首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
On the bacteriocin plasmid p9B4-6 of Lactococcus lactis subsp. cremoris 9B4, a third bacteriocin determinant was identified. The genes encoding bacteriocin production and immunity resided on a 1.2-kb CelII-ScaI fragment and were located adjacent to one of two previously identified bacteriocin operons (M. J. van Belkum, B. J. Hayema, R. E. Jeeninga, J. Kok, and G. Venema, Appl. Environ. Microbiol. 57:492-498, 1991). The fragment was sequenced and analyzed by deletion and mutation analyses. The bacteriocin determinant consisted of two genes which were transcribed as an operon. The first gene (lcnB), containing 68 codons, was involved in bacteriocin activity. The second gene (lciB) contained 91 codons and was responsible for immunity. The specificity of this novel bacteriocin, designated lactococcin B, was different from that of the other two bacteriocins specified by p9B4-6. Part of the nucleotide sequence of the lactococcin B operon was similar to a nucleotide sequence also found in the two other bacteriocin operons of p9B4-6. This conserved region encompassed a nucleotide sequence upstream of the bacteriocin gene and the 5' part of the gene. When the lactococcin B operon was expressed in Escherichia coli by using a T7 RNA polymerase-specific promoter, antagonistic activity could be detected.  相似文献   

3.
On the bacteriocin plasmid p9B4-6 of Lactococcus lactis subsp. cremoris 9B4, a third bacteriocin determinant was identified. The genes encoding bacteriocin production and immunity resided on a 1.2-kb CelII-ScaI fragment and were located adjacent to one of two previously identified bacteriocin operons (M. J. van Belkum, B. J. Hayema, R. E. Jeeninga, J. Kok, and G. Venema, Appl. Environ. Microbiol. 57:492-498, 1991). The fragment was sequenced and analyzed by deletion and mutation analyses. The bacteriocin determinant consisted of two genes which were transcribed as an operon. The first gene (lcnB), containing 68 codons, was involved in bacteriocin activity. The second gene (lciB) contained 91 codons and was responsible for immunity. The specificity of this novel bacteriocin, designated lactococcin B, was different from that of the other two bacteriocins specified by p9B4-6. Part of the nucleotide sequence of the lactococcin B operon was similar to a nucleotide sequence also found in the two other bacteriocin operons of p9B4-6. This conserved region encompassed a nucleotide sequence upstream of the bacteriocin gene and the 5' part of the gene. When the lactococcin B operon was expressed in Escherichia coli by using a T7 RNA polymerase-specific promoter, antagonistic activity could be detected.  相似文献   

4.
The production of antimicrobial activities as well as the presence of bacteriocin structural genes (entA, entB, entP, entQ, cylL, entAS-48, bac31, and entL50A/B) were studied in 140 non-selected faecal enterococcal isolates recovered from wild animals. Eight different indicator strains (including Listeria monocytogenes, Pediococcus pentosaceus, and different enterococcal species) were used for antimicrobial activity detection. Twenty-five of the 140 enterococci (18%) showed antimicrobial activity against L. monocytogenes and 33 additional isolates (24%) showed antimicrobial activity against other indicator strains, but Listeria. At least one bacteriocin structural gene was detected in 17 of the 25 enterococci with antimicrobial activity against L. monocytogenes and different combinations of entA, entB, entP, entQ, entL50A/B, and cylL genes were detected; entA and entB were the most prevalent detected genes, and they were generally associated. Bacteriocin structural genes were detected in 10 of 33 isolates with antimicrobial activity against indicator strains other than Listeria, and the cylL gene was the most prevalent one, especially in E. faecalis isolates.  相似文献   

5.
Listeria innocua 743 produces an inhibitory activity demonstrating broad-spectrum inhibition of Listeria monocytogenes isolates. Gel-electrophoretic analysis of culture supernatants indicated that two inhibitors with different molecular weights were produced by this strain. Insertion of Tn917 into a 2.9 Kb plasmid (pHC743) generated mutants with either an impaired ability or a loss in ability to produce one of the inhibitors. Sequence analysis of the transposon insertion regions revealed the presence of two continuous open reading frames, the first encoding a new pediocin-like bacteriocin (lisA) and the second encoding a protein homologous with genes involved in immunity toward other bacteriocins (lisB). Translation of the bacteriocin gene (lisA) initiates from a noncanonical start codon and encodes a 71-amino-acid prebacteriocin which lacked the double glycine leader peptidase processing site common in other type II bacteriocins. Alignment of the sequence with the processed N termini of related bacteriocins suggests that the mature bacteriocin consists of 43 amino acids, with a predicted molecular mass of 4,484 Da. Mutants containing insertions into lisA were sensitive to the inhibitor, indicating that lisAB forms a single operon and that lisB represents the immunity protein. Cloning of an amplicon containing the lisAB operon into Escherichia coli resulted in expression and export of the bacteriocin. This finding confirms that the phenotype is dependent on the structural and immunity gene only and that export of this bacteriocin is sec dependent. This is the first confirmation of bacteriocin production in a Listeria spp., and it is of interest that this bacteriocin is closely related to the pediocin family of bacteriocins produced by lactic acid bacteria.  相似文献   

6.
Organization and nucleotide sequences of two lactococcal bacteriocin operons   总被引:12,自引:0,他引:12  
Two distinct regions of the Lactococcus lactis subsp. cremoris 9B4 plasmid p9B4-6, each of which specified bacteriocin production as well as immunity, have been sequenced and analyzed by deletion and frameshift mutation analyses. On a 1.8-kb ScaI-ClaI fragment specifying low antagonistic activity, three open reading frames (ORFs) were present, which were organized in an operon. The first two ORFs, containing 69 and 77 codons, respectively, were involved in bacteriocin activity, whereas the third ORF, containing 154 codons, was essential for immunity. Primer extension analysis indicated the presence of a promoter upstream of the ORFs. Two ORFs were present on a 1.3-kb ScaI-HindII fragment specifying high antagonistic activity. The first ORF, containing 75 codons, specified bacteriocin activity. The second ORF, containing 98 codons, specified immunity. The nucleotide sequences of both fragments upstream of the first ORFs as well as the first 20 bp of the first ORF of both bacteriocin operons appeared to be identical.  相似文献   

7.
Aims:  To identify the chemical structure of a bacteriocin, thermophilin 1277, produced by Streptococcus thermophilus SBT1277.
Methods and Results:  Thermophilin 1277 was purified and partial N-terminal sequence analysis revealed 6 unidentified amino acids amongst 31 amino acids residues. A 2·7-kbp region containing the thermophilin 1277 structural gene ( tepA ) encoding 58 amino acids was cloned and sequenced. Mature thermophilin 1277 (33 amino acids) was preceded by a 25-amino acid putative leader peptide containing a double glycine cleavage motif. Peptide sequence analysis following chemical modification of thermophilin 1277 revealed that the Cys21 and Cys29 residues form a disulfide bridge and that Thr8 or Thr10 forms two 3-methyllanthionines with Cys13 or Cys32 via thioether bridges. Antimicrobial activity was disrupted by ethanethiol or reductive agent treatments, indicating that the internal amino acid modifications are crucial for the activity.
Conclusions:  Thermophilin 1277 from Strep. thermophilus SBT1277 belongs to the class of AII-type lantibiotics that has a disulfide and two thioether bridges.
Significance and Impact of the Study:  This is the first report of a lantibiotic produced by a GRAS species of Strep. thermophilus ; thermophilin 1277 has a unique structure containing both a disulfide bridge and two thioether bridges that are crucial for its activity.  相似文献   

8.
A total of 636 vancomycin-resistant Enterococcus faecium (VRE) isolates obtained between 1994 and 1999 from the Medical School Hospital of the University of Michigan were tested for bacteriocin production. Of the 277 (44%) bacteriocinogenic strains, 21 were active against E. faecalis, E. faecium, E. hirae, E. durans, and Listeria monocytogenes. Of those 21 strains, a representative bacteriocin of strain VRE82, designated bacteriocin 43, was found to be encoded on mobilizable plasmid pDT1 (6.2 kbp). Nine open reading frames (ORFs), ORF1 to ORF9, were presented on pDT1 and were oriented in the same direction. The bacteriocin 43 locus (bac43) consists of the bacteriocin gene bacA (ORF1) and the immunity gene bacB (ORF2). The deduced bacA product is 74 amino acids in length with a putative signal peptide of 30 amino acids at the N terminus. The bacB gene encodes a deduced 95-amino-acid protein without a signal sequence. The predicted mature BacA protein (44 amino acids) showed sequence homology with the membrane-active class IIa bacteriocins of lactic acid bacteria and showed 86% homology with bacteriocin 31 from E. faecalis YI717 and 98% homology with bacteriocin RC714. Southern analysis with a bac43 probe of each plasmid DNA from the 21 strains showed hybridization to a specific fragment corresponding to the 6.2-kbp EcoRI fragment, suggesting that the strains harbored the pDT1-like plasmid (6.2 kb) which encoded the bacteriocin 43-type bacteriocin. The bac43 determinant was not identified among non-VRE clinical isolates.  相似文献   

9.
Plantaricin 423 is a class IIa bacteriocin produced by Lactobacillus plantarum isolated from sorghum beer. It has been previously determined that plantaricin 423 is encoded by a plasmid designated pPLA4, which is now completely sequenced. The plantaricin 423 operon shares high sequence similarity with the operons of coagulin, pediocin PA-1, and pediocin AcH, with small differences in the DNA sequence encoding the mature bacteriocin peptide and the immunity protein. Apart from the bacteriocin operon, no significant sequence similarity could be detected between the DNA or translated sequence of pPLA4 and the available DNA or translated sequences of the plasmids encoding pediocin AcH, pediocin PA-1, and coagulin, possibly indicating a different origin. In addition to the bacteriocin operon, sequence analysis of pPLA4 revealed the presence of two open reading frames (ORFs). ORF1 encodes a putative mobilization (Mob) protein that is homologous to the pMV158 superfamily of mobilization proteins. Highest sequence similarity occurred between this protein and the Mob protein of L. plantarum NCDO 1088. ORF2 encodes a putative replication protein that revealed low sequence similarity to replication proteins of plasmids pLME300 from Lactobacillus fermentum and pYIT356 from Lactobacillus casei. The immunity protein of plantaricin 423 contains 109 amino acids. Although plantaricin 423 shares high sequence similarity with the pediocin PA-1 operon, no cross-reactivity was recorded between the immunity proteins of plantaricin 423 and pediocin PA-1.  相似文献   

10.
Bacteriocin production in Lactobacillus sake LTH673 involves at least four operons: a regulatory operon (sppIPKR); two operons encoding bacteriocins and their immunity proteins (sppAiA and orfX); and an operon needed for secretion (sppTE). We show here that the response regulator encoded by sppR in L. sake LTH673, as well as the homologous response regulators encoded by plnC and plnD in Lactobacillus plantarum C11, bind to characteristic repeats found in the -80 to -40 regions of spp operons. The promoters controlling bacteriocin operons are strictly regulated, and their activity is increased more than 1000-fold upon activation. Constitutive expression for the regulatory and transport operons is driven, at least in part, by promoters upstream of the -80 to -40 regions. Peak promoter activity of the regulatory and transporter operons precedes that of the two bacteriocin operons. The results reveal how promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus differ in strength, leakiness and timing of their activity.  相似文献   

11.
Listeria innocua 743 produces an inhibitory activity demonstrating broad-spectrum inhibition of Listeria monocytogenes isolates. Gel-electrophoretic analysis of culture supernatants indicated that two inhibitors with different molecular weights were produced by this strain. Insertion of Tn917 into a 2.9 Kb plasmid (pHC743) generated mutants with either an impaired ability or a loss in ability to produce one of the inhibitors. Sequence analysis of the transposon insertion regions revealed the presence of two continuous open reading frames, the first encoding a new pediocin-like bacteriocin (lisA) and the second encoding a protein homologous with genes involved in immunity toward other bacteriocins (lisB). Translation of the bacteriocin gene (lisA) initiates from a noncanonical start codon and encodes a 71-amino-acid prebacteriocin which lacked the double glycine leader peptidase processing site common in other type II bacteriocins. Alignment of the sequence with the processed N termini of related bacteriocins suggests that the mature bacteriocin consists of 43 amino acids, with a predicted molecular mass of 4,484 Da. Mutants containing insertions into lisA were sensitive to the inhibitor, indicating that lisAB forms a single operon and that lisB represents the immunity protein. Cloning of an amplicon containing the lisAB operon into Escherichia coli resulted in expression and export of the bacteriocin. This finding confirms that the phenotype is dependent on the structural and immunity gene only and that export of this bacteriocin is sec dependent. This is the first confirmation of bacteriocin production in a Listeria spp., and it is of interest that this bacteriocin is closely related to the pediocin family of bacteriocins produced by lactic acid bacteria.  相似文献   

12.
13.
ACA-DC 0040 produced an antimicrobial agent, which was named thermophilin T, active against several lactic acid bacteria strains of different species and food spoilage bacteria, such as Clostridium sporogenes C22/10 and Cl. tyrobutyricum NCDO-1754. The crude antimicrobial compound is sensitive to proteolytic enzymes and α-amylase, heat-stable (100 °C for 30 min), resistant to pH exposure at pH 1–12 and demonstrates a bactericidal mode of action against the sensitive strain Lactococcus cremoris CNRZ-117. The production of bacteriocin was optimized approximately 10-fold in an aerobic fermenter held at constant pH 5·8 and 6·2. Ultrafiltration experiments with culture supernatant fluids containing the bacteriocin, and further estimation of molecular weight with gel filtration chromatography, revealed that bacteriocin in the native form has a molecular weight in excess of 300 kDa. SDS-gel electrophoresis of partially purified thermophilin T showed that bacteriocin activity was associated with a protein band of approximately 2·5 kDa molecular mass.  相似文献   

14.
Two distinct regions of the Lactococcus lactis subsp. cremoris 9B4 plasmid p9B4-6, each of which specified bacteriocin production as well as immunity, have been sequenced and analyzed by deletion and frameshift mutation analyses. On a 1.8-kb ScaI-ClaI fragment specifying low antagonistic activity, three open reading frames (ORFs) were present, which were organized in an operon. The first two ORFs, containing 69 and 77 codons, respectively, were involved in bacteriocin activity, whereas the third ORF, containing 154 codons, was essential for immunity. Primer extension analysis indicated the presence of a promoter upstream of the ORFs. Two ORFs were present on a 1.3-kb ScaI-HindII fragment specifying high antagonistic activity. The first ORF, containing 75 codons, specified bacteriocin activity. The second ORF, containing 98 codons, specified immunity. The nucleotide sequences of both fragments upstream of the first ORFs as well as the first 20 bp of the first ORF of both bacteriocin operons appeared to be identical.  相似文献   

15.
Bacillus subtilis produces many antibiotics of varying structures and specificity. Here we identify a prominent role for sigma(W), an extracytoplasmic function (ECF) sigma factor, in providing intrinsic resistance to antimicrobial compounds produced by other Bacilli. By using a panel of B. subtilis mutants disrupted for each of the 30 known sigma(W)-dependent operons we identified resistance genes for at least three different antimicrobial compounds. The ydbST and fosB genes contribute to resistance to antimicrobial compound(s) produced by B. amyloliquefaciens FZB42, the yqeZyqfAB operon provides resistance to the SPbeta prophage-encoded bacteriocin sublancin, and the yknWXYZ operon and yfhL provide resistance to the antimicrobial peptide SdpC. YfhL encodes a paralogue of SdpI, a membrane protein that provides immunity to SdpC. In competition experiments, we identify sigma(W) as a key factor in allowing B. subtilis to resist antibiotic killing and encroachment by competing strains. Together with the previous observation that sigma(W) provides inducible resistance against the Streptomyces antibiotic fosfomycin, these studies support the notion that sigma(W) controls an antibiosis regulon important in the microbial ecology of soil bacteria.  相似文献   

16.
Bacteriocins produced by Lactobacillus salivarius isolates derived from a gastrointestinal origin have previously demonstrated efficacy for in vivo protection against Listeria monocytogenes infection. In this study, comparative genomic analysis was employed to investigate the intraspecies diversity of seven L. salivarius isolates of human and porcine intestinal origin, based on the genome of the well-characterized bacteriocin-producing strain L. salivarius UCC118. This revealed a highly conserved megaplasmid-borne gene cluster in these strains involved in the regulation and secretion of two-component class IIb bacteriocins. However, considerable intraspecific variation was observed in the structural genes encoding the bacteriocin peptides. They ranged from close relatives of abp118, such as salivaricin P, which differs by 2 amino acids, to completely novel bacteriocins, such as salivaricin T, which is characterized in this study. Salivaricin T inhibits closely related lactobacilli and bears little homology to previously characterized salivaricins. Interestingly, the two peptides responsible for salivaricin T activity, SalTα and SalTβ, share considerable identity with the component peptides of thermophilin 13, a bacteriocin produced by Streptococcus thermophilus. Furthermore, the salivaricin locus of strain DPC6488 also encodes an additional novel one-component class IId anti-listerial bacteriocin, salivaricin L. These findings suggest a high level of redundancy in the bacteriocins that can be produced by intestinal L. salivarius isolates using the same enzymatic production and export machinery. Such diversity may contribute to their ability to dominate and compete within the complex microbiota of the mammalian gut.  相似文献   

17.
Carnobacterium maltaromaticum UAL26 produces the antimicrobial peptides (bacteriocins) piscicolin 126, first isolated from C. maltaromaticum JG126, and carnobacteriocin BM1, first isolated from C. maltaromaticum LV17. C. maltaromaticum UAL26 is especially inhibitory to strains of Listeria monocytogenes. Bacteriocin activity is not observable in the supernatant of cultures of UAL26 grown in liquid media at 25°C, but at temperatures less than 19°C bacteriocin activity can be detected. In contrast to JG126, the piscicolin 126 operon is downregulated in UAL26 at higher temperature, and piscicolin 126 mRNA is not detected when UAL26 is grown at 25°C. Bacteriocin production in UAL26 grown at 15°C can be induced by addition of 10−10 M of chemically synthesized piscicolin 126 induction peptide (PisN). However, induction of bacteriocin production in UAL26 grown at 25°C requires 10−7 M of PisN. The sequence of the piscicolin 126 operon in UAL26 contains 34 single nucleotide differences compared with the piscicolin 126 operon in JG126, including single nucleotide differences in the immunity, histidine kinase, dedicated ABC-transporter and accessory genes, as well as a single nucleotide deletion in the transport accessory gene. This deletion causes a frameshift, resulting in truncation of the PisE transport accessory protein in UAL26.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

18.
19.
The production of bacteriocins can be favorable for colonization of the host by eliminating other bacterial species that share the same environment. In Streptococcus pneumoniae, the pnc (blp) locus encoding putative bacteriocins, immunity, and export proteins is controlled by a two-component system similar to the comCDE system required for the induction of genetic competence. A detailed comparison of the pnc clusters of four genetically distinct isolates confirmed the great plasticity of this locus and documented several repeat sequences. Members of the multiple-antibiotic-resistant Spain23F-1 clone, one member of the Spain9V-3 clone, sensitive 23F strain 2306, and the TIGR4 strain produced bactericidal substances active against other gram-positive bacteria and in some cases against S. pneumoniae as well. However, other strains did not show activity against the indicator strains despite the presence of a bacteriocin cluster, indicating that other factors are required for bacteriocin activity. Analysis of strain 2306 and mutant derivatives of this strain confirmed that bacteriocin production was dependent on the two-component regulatory system and genes involved in bacteriocin transport and processing. At least one other bacteriocin gene, pncE, is located elsewhere on the chromosome and might contribute to the bacteriocin activity of this strain.  相似文献   

20.
Garvicin ML (GarML) is a circular bacteriocin produced by Lactococcus garvieae DCC43. The recently published draft genome of this strain allowed determination of the genetic background for bacteriocin production. Bioinformatic analysis identified a gene cluster consisting of nine open reading frames likely involved in the production of and immunity to GarML. The garA gene encodes the bacteriocin precursor, garX a large transmembrane protein, garBCDE a putative immunity protein (garB) followed by an ATPase and two transmembrane proteins, and garFGH a putative ABC transporter complex. Functional genetic analysis revealed that deletion of garFGH had no effect on sensitivity to or production of GarML. In contrast, deletion of garBCDE or inactivation of garX resulted in high-level sensitivity to GarML and completely abolished production of active bacteriocin. Mass spectrometry of culture supernatants revealed that wild-type cultures contained the mature circular form as well as the linear forms of the bacteriocin, both with and without the three-amino-acid leader sequence, while bacteriocin-negative mutants contained only the linear forms. These results indicate that cleavage of the leader peptide precedes circularization and is likely performed by a functional entity separate from the GarML gene cluster. To our knowledge, this is the first conclusive evidence for these processes being separated in time. Loss of immunity and antimicrobial activity in addition to our inability to detect the circular bacteriocin in the ΔgarBCDE and garX::pCG47 mutants demonstrate that both these units are indispensable for GarML biosynthesis as well as immunity. Furthermore, the results indicate that these genes are implicated in the circularization of the bacteriocin and that their functions are probably interlinked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号