首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain-hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand-receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8-Fgfr1 while maintaining the ligand-receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function.  相似文献   

2.
The expression of all four fgfr genes was extensively examined throughout early embryogenesis of the zebrafish (Danio rerio). fgfr1 alone was expressed maternally throughout the blastoderm, and then zygotically in the anterior neural plate and presomitic mesoderm. fgfr4 expression was first detected in late blastulae and was gradually restricted to the brain. fgfr2 and fgfr3 expression were initiated in early and late gastrulae, respectively; fgfr2 was expressed in the anterior neural plate and somitic mesoderm, whereas fgfr3 was activated in the axial mesoderm and then in the midbrain and somitic mesoderm. During somitogenesis, each of these fgfr genes was expressed in a characteristic manner in the brain. Using an FGF signal inhibitor, dominant-negative FGF receptors and fgf8.1/fgf8a mutants, we found that fgfr expression is directly or indirectly regulated by FGF signaling during epiboly and at the end of somitogenesis, revealing the presence of an autoregulatory mechanism.  相似文献   

3.
Vertebrae and ribs arise from embryonic tissues called somites. Somites arise sequentially from the unsegmented embryo tail, called presomitic mesoderm (PSM). The pace of somite formation is controlled by gene products such as hairy and enhancer of split 7 (Hes7) whose expression oscillates in the PSM. In addition to the cyclic genes, there is a gradient of fibroblast growth factor 8 (Fgf8) mRNA from posterior to anterior PSM. Recent experiments have shown that in the absence of Fgf signaling, Hes7 oscillations in the anterior and posterior PSM are lost. On the other hand, Notch mutants reduce the amplitude of posterior Hes7 oscillations and abolish anterior Hes7 oscillations. To understand these phenotypes, we delineated and simulated a logical and a delay differential equation (DDE) model with similar network topology in wild-type and mutant situations. Both models reproduced most wild-type and mutant phenotypes suggesting that the chosen topology is robust to explain these phenotypes. Numerical continuation of the model showed that even in the wild-type situation, the system changed from sustained to damped, i.e. a Hopf bifurcation occurred, when the Fgf concentration decreased in the PSM. This numerical continuation analysis further indicated that the most sensitive parameters for the oscillations are the parameters of Hes7 followed by those of Lunatic fringe (Lfng) and Notch1. In the wild-type, the damping of Hes7 oscillations was not so strong so that cells reached the new somites before they lose Hes7 oscillations. By contrast, in the fibroblast growth factor receptor 1 (Fgfr1) conditional knock-out (cKO) mutant simulation, Notch signaling was not able to maintain sustained Hes7 oscillations. Our analysis suggests that Fgf signaling makes cells enter an oscillatory state of Hes7 expression. After moving to the anterior PSM, where Fgf signaling is missing, Notch signaling compensates the damping of Hes7 oscillations in the anterior PSM.  相似文献   

4.
Recent work has identified LDL receptor-related family members, Lrp5 and Lrp6, as co-receptors for the transduction of Wnt signals. Our analysis of mice carrying mutations in both Lrp5 and Lrp6 demonstrates that the functions of these genes are redundant and are essential for gastrulation. Lrp5;Lrp6 double homozygous mutants fail to establish a primitive streak, although the anterior visceral endoderm and anterior epiblast fates are specified. Thus, Lrp5 and Lrp6 are required for posterior patterning of the epiblast, consistent with a role in transducing Wnt signals in the early embryo. Interestingly, Lrp5(+/-);Lrp6(-/-) embryos die shortly after gastrulation and exhibit an accumulation of cells at the primitive streak and a selective loss of paraxial mesoderm. A similar phenotype is observed in Fgf8 and Fgfr1 mutant embryos and provides genetic evidence in support of a molecular link between the Fgf and Wnt signaling pathways in patterning nascent mesoderm. Lrp5(+/-);Lrp6(-/-) embryos also display an expansion of anterior primitive streak derivatives and anterior neurectoderm that correlates with increased Nodal expression in these embryos. The effect of reducing, but not eliminating, Wnt signaling in Lrp5(+/-);Lrp6(-/-) mutant embryos provides important insight into the interplay between Wnt, Fgf and Nodal signals in patterning the early mouse embryo.  相似文献   

5.

Background

There are four cell lineages derived from intestinal stem cells that are located at the crypt and villus in the mammalian intestine the non-secretory absorptive enterocytes, and the secretory cells, which include mucous-secreting goblet cells, regulatory peptide-secreting enteroendocrine cells and antimicrobial peptide-secreting Paneth cells. Although fibroblast growth factor (Fgf) signaling is important for cell proliferation and differentiation in various tissues, its role in intestinal differentiation is less well understood.

Methodology/Principal Findings

We used a loss of function approach to investigate the importance of Fgf signaling in intestinal cell differentiation in zebrafish; abnormal differentiation of goblet cells was observed when Fgf signaling was inhibited using SU5402 or in the Tg(hsp70ldnfgfr1-EGFP) transgenic line. We identified Fgfr2c as an important receptor for cell differentiation. The number of goblet cells and enteroendocrine cells was reduced in fgfr2c morphants. In addition to secretory cells, enterocyte differentiation was also disrupted in fgfr2c morphants. Furthermore, proliferating cells were increased in the morphants. Interestingly, the loss of fgfr2c expression repressed secretory cell differentiation and increased cell proliferation in the mibta52b mutant that had defective Notch signaling.

Conclusions/Significance

In conclusion, we found that Fgfr2c signaling derived from mesenchymal cells is important for regulating the differentiation of zebrafish intestine epithelial cells by promoting cell cycle exit. The results of Fgfr2c knockdown in mibta52b mutants indicated that Fgfr2c signaling is required for intestinal cell differentiation. These findings provide new evidences that Fgf signaling is required for the differentiation of intestinal cells in the zebrafish developing gut.  相似文献   

6.
In the developing limb, Bmp4 is expressed in the apical ectodermal ridge (AER) and underlying mesoderm. Insight into the function of Bmp4 in limb development has been hampered by the early embryonic lethality of Bmp4 null embryos. We directly investigated Bmp4 using a conditional null allele of Bmp4 and the Prx1(cre) transgene to inactivate Bmp4 in limb bud mesoderm. The limb bud mesoderm of Prx1(cre);Bmp4 mutants was defective in production of Bmp4 but still competent to respond to Bmp signaling. Prx1(cre);Bmp4 mutant embryos had defective digit patterning including hindlimb preaxial polydactyly with posterior digit transformations. The Prx1(cre);Bmp4 mutants also had postaxial polydactyly with digit five duplications. Bmp4 mutant limbs had delayed induction and maturation of the AER that resulted in expanded Shh signaling. Moreover, the AER persisted longer in the Bmp4 mutant limb buds exposing the forming digits to prolonged Fgf8 signaling. Our data show that Bmp4 in limb mesoderm regulates AER induction and maturation and implicate signaling from the AER in regulation of digit number and identity.  相似文献   

7.
The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.  相似文献   

8.
To determine the importance of fibroblast growth factor receptors (fgfrs) 1 and 2 in the metanephric mesenchyme, we generated conditional knockout mice (fgfr(Mes-/-)). Fgfr1(Mes-/-) and fgfr2(Mes-/-) mice develop normal-appearing kidneys. Deletion of both receptors (fgfr1/2(Mes-/-)) results in renal aplasia. Fgfr1/2(Mes-/-) mice develop a ureteric bud (and occasionally an ectopic bud) that does not elongate or branch, and the mice do not develop an obvious metanephric mesenchyme. By in situ hybridization, regions of mutant mesenchyme near the ureteric bud(s) express Eya1 and Six1, but not Six2, Sall1, or Pax2, while the ureteric bud expresses Ret and Pax2 normally. Abnormally high rates of apoptosis and relatively low rates of proliferation are present in mutant mesenchyme dorsal to the mutant ureteric bud at embryonic day (E) 10.5, while mutant ureteric bud tissues undergo high rates of apoptosis by E11.5. Thus, fgfr1 and fgfr2 together are critical for normal formation of metanephric mesenchyme. While the ureteric bud(s) initiates, it does not elongate or branch infgfr1/2(Mes-/-) mice. In metanephric mesenchymal rudiments, fgfr1 and fgfr2 appear to function downstream of Eya1 and Six1, but upstream of Six2, Sall1, and Pax2. Finally, this is the first example of renal aplasia in a conditional knockout model.  相似文献   

9.
In order to understand how secreted signals regulate complex morphogenetic events, it is crucial to identify their cellular targets. By conditional inactivation of Fgfr1 and Fgfr2 and overexpression of the FGF antagonist sprouty 2 in different cell types, we have dissected the role of FGF signaling during heart outflow tract development in mouse. Contrary to expectation, cardiac neural crest and endothelial cells are not primary paracrine targets. FGF signaling within second heart field mesoderm is required for remodeling of the outflow tract: when disrupted, outflow myocardium fails to produce extracellular matrix and TGFbeta and BMP signals essential for endothelial cell transformation and invasion of cardiac neural crest. We conclude that an autocrine regulatory loop, initiated by the reception of FGF signals by the mesoderm, regulates correct morphogenesis at the arterial pole of the heart. These findings provide new insight into how FGF signaling regulates context-dependent cellular responses during development.  相似文献   

10.
Here we describe the isolation of the zebrafish fgfr3 gene, its structure and chromosomal location. Expression in wild type embryos occurs in the axial mesoderm, the diencephalon, the anterior hindbrain and the anterior spinal cord. In the hindbrain, a differential expression of fgfr3 was detected at several levels of intensity, with the highest expression in the posterior rhombomere 1 that is morphologically distinct from the anterior part, which develops into the cerebellum. Further, analysis of fgfr3 expression in mutants deficient in the formation of the midbrain-hindbrain boundary (MHB), noi(-/-) and ace(-/-), demonstrated that in the absence of Pax2.1 and FGF8 activity, the expression domains of FGFR3 expand into the MHB, tegmentum, cerebellum and optic tectum, which are the affected structures in these mutants.  相似文献   

11.
The adult cerebral hemispheres are connected to each other by specialized midline cell types and by three axonal tracts: the corpus callosum, the hippocampal commissure, and the anterior commissure. Many steps are required for these tracts to form, including early patterning and later axon pathfinding steps. Here, the requirement for FGF signaling in forming midline cell types and commissural axon tracts of the cerebral hemispheres is examined. Fgfr1, but not Fgfr3, is found to be essential for establishing all three commissural tracts. In an Fgfr1 mutant, commissural neurons are present and initially project their axons, but these fail to cross the midline that separates the hemispheres. Moreover, midline patterning defects are observed in the mutant. These defects include the loss of the septum and three specialized glial cell types, the indusium griseum glia, midline zipper glia, and glial wedge. Our findings demonstrate that FGF signaling is required for generating telencephalic midline structures, in particular septal and glial cell types and all three cerebral commissures. In addition, analysis of the Fgfr1 heterozygous mutant, in which midline patterning is normal but commissural defects still occur, suggests that at least two distinct FGF-dependent mechanisms underlie the formation of the cerebral commissures.  相似文献   

12.
13.
Members of the fibroblast growth factor (FGF) ligand family play a critical role in mesoderm formation in the frog Xenopus laevis. While many components of the signaling cascade triggered by FGF receptor activation have been identified, links between these intracellular factors and the receptor itself have been difficult to establish. We report here the characterization of Xenopus SNT-1 (FRS2alpha), a scaffolding protein previously identified as a mediator of FGF activity in other biological contexts. SNT-1 is widely expressed during early Xenopus development, consistent with a role for this protein in mesoderm formation. Ectopic SNT-1 induces mesoderm in Xenopus ectodermal explants, synergizes with low levels of FGF, and is blocked by inhibition of Ras activity, suggesting that SNT-1 functions to transmit signals from the FGF receptor during mesoderm formation. Furthermore, dominant-inhibitory SNT-1 mutants inhibit mesoderm induction by FGF, suggesting that SNT-1 is required for this process. Expression of dominant-negative SNT-1 in intact embryos blocks mesoderm formation and dramatically disrupts trunk and tail development, indicating a requirement for SNT-1, or a related factor inhibited by the mutant construct, during axis formation in vivo. Finally, we demonstrate that SNT-1 physically associates with the Src-like kinase Laloo, and that SNT-1 activity is required for mesoderm induction by Laloo, suggesting that SNT-1 and Laloo function as components of a signaling complex during mesoderm formation in the vertebrate.  相似文献   

14.
15.
Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube phenotypes in Nodal signaling mutants were caused by lack of mesendodermal/mesodermal tissues. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid‐late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling‐deficient sqt mutant and Lefty1overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm‐derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal‐induced mesendodermal/mesodermal precursors are competent to promote neurulation. genesis 54:3–18, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
We have analyzed the role of the zebrafish yolk cell in the processes of mesoderm induction and establishment of the organizer. By recombining blastomere-free yolk cells and animal cap tissue we have shown that the yolk cell itself can induce mesoderm in neighboring blastomeres. We further demonstrate the competence of all blastomeres to form mesoderm, suggesting the endogenous mesoderm inducing signal to be locally restricted. Ablation of the vegetal third of the yolk cell during the first 20 min of development does not interfere with mesoderm formation in general, but results in completely ventralized embryos. These embryos lack the notochord, neuroectoderm, and the anterior-most 14-15 somites, demonstrating that the ablation affects the formation of the trunk-, but not the tail region of the embryo. This suggests the presence of a trunk organizer in fish. The dorsalized mutant swirl (zbmp-2b) shows expanded dorsal structures and missing ventral structures. In contrast to the phenotypes obtained upon the ablation treatment in wild-type embryos, removal of the vegetal-most yolk in swirl mutants results in embryos which do form neuroectoderm and anterior trunk somites. However, both wild-type and swirl mutants lack a notochord upon vegetal yolk removal. These ablation experiments in wild-type and swirl mutant embryos demonstrate that in zebrafish dorsal determining factors originate from the vegetal part of the yolk cell. These factors set up two independent activities: one induces the notochord and the other is involved in the formation of the neuroectoderm and the trunk region by counteracting the function of swirl. In addition, these experiments show that the establishment of the anteroposterior axis is independent of the dorsoventral axis.  相似文献   

17.
18.
19.
Alternative splicing in the fibroblast growth factor receptor 1 (Fgfr1) locus generates a variety of splicing isoforms, including FGFR1alpha isoforms, which contain three immunoglobulin-like loops in the extracellular domain of the receptor. It has been previously shown that embryos carrying targeted disruptions of all major isoforms die during gastrulation, displaying severe growth retardation and defective mesodermal structures. Here we selectively disrupted the FGFR1alpha isoforms and found that they play an essential role in posterior mesoderm formation during gastrulation. We show that the mutant embryos lack caudal somites, develop spina bifida, and die at 9.5-12.5 days of embryonic development because they are unable to establish embryonic circulation. The primary defect is a failure of axial mesoderm cell migration toward the posterior portions of the embryos during gastrulation, as revealed by regional marker analysis and DiI labeling. In contrast, the anterior migration of the notochord is unaffected and the embryonic structures rostral to the forelimb are relatively normal. These data demonstrate that FGF/FGFR1alpha signals are posteriorizing factors that control node regression and posterior embryonic development.  相似文献   

20.
In vertebrates, wnt8 has been implicated in the early patterning of the mesoderm. To determine directly the embryonic requirements for wnt8, we generated a chromosomal deficiency in zebrafish that removes the bicistronic wnt8 locus. We report that homozygous mutants exhibit pronounced defects in dorso-ventral mesoderm patterning and in the antero-posterior neural pattern. Despite differences in their signaling activities, either coding region of the bicistronic RNA can rescue the deficiency phenotype. Specific interference of wnt8 translation by morpholino antisense oligomers phenocopies the deficiency, and interference with wnt8 translation in ntl and spt mutants produces embryos lacking trunk and tail. These data demonstrate that the zebrafish wnt8 locus is required during gastrulation to pattern both the mesoderm and the neural ectoderm properly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号