine 1. Control experiments showed that activation was not affected by reaction at leucine 1, indicating that inactivation is caused by reaction at one or more of the lysine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号