首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs are negative regulators of gene expression that play a key role in cell-type specific differentiation and modulation of cell function and have been proposed to be involved in neovascularization. Previously, using an extensive cloning and sequencing approach, we identified miR-126 to be specifically and highly expressed in human endothelial cells (EC). Here, we demonstrate EC-specific expression of miR-126 in capillaries and the larger vessels in vivo . We therefore explored the potential role of miR-126 in arteriogenesis and angiogenesis. Using miR-reporter constructs, we show that miR-126 is functionally active in EC in vitro and that it could be specifically repressed using antagomirs specifically targeting miR-126. To study the consequences of miR-126 silencing on vascular regeneration, mice were injected with a single dose of antagomir-126 or a control 'scramblemir' and exposed to ischemia of the left hindlimb by ligation of the femoral artery. Although miR-126 was effectively silenced in mice treated with a single, high dose (HD) of antagomir-126, laser Doppler perfusion imaging did not show effects on blood flow recovery. In contrast, quantification of the capillary density in the gastrocnemius muscle revealed that mice treated with a HD of antagomir-126 had a markedly reduced angiogenic response. Aortic explant cultures of the mice confirmed the role of miR-126 in angiogenesis. Our data demonstrate a facilitary function for miR-126 in ischemia-induced angiogenesis and show the efficacy and specificity of antagomir-induced silencing of EC-specific microRNAs in vivo .  相似文献   

2.

Aims

Dietary flavonoid intake shows a significant inverse association with mortality from coronary heart disease, incidence of myocardial infarction and stroke. Quercetin is one of the most common flavonoids in our diet and has several favorable biological activities. Quercetin glucosides, which are enzymatically trans-glycosylated isoquercitrin, have high water-solubility and bioavailability compared with quercetin. Here, we investigated the effects of quercetin glucosides on collateral development in a murine hindlimb ischemia model.

Main methods

We induced hindlimb ischemia in 24- to 32-week-old male C3H/HeJ mice by resecting the right femoral artery. Then, 0.5% carboxymethyl cellulose (control) or quercetin glucosides (100 mg/kg/day) were administered daily by gavage. Blood flow was monitored weekly by laser Doppler imaging.

Key findings

Recovery of blood flow to the ischemic leg was significantly enhanced by quercetin glucosides (blood flow ratio at 4 weeks: control, 0.57 ± 0.11; quercetin glucosides, 0.95 ± 0.10, p < 0.05). Furthermore, anti-CD31 immunostaining revealed that quercetin glucosides increased capillary density in the ischemic muscle (control, 200 ± 24/mm2; quercetin glucosides, 364 ± 41/mm2, p < 0.01). Quercetin glucosides did not promote tumor growth. The beneficial effect of quercetin glucosides was abrogated in eNOS-deficient mice.

Significance

These results suggest that quercetin glucosides may have therapeutic potential to promote angiogenesis in ischemic tissue.  相似文献   

3.
Sumi M  Sata M  Toya N  Yanaga K  Ohki T  Nagai R 《Life sciences》2007,80(6):559-565
Therapeutic angiogenesis has emerged as a promising therapy to treat patients with ischemic diseases. Transplantation of bone marrow cells (BMCs) is reported to augment collateral development in ischemic organs either by differentiating into vascular cells or by secreting angiogenic cytokines. Recent evidence suggests that adipose tissues secrete a number of humoral factors and contain pluripotent stem cells. Here, we evaluated the therapeutic potential of adipose tissue-derived cells to promote angiogenesis in a mouse model of hind limb ischemia. Stromal vascular fraction cells (SVFs) were isolated from inguinal adipose tissue. Endothelial-like cells or smooth muscle-like cells could be obtained from the culture of SVFs in the presence of growth factors. Freshly isolated BMCs, SVFs, or mature adipocytes were transplanted into the ischemic hind limb of mice. SVFs significantly augmented collateral development as determined by the restoration of blood perfusion and capillary density of the ischemic muscle. Angiogenic effects of SVFs were as potent as those of BMCs. Mature adipocytes showed no proangiogenic effects. The ischemic muscle contained endothelial cells or smooth muscle cells that derived from the transplanted SVFs and BMCs. These results suggest that SVFs might be used to promote angiogenesis in ischemic tissues.  相似文献   

4.
Kee HJ  Ahn KY  Choi KC  Won Song J  Heo T  Jung S  Kim JK  Bae CS  Kim KK 《FEBS letters》2004,569(1-3):307-316
Murine brain-specific angiogenesis inhibitor 1 and 2 (mBAI1, mBAI2) are involved in angiogenesis after cerebral ischemia. In this study, mBAI3 was cloned and characterized. Northern and Western blot analyses demonstrated a unique developmental expression pattern in the brain. The level of mBAI3 in brain peaked 1 day after birth, unlike mBAI1 and mBAI2, which peaked 10 days after birth. In situ hybridization analyses of the brain showed the same localization of BAI3 as BAI1 and BAI2, which includes most neurons of cerebral cortex and hippocampus. In the in vivo focal cerebral ischemia model, BAI3 expression decreased from 0.5 h after hypoxia until 8 h, but returned to control level after 24 h. The expression of vascular endothelial growth factor following ischemia showed an inverse pattern. The decreased expressions of BAIs in high-grade gliomas were observed, but BAI3 expression was generally lower in malignant gliomas than in normal brain. Our results indicate that the expression and distribution of BAI3 in normal brain, but not its developmental expression, are very similar to those of BAI1 and BAI2, and that BAI3 may participate in the early phases of ischemia-induced brain angiogenesis and in brain tumor progression.  相似文献   

5.
In spite of the current optimal therapy, the mortality of patients with ischemic heart disease (IHD) remains high, particularly in cases with diabetes mellitus (DM) as a co-morbidity. Myocardial infarct size is a major determinant of prognosis in IHD patients, and development of a novel strategy to limit infarction is of great clinical importance. Ischemic preconditioning (PC), postconditioning (PostC) and their mimetic agents have been shown to reduce infarct size in experiments using healthy animals. However, a variety of pharmacological agents have failed to demonstrate infarct size limitation in clinical trials. One of the possible reasons for the discrepancy between the results of animal experiments and clinical trials is that co-morbidities, including DM, modified myocardial responses to ischemia/reperfusion and to cardioprotective agents. Here we summarize observations of the effects of DM on myocardial infarct size and ischemic PC and PostC and discuss perspectives for protection of DM hearts.  相似文献   

6.
ABSTRACT: BACKGROUND: Far infra-red (IFR) therapy was shown to exert beneficial effects in cardiovascular system, but effects of IFR on endothelial progenitor cell (EPC) and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process.Materials and methodsStarting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocine (STZ)-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group). The latter mice were placed in an IFR dry sauna at 34[DEGREE SIGN]C for 30 min once per day for 5 weeks. RESULTS: Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1+/Flk-1+) mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group). However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP+/CD31+ double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H2O2 production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice. CONCLUSIONS: Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ-induced diabetic mice, and these beneficial effects may derive from enhancement of EPC functions and homing process.  相似文献   

7.
Cellular remodeling during angiogenesis in the lung is poorly described. Furthermore, it is the systemic vasculature of the lung and surrounding the lung that is proangiogenic when the pulmonary circulation becomes impaired. In a mouse model of chronic pulmonary thromboembolism, after left pulmonary artery ligation (LPAL), the intercostal vasculature, in proximity to the ischemic lung, proliferates and invades the lung (12). In the present study, we performed a detailed investigation of the kinetics of remodeling using histological sections of the left lung of C57Bl/6J mice after LPAL (4 h to 20 days) or after sham surgery. New vessels were seen within the thickened visceral pleura 4 days after LPAL predominantly in the upper portion of the left lung. Connections between new vessels within the pleura and pulmonary capillaries were clearly discerned by 7 days after LPAL. The visceral pleura and the lung parenchyma showed intense tissue remodeling, as evidenced by markedly elevated levels of both proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive cells. Rapidly dividing cells were predominantly macrophages and type II pneumocytes. The increased apoptotic activity was further quantified by caspase-3 activity, which showed a sixfold increase relative to naive lungs, by 24 h after LPAL. Because sham surgeries had little effect on measured parameters, we conclude that both thoracic wound healing and pulmonary ischemia are required for systemic neovascularization.  相似文献   

8.
We focused our studies on single endothelial cells (ECs) scattered in extracellular matrix in lung cancer tumors. Neovascularization was evaluated in 100 tumors obtained from patients operated for lung cancer, in relation to histological type, tumor differentiation and clinical stage of the disease. Angiogenic objects (single endothelial cells and microvessels) were identified by immunohistochemistry using monoclonal antibodies against von Willebrand factor. The count of angiogenic objects per 1 mm2 in each section was determined in a "hot spot" located at the margin of the tumor. We used an arbitrary scale of angiogenesis intensity: 1 - 0-200, 2 - 201-400, 3 - >400 angiogenic objects/mm2. A majority (57%) of the examined cases belonged to the group 2. The angiogenesis intensity measured by the single EC numbers/mm2 correlates with the histological type and the differentiation of the tumors. There was no such a correlation when the angiogenesis intensity was measured by counting total angiogenic objects (microvessels + EC) number/mm2. Single EC number/mm2 in different histological types of cancer were as follows: 162+/-121 in squamous cell (SqCC), 194+/-71 in adenocarcinoma (AdC), 225+/-145 in large cell (LCC), 264+/-52 in small cell (SCC), 279+/-173 in combined cancer. The differences between the EC counts in the different histological types of lung cancers were statistically significant in the following pairs: SqCC vs SCC (p=0.0233) and AdC vs SCC (p=0.0409).The correlation between EC count in the "hot spot" and the grade of tumor differentiation was statistically significant for G1 vs G4 (p=0.0007) and G1 vs G2 (p=0.0411). Our results suggest that higher numbers of EC/mm2 may confirm rapid development of angioneogenesis. These relations should be examined in larger series of cases.  相似文献   

9.
Using the murine model of type II collagen-induced arthritis (CIA), we studied its evolution over time by histopathological, immunohistochemical and clinical evaluations. The first clinical symptoms appeared 28 days post-inoculation (dpi), with bovine type II collagen, with an average arthritic index of 1.00 +/- 0.48 corresponding to erythema of the articulation. The disease progressed, and by 70 dpi showed an average arthritic index of 3.83 +/- 0.27 corresponding to edema and maximum deformation, with ankylosis. Computed morphometry demonstrated that, in comparison to controls, the induction of CIA, produces a significant and increasing accumulation of inflammatory cells, fibrosis (p < 0.0001) and cartilage destruction (p = 0.0029). Likewise, the area of von Willebrand factor (vWF) immunostaining, as an indicator of endothelial proliferation, increased significantly from 28 dpi (p < 0.0001), in CIA mice compared to controls. However, the effective synovial vascularization, calculated as the synovial vascular bed area index, significantly increased by 42 dpi (p = 0.0014). This indicates that the activation and proliferation of endothelium becomes significant before an effective vascularization area is formed. The apoptosis index was also an earlier indicator of cartilage damage, becoming significant from 28 dpi in comparison to controls (p < 0.0001). Finally, it was observed that the increase in the arthritic index showed a strong correlation with the increase in both angiogenesis (r = 0.95; p = 0.0021) and apoptosis (r = 0.90; p = 0.0015). In conclusion, a robust correlation between synovial membrane inflammation, angiogenesis and chondrocyte apoptosis, with respect to the increase in the clinical severity of CIA, has been demonstrated by a quantitative computer-assisted immunomorphometric analysis.  相似文献   

10.
Mechanical ventilation is a risk factor for the development of bronchopulmonary dysplasia in premature infants. Fifteen minutes of high tidal volume (V(T)) ventilation induces inflammatory cytokine expression in small airways and lung parenchyma within 3 h. Our objective was to describe the temporal progression of cytokine and maturation responses to lung injury in fetal sheep exposed to a defined 15-min stretch injury. After maternal anesthesia and hysterotomy, 129-day gestation fetal lambs (n = 7-8/group) had the head and chest exteriorized. Each fetus was intubated, and airway fluid was gently removed. While placental support was maintained, the fetus received ventilation with an escalating V(T) to 15 ml/kg without positive end-expiratory pressure (PEEP) for 15 min using heated, humidified 100% nitrogen. The fetus was then returned to the uterus for 1, 6, or 24 h. Control lambs received a PEEP of 2 cmH(2)O for 15 min. Tissue samples from the lung and systemic organs were evaluated. Stretch injury increased the early response gene Egr-1 and increased expression of pro- and anti-inflammatory cytokines within 1 h. The injury induced granulocyte/macrophage colony-stimulating factor mRNA and matured monocytes to alveolar macrophages by 24 h. The mRNA for the surfactant proteins A, B, and C increased in the lungs by 24 h. The airway epithelium demonstrated dynamic changes in heat shock protein 70 (HSP70) over time. Serum cortisol levels did not increase, and induction of systemic inflammation was minimal. We conclude that a brief period of high V(T) ventilation causes a proinflammatory cascade, a maturation of lung monocytic cells, and an induction of surfactant protein mRNA.  相似文献   

11.
Bone marrow (BM)-derived stem/progenitor cells play an important role in ischemia-induced angiogenesis in cardiovascular diseases. Heat shock factor 1 (HSF1) is known to be induced in response to hypoxia and ischemia. We examined whether HSF1 contributes to ischemia-induced angiogenesis through the mobilization and recruitment of BM-derived stem/progenitor cells using HSF1-knockout (KO) mice. After the induction of ischemia, blood flow and microvessel density in the ischemic hindlimb were significantly lower in the HSF1-KO mice than in the wild-type (WT) mice. The mobilization of BM-derived Sca-1- and c-kit-positive cells in peripheral blood after ischemia was significantly lower in the HSF1-KO mice than in the WT mice. BM stem/progenitor cells from HSF1-KO mice showed a significant decrease in their recruitment to ischemic tissue and in migration, adhesion, and survival when compared with WT mice. Blood flow recovery in the ischemic hindlimb significantly decreased in WT mice receiving BM reconstitution with donor cells from HSF1-KO mice. Conversely, blood flow recovery in the ischemic hindlimb significantly increased in HSF1-KO mice receiving BM reconstitution with donor cells from WT mice. These findings suggest that HSF1 contributes to ischemia-induced angiogenesis by regulating the mobilization and recruitment of BM-derived stem/progenitor cells.  相似文献   

12.
Although several molecular players have been described that play a role during the early phases of lung development, it is still unknown how the vasculature develops in relation to the airways. Two opposing models describe development of lung vasculature: one suggests that both vasculogenesis and angiogenesis are involved, whereas the second describes vasculogenesis as the primary mechanism. Therefore, we examined the development of the murine pulmonary vasculature through a morphological analysis from the onset of lung development [9.5 days postcoital (dpc)] until the pseudoglandular stage (13.5 dpc). We analyzed fetal lungs of Tie2-LacZ transgenic mice as well as serial sections of wild-type lungs stained with endothelial-specific antibodies (Flk-1, Fli-1, and PECAM-1). Embryos were processed with intact blood circulation to maintain the integrity of the vasculature; hence individual vessels could be identified with accuracy through serial section analysis. Furthermore, circulating primitive erythrocytes, formed exclusively by the blood islands in the yolk sac, are trapped in vessels during fixation, which proves the connection with the embryonic circulation. We report that from the first morphological sign of lung development, a clear vascular network exists that is in contact with the embryonic circulation. We propose distal angiogenesis as a new concept for early pulmonary vascular morphogenesis. In this model, capillary networks surround the terminal buds and expand by formation of new capillaries from preexisting vessels as the lung bud grows. The fact that at an early embryonic stage a complete vascular network exists may be important for the general understanding of embryonic development.  相似文献   

13.
Alterations in the composition of the glycocalyx of venular endothelium in postcapillary venules (rat mesentery) were explored in models of inflammation and ischemia-reperfusion injury. Lectins were covalently linked to fluorescently labeled microspheres (0.1-microm diameter) or directly labeled with FITC. Adhesion of lectins specific for glucose and galactose residues of glycosaminoglycans (GAGs) and other components of the endothelial glycocalyx decreased dramatically after superfusion of the mesentery with the chemoattractant N-formylmethionyl-leucyl-phenylalanine and during reperfusion after 60-min ischemia. These reductions were significantly attenuated by superfusion with pertussis toxin (PTX), suggesting that shedding of glycocalyx was mediated by G proteins. Adhesion of microspheres linked with antibody for syndecan-1, a major proteoglycan to which GAGs are bound, revealed increased labeling as GAGs were lost and permitted greater numbers of spheres to adhere to the protein core, which was not shed. Induction of ischemia by occluding proximal microvessels for 60 min resulted in a 40% increase in galactosaminoglycans and a 15% increase in glucosaminoglycans on the endothelium, which was not inhibited by PTX. Reperfusion of vessels led to a rapid loss of GAGs that was inhibited by pretreatment with PTX, with 40% of galactosaminoglycans and 25% of glucosaminoglycans accumulated being removed by G protein-mediated shedding and the remainder freely convected away by fluid shear. We conclude that the composition of the glycocalyx results from a balance of the rate of biosynthesis of GAGs by the endothelial cell and their shedding, which may be mediated by intracellular and/or membrane-bound proteases or lyases released or activated by G protein signaling.  相似文献   

14.
We have investigated the effect of benzo[a]pyrene (B[a]P), a carcinogen of tobacco smoke and an agonist for the aryl hydrocarbon receptor (AHR), on hypoxia-induced angiogenesis. Ischemia was induced by femoral artery ligation in wild-type and AHR-null mice, and the animals were subjected to oral administration of B[a]P (125 mg/kg) once a week. Exposure to B[a]P up-regulated the expression of metallothionein in the ischemic hindlimb and markedly inhibited ischemia-induced angiogenesis in wild-type mice. The amounts of interleukin-6 and of vascular endothelial growth factor (VEGF) mRNA in the ischemic hindlimb of wild-type mice were reduced by exposure to B[a]P. These various effects of B[a]P were markedly attenuated in AHR-null mice. Our observations suggest that the loss of the inhibitory effect of B[a]P on ischemia-induced angiogenesis apparent in AHR-null mice may be attributable to maintenance of interleukin-6 expression and consequent promotion of angiogenesis through up-regulation of VEGF expression.  相似文献   

15.
16.
Nitric oxide (NO) mediates endothelial angiogenesis via inducing the expression of integrin α(v)β(3). During angiogenesis, endothelial cells adhere to and migrate into the extracellular matrix through integrins. Collagen IV binds to integrin α(v)β(3), leading to integrin activation, which affects a number of signaling processes in endothelial cells. In the present study, we evaluated the role of collagen IV in NO-induced angiogenesis. We found that NO donor 2,2'-(hydroxynitrosohydrazino)bis-ethanamine (NOC-18) causes increases in collagen IV mRNA and protein in lung endothelial cells and collagen IV release into the medium. Addition of collagen IV into the coating of endothelial culture increases endothelial monolayer wound repair, proliferation, and tube formation. Inhibition of collagen IV synthesis using gene silencing attenuates NOC-18-induced increases in monolayer wound repair, cell proliferation, and tube formation as well as in the phosphorylation of focal adhesion kinase (FAK). Integrin blocking antibody LM609 prevents NOC-18-induced increase in endothelial monolayer wound repair. Inhibition of protein kinase G (PKG) using the specific PKG inhibitor KT5823 or PKG small interfering RNA prevents NOC-18-induced increases in collagen IV protein and mRNA and endothelial angiogenesis. Together, these results indicate that NO promotes collagen IV synthesis via a PKG signaling pathway and that the increase in collagen IV synthesis contributes to NO-induced angiogenesis of lung endothelial cells through integrin-FAK signaling. Manipulation of collagen IV could be a novel approach for the prevention and treatment of diseases such as alveolar capillary dysplasia, severe pulmonary arterial hypertension, and tumor invasion.  相似文献   

17.
The multifunctional cytokine interleukin (IL)-6 has been shown to modulate inflammation and angiogenesis. In a mouse model of lung angiogenesis induced by chronic left pulmonary artery ligation (LPAL), we previously showed increased expression of IL-6 mRNA in lung homogenates 4 h after the onset of pulmonary ischemia. To determine whether IL-6 influences both new vessel growth and inflammatory cell influx, we studied wild-type (WT) and IL-6-deficient C57Bl/6J (KO) mice after LPAL (4 h and 1, 7, 14 days). We measured IL-6 protein of the lung by ELISA, the lavage cell profile of the left lung, and new systemic vessel growth with radiolabeled microspheres (14 days after LPAL) in WT and KO mice. We confirmed a 2.4-fold increase in IL-6 protein in the left lung of WT mice compared with right lung 4 h after LPAL. A significant increase in lavaged neutrophils (7.5% of total cells) was observed only in WT mice 4 h after LPAL. New vessel growth was significantly attenuated in KO relative to WT (0.7 vs. 1.9% cardiac output). In an additional series, treatment of WT mice with anti-neutrophil antibody demonstrated a reduction in lavaged neutrophils 4 h after LPAL; however, IL-6 protein remained elevated and neovascularization to the left lung (2.3% cardiac output) was not altered. These results demonstrate that IL-6 plays an important modulatory role in lung angiogenesis, but the changes are not dependent on trapped neutrophils.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号