首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considerable structural similarities are present in a region of approximately 270 amino acids in most known cyclic nucleotide phosphodiesterase (PDE) sequences, opening the possibility that this region encodes the catalytic domain of the enzyme. To test this hypothesis, the structure of a high affinity cAMP PDE (cAMP-PDE) was analyzed by deletion mutations and site-directed mutagenesis. A ratPDE3 cDNA was mutated using a strategy based on fragment amplification by polymerase chain reaction. The effect of the introduced mutations was determined by expressing wild type and mutated proteins in prokaryotic and eukaryotic cells. The level of expression of the PDE protein was monitored by immunoblot analysis using two specific cAMP-PDE polyclonal antibodies and by measuring the PDE activity. After removal of a 99-amino acid region at the carboxyl terminus flanking the conserved domain, the protein retains its catalytic activity even though its Km and velocity were changed. Internal deletions at the amino terminus of this PDE showed that the enzyme activity was increased when a 97-amino acid fragment (from Tyr49 to Lys145) was removed. Further deletions within the amino terminus produced inactive proteins. Within the domain that appears essential for catalysis, 1 threonine and 2 serine residues are conserved in all PDEs. Substitutions of the invariant threonine (Thr349) present in the most conserved region with alanine, proline, or serine yielded proteins of the correct size and a level of expression comparable to the wild type PDE. However, in both expression systems used, proteins were completely devoid of the ability to hydrolyze cyclic nucleotides, except when the threonine was substituted with a serine. Conversely, mutations of 2 other conserved serine residues (Ser305 and Ser398) present in the catalytic domain either had no effect or produced changes only in Km and Vmax, but did not abolish catalytic activity. In addition, 2 histidine residues (His278 and His311) present in proximity to Thr349 appeared to be essential for the structure of the catalytic domain, since any substitution performed in these residues yielded an inactive enzyme. Mutations of a serine residue (Ser295) in the region homologous to the cAMP binding site of the regulatory subunit of the cAMP-dependent protein kinase demonstrated that this region does not have the same function in the two proteins. These data provide direct evidence that a 37-kDa domain, which in part corresponds to the region of conservation in all PDEs, contains the catalytic domain, and that threonine and histidine residues are probably involved in catalysis and/or are essential for the conformation of an active enzyme.  相似文献   

2.
The crystal and molecular structure of a triacylglyceride lipase (EC 3.1.1.3) from the fungus Rhizomucor miehei was analyzed using X-ray single crystal diffraction data to 1.9 A resolution. The structure was refined to an R-factor of 0.169 for all available data. The details of the molecular architecture and the crystal structure of the enzyme are described. A single polypeptide chain of 269 residues is folded into a rather unusual singly wound beta-sheet domain with predominantly parallel strands, connected by a variety of hairpins, loops and helical segments. All the loops are right-handed, creating an uncommon situation in which the central sheet is asymmetric in that all the connecting fragments are located on one side of the sheet. A single N-terminal alpha-helix provides the support for the other, distal, side of the sheet. Three disulfide bonds (residues 29-268, 40-43, 235-244) stabilize the molecule. There are four cis peptide bonds, all of which precede proline residues. In all, 230 ordered water molecules have been identified; 12 of them have a distinct internal character. The catalytic center of the enzyme is made up of a constellation of three residues (His257, Asp203 and Ser144) similar in structure and function to the analogous (but not homologous) triad found in both of the known families of serine proteinases. The fourth residue in this system equivalent to Thr/Ser in proteinases), hydrogen bonded to Asp, is Tyr260. The catalytic site is concealed under a short amphipatic helix (residues 85 to 91), which acts as "lid", opening the active site when the enzyme is adsorbed at the oil-water interface. In the native enzyme the "lid" is held in place by hydrophobic interactions.  相似文献   

3.
The ABC-ATPase GlcV energizes a binding protein-dependent ABC transporter that mediates glucose uptake in Sulfolobus solfataricus. Here, we report high-resolution crystal structures of GlcV in different states along its catalytic cycle: distinct monomeric nucleotide-free states and monomeric complexes with ADP-Mg(2+) as a product-bound state, and with AMPPNP-Mg(2+) as an ATP-like bound state. The structure of GlcV consists of a typical ABC-ATPase domain, comprising two subdomains, connected by a linker region to a C-terminal domain of unknown function. Comparisons of the nucleotide-free and nucleotide-bound structures of GlcV reveal re-orientations of the ABCalpha subdomain and the C-terminal domain relative to the ABCalpha/beta subdomain, and switch-like rearrangements in the P-loop and Q-loop regions. Additionally, large conformational differences are observed between the GlcV structures and those of other ABC-ATPases, further emphasizing the inherent flexibility of these proteins. Notably, a comparison of the monomeric AMPPNP-Mg(2+)-bound GlcV structure with that of the dimeric ATP-Na(+)-bound LolD-E171Q mutant reveals a +/-20 degrees rigid body re-orientation of the ABCalpha subdomain relative to the ABCalpha/beta subdomain, accompanied by a local conformational difference in the Q-loop. We propose that these differences represent conformational changes that may have a role in the mechanism of energy-transduction and/or allosteric control of the ABC-ATPase activity in bacterial importers.  相似文献   

4.
The crystal structure of a chitinase from Carica papaya has been solved by the molecular replacement method and is reported to a resolution of 1.5 A. This enzyme belongs to family 19 of the glycosyl hydrolases. Crystals have been obtained in the presence of N-acetyl- d-glucosamine (GlcNAc) in the crystallization solution and two well-defined GlcNAc molecules have been identified in the catalytic cleft of the enzyme, at subsites -2 and +1. These GlcNAc moieties bind to the protein via an extensive network of interactions which also involves many hydrogen bonds mediated by water molecules, underlying their role in the catalytic mechanism. A complex of the enzyme with a tetra-GlcNAc molecule has been elaborated, using the experimental interactions observed for the bound GlcNAc saccharides. This model allows to define four major substrate interacting regions in the enzyme, comprising residues located around the catalytic Glu67 (His66 and Thr69), the short segment E89-R90 containing the second catalytic residue Glu89, the region 120-124 (residues Ser120, Trp121, Tyr123, and Asn124), and the alpha-helical segment 198-202 (residues Ile198, Asn199, Gly201, and Leu202). Water molecules from the crystal structure were introduced during the modeling procedure, allowing to pinpoint several additional residues involved in ligand binding that were not previously reported in studies of poly-GlcNAc/family 19 chitinase complexes. This work underlines the role played by water-mediated hydrogen bonding in substrate binding as well as in the catalytic mechanism of the GH family 19 chitinases. Finally, a new sequence motif for family 19 chitinases has been identified between residues Tyr111 and Tyr125.  相似文献   

5.
Engineered antibody paratopes with limited sequence diversity permit assessment of the roles played by different amino acid side chains in creating the high-affinity, high-specificity interactions characteristic of antibodies. We describe a paratope raised against the human ErbB family member HER2, using a binary diversity tryptophan/serine library displayed on phage. Fab37 binds to the extracellular domain of HER2 with sub-nanomolar affinity. An X-ray structure at 3.2 Å resolution reveals a contact paratope composed almost entirely of tryptophan and serine residues. Mutagenesis experiments reveal which of these side chains are more important for direct antigen interactions and which are more important for conformational flexibility. The crystal lattice contains an unprecedented trimeric arrangement of HER2 closely related to previously observed homodimers of the related epidermal growth factor receptor.  相似文献   

6.
The ABC-ATPase GlcV from Sulfolobus solfataricus energizes an ABC transporter mediating glucose uptake. In ABC transporters, two ABC-ATPases are believed to form a head-to-tail dimer, with both monomers contributing conserved residues to each of the two productive active sites. In contrast, isolated GlcV, although active, behaves apparently as a monomer in the presence of ATP-Mg(2+), AMPPNP-Mg(2+) or ATP alone. To resolve the oligomeric state of the active form of GlcV, we analysed the effects of changing the putative catalytic base, residue E166, into glutamine or alanine. Both mutants are, to different extents, defective in ATP hydrolysis, and gel-filtration experiments revealed their dimerization in the presence of ATP-Mg(2+). Mutant E166Q forms dimers also in the presence of ATP alone, without Mg(2+), whereas dimerization of mutant E166A requires both ATP and Mg(2+). These results confirm earlier reports for other ABC-ATPases, but for the first time suggest the occurrence of a fast equilibrium between ATP-bound monomers and ATP-bound dimers. We further mutated two highly conserved residues of the ABC signature motif, S142 and G144, into alanine. The G144A mutant is completely inactive and fails to dimerize, indicating an essential role of this residue in stabilizing the productive dimeric state. Mutant S142A retained considerable activity, and was able to dimerize, thus implying that the interaction of the serine with ATP is not essential for dimerization and catalysis. Furthermore, although the E166A and G144A mutants each alone are inactive, they produce an active heterodimer, showing that disruption of one active site can be tolerated. Our data suggest that ABC-ATPases with partially degenerated catalytic machineries, as they occur in vivo, can still form productive dimers to drive transport.  相似文献   

7.
EnvZ is a histidine protein kinase important for osmoregulation in bacteria. While structural data are available for this enzyme, the nucleotide binding pocket is not well characterized. The ATP binding domain (EnvZB) was expressed, and its ability to bind nucleotide derivatives was assessed using equilbrium and stopped-flow fluorescence spectroscopy. The fluorescence emission of the trinitrophenyl derivatives, TNP-ATP and TNP-ADP, increase upon binding to EnvZB. The fluorescence enhancements were quantitatively abolished in the presence of excess ADP, indicating that the fluorescent probes occupy the nucleotide binding pocket. Both TNP-ATP and TNP-ADP bind to EnvZB with high affinity (K(d) = 2-3 microM). The TNP moiety attached to the ribose ring does not impede access of the fluorescent nucleotide into the binding pocket. The association rate constant for TNP-ADP is 7 microM(-1) s(-1), a value consistent with those for natural nucleotides and the eucaryotic protein kinases. Using competition experiments, it was found that ATP and ADP bind 30- and 150-fold more poorly, respectively, than the corresponding TNP-derivatized forms. Surprisingly, the physiological metal Mg(2+) is not required for ADP binding and only enhances ATP affinity by 3-fold. Although portions of the nucleotide pocket are disordered, the recombinant enzyme is highly stable, unfolding only at temperatures in excess of 70 degrees C. The unusually high affinity of the TNP derivatives compared to the natural nucleotides suggests that hydrophobic substitutions on the ribose ring enforce an altered binding mode that may be exploited for drug design strategies.  相似文献   

8.
9.
CYP152A1 is an unusual, peroxygenase enzyme that catalyzes the beta- or alpha-hydroxylation of fatty acids by efficiently introducing an oxygen atom from H2O2 to the fatty acid. To clarify the mechanistic roles of amino acid residues in this enzyme, we have used site-directed mutagenesis of residues in the putative distal helix and measured the spectroscopic and enzymatic properties of the mutant proteins. Initially, we carried out Lys-scanning mutagenesis of amino acids in this region to determine residues of CYP152A1 that might have a mechanistic role. Among the Lys mutants, only P243K gave an absorption spectrum characteristic of a nitrogenous ligand-bound form of a ferric P450. Further investigation of the Pro243 site revealed that a P243H mutant also exhibited a nitrogen-bound form, but that the mutants P243A or P243S did not. On the hydroxylation of myristic acid by the Lys mutants, we observed a large decrease in activity for R242K and A246K. We therefore examined other mutants at amino acid positions 242 and 246. At position 246, an A246K mutant showed a roughly 19-fold lower affinity for myristic acid than the wild type. Replacing Ala246 with Ser decreased the catalytic activity, but did not affect affinity for the substrate. An A246V mutant showed slightly reduced activity and moderately reduced affinity. At position 242, an R242A showed about a fivefold lower affinity than the wild type for myristic acid. The Km values for H2O2 increased and Vmax values decreased in the order of wild type, R242K, and R242A when H2O2 was used; furthermore, Vmax/Km was greatly reduced in R242A compared with the wild type. If cumene hydroperoxide was used instead of H2O2, however, the Km values were not affected much by these substitutions. Together, our results suggest that in CYP152A1 the side chain of Pro243 is located close to the iron at the distal side of a heme molecule; the fatty acid substrate may be positioned near to Ala246 in the catalytic pocket, although Ala246 does not participate in hydrophobic interactions with the substrate; and that Arg242 is a critical residue for substrate binding and H2O2-specific catalysis.  相似文献   

10.
Modular glycoside hydrolases that degrade the plant cell wall often contain noncatalytic carbohydrate-binding modules (CBMs) that interact with specific polysaccharides within this complex macromolecule. CBMs, by bringing the appended catalytic module into intimate and prolonged association with the substrate, increase the rate at which these enzymes are able to hydrolyze glycosidic bonds. Recently, the crystal structure of the family 15 CBM (CBM15) from Cellvibrio japonicus (formerly Pseudomonas cellulosa) Xyn10C was determined in complex with the ligand xylopentaose. In this report we have used a rational design approach, informed by the crystal structure of the CBM15-ligand complex, to probe the importance of hydrophobic stacking interactions and both direct and water-mediated hydrogen bonds in the binding of this protein to xylan and xylohexaose. The data show that replacing either Trp 171 or Trp 186, which stack against xylose residues n and n + 2 in xylopentaose, with alanine abolished ligand binding. Similarly, replacing Asn 106, Gln 171, and Gln 217, which make direct hydrogen bonds with xylopentaose, with alanine greatly reduced the affinity of the protein for its saccharide ligands. By contrast, disrupting water-mediated hydrogen bonds between CBM15 and xylopentaose by introducing the mutations S108A, Q167A, Q221A, and K223A had little effect on the affinity of the protein for xylan or xylohexaose. These data indicate that CBM15 binds xylan and xylooligosaccharides via the same interactions and provide clear evidence that direct hydrogen bonds are a key determinant of affinity in a type B CBM. The generic importance of these data is discussed.  相似文献   

11.
l-Gulonate 3-dehydrogenase (GDH) is a bifunctional dimeric protein that functions not only as an NAD+-dependent enzyme in the uronate cycle but also as a taxon-specific λ-crystallin in rabbit lens. Here we report the first crystal structure of GDH in both apo form and NADH-bound holo form. The GDH protomer consists of two structural domains: the N-terminal domain with a Rossmann fold and the C-terminal domain with a novel helical fold. In the N-terminal domain of the NADH-bound structure, we identified 11 coenzyme-binding residues and found 2 distinct side-chain conformers of Ser124, which is a putative coenzyme/substrate-binding residue. A structural comparison between apo form and holo form and a mutagenesis study with E97Q mutant suggest an induced-fit mechanism upon coenzyme binding; coenzyme binding induces a conformational change in the coenzyme-binding residues Glu97 and Ser124 to switch their activation state from resting to active, which is required for the subsequent substrate recruitment. Subunit dimerization is mediated by numerous intersubunit interactions, including 22 hydrogen bonds and 104 residue pairs of van der Waals interactions, of which those between two cognate C-terminal domains are predominant. From a structure/sequence comparison within GDH homologues, a much greater degree of interprotomer interactions (both polar and hydrophobic) in the rabbit GDH would contribute to its higher thermostability, which may be relevant to the other function of this enzyme as λ-crystallin, a constitutive structural protein in rabbit lens. The present crystal structures and amino acid mutagenesis studies assigned the role of active-site residues: catalytic base for His145 and substrate binding for Ser124, Cys125, Asn196, and Arg231. Notably, Arg231 participates in substrate binding from the other subunit of the GDH dimer, indicating the functional significance of the dimeric state. Proper orientation of the substrate-binding residues for catalysis is likely to be maintained by an interprotomer hydrogen-bonding network of residues Asn196, Gln199, and Arg231, suggesting a network-based substrate recognition of GDH.  相似文献   

12.
Photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Spinacia oleracea belongs to a wide group of GAPDHs found in most organisms displaying oxygenic photosynthesis, including cyanobacteria, green and red algae, and higher plants. As a major catalytic difference with respect to glycolytic GAPDH, photosynthetic GAPDH exhibits dual cofactor specificity toward pyridine nucleotides with a preference for NADP(H). Here we report the crystal structure of NAD-complexed recombinant A(4)-GAPDH (NAD-A(4)-GAPDH) from Spinacia oleracea, expressed in Escherichia coli. Its superimposition onto native A(4)-GAPDH complexed with NADP (NADP-A(4)-GAPDH) pinpoints specific conformational changes resulting from cofactor replacement. In photosynthetic NAD-A(4)-GAPDH, the side chain of Asp32 is oriented toward the coenzyme to interact with the adenine ribose diol, similar to glycolytic GAPDHs (NAD-specific). On the contrary, in NADP-A(4)-GAPDH Asp32 moves away to accommodate the additional 2'-phosphate group of the coenzyme and to minimize electrostatic repulsion. Asp32 rotation is allowed by the presence of the small residue Ala40, conserved in most photosynthetic GAPDHs, replacing bulky amino acid side chains in glycolytic GAPDHs. While in NADP-A(4)-GAPDH two amino acids, Thr33 and Ser188, are involved in hydrogen bonds with the 2'-phosphate group of NADP, in the NAD-complexed enzyme these interactions are lacking. The crystallographic structure of NAD-A(4)-GAPDH highlights that four residues, Thr33, Ala40, Ser188, and Ala187 (Leu, Leu, Pro, and Leu respectively, in glycolytic Bacillus stearothermophilus GAPDH sequence) are of primary importance for the dual cofactor specificity of photosynthetic GAPDH. These modifications seem to trace the minimum evolutionary route for a primitive NAD-specific GAPDH to be converted into the NADP-preferring enzyme of oxygenic photosynthetic organisms.  相似文献   

13.
We report our progress in understanding the structure-function relationship of the interaction between protein inhibitors and several serine proteases. Recently, we have determined high resolution solution structures of two inhibitors Apis mellifera chymotrypsin inhibitor-1 (AMCI-I) and Linum usitatissimum trypsin inhibitor (LUTI) in the free state and an ultra high resolution X-ray structure of BPTI. All three inhibitors, despite totally different scaffolds, contain a solvent exposed loop of similar conformation which is highly complementary to the enzyme active site. Isothermal calo- rimetry data show that the interaction between wild type BPTI and chymotrypsin is entropy driven and that the enthalpy component opposes complex formation. Our research is focused on extensive mutagenesis of the four positions from the protease binding loop of BPTI: P1, P1', P3, and P4. We mutated these residues to different amino acids and the variants were characterized by determination of the association constants, stability parameters and crystal structures of protease-inhibitor complexes. Accommodation of the P1 residue in the S1 pocket of four proteases: chymotrypsin, trypsin, neutrophil elastase and cathepsin G was probed with 18 P1 variants. High resolution X-ray structures of ten complexes between bovine trypsin and P1 variants of BPTI have been determined and compared with the cognate P1 Lys side chain. Mutations of the wild type Ala16 (P1') to larger side chains always caused a drop of the association constant. According to the crystal structure of the Leu16 BPTI-trypsin complex, introduction of the larger residue at the P1' position leads to steric conflicts in the vicinity of the mutation. Finally, mutations at the P4 site allowed an improvement of the association with several serine proteases involved in blood clotting. Conversely, introduction of Ser, Val, and Phe in place of Gly12 (P4) had invariably a destabilizing effect on the complex with these proteases.  相似文献   

14.
Polyhydroxybutyrate is a microbial polyester that can be produced from renewable resources, and is degraded by the enzyme polyhydroxybutyrate depolymerase. The crystal structures of polyhydroxybutyrate depolymerase from Penicillium funiculosum and its S39 A mutant complexed with the methyl ester of a trimer substrate of (R)-3-hydroxybutyrate have been determined at resolutions of 1.71 A and 1.66 A, respectively. The enzyme is comprised of a single domain, which represents a circularly permuted variant of the alpha/beta hydrolase fold. The catalytic residues Ser39, Asp121, and His155 are located at topologically conserved positions. The main chain amide groups of Ser40 and Cys250 form an oxyanion hole. A crevice is formed on the surface of the enzyme, to which a single polymer chain can be bound by predominantly hydrophobic interactions with several hydrophobic residues. The structure of the S39A mutant-trimeric substrate complex reveals that Trp307 is responsible for the recognition of the ester group adjacent to the scissile group. It is also revealed that the substrate-binding site includes at least three, and possibly four, subsites for binding monomer units of polyester substrates. Thirteen hydrophobic residues, which are exposed to solvent, are aligned around the mouth of the crevice, forming a putative adsorption site for the polymer surface. These residues may contribute to the sufficient binding affinity of the enzyme for PHB granules without a distinct substrate-binding domain.  相似文献   

15.
Guan R  Roderick SL  Huang B  Cook PF 《Biochemistry》2008,47(24):6322-6328
A crystal structure of serine acetyltransferase (SAT) with cysteine bound in the serine subsite of the active site shows that both H154 and H189 are within hydrogen-bonding distance to the cysteine thiol [Olsen, L. R., Huang, B., Vetting, M. W., and Roderick, S. L. (2004) Biochemistry 43, 6013 -6019]. In addition, H154 is in an apparent dyad linkage with D139. The structure suggests that H154 is the most likely catalytic general base and that H189 and D139 may also play important roles during the catalytic reaction. Site-directed mutagenesis was performed to mutate each of these three residues to Asn, one at a time. The V1/Et value of all of the single mutant enzymes decreased, with the largest decrease (approximately 1240-fold) exhibited by the H154N mutant enzyme. Mutation of both histidines, H154N/H189N, gave a V1/Et approximately 23700-fold lower than that of the wild-type enzyme. An increase in K Ser was observed for the H189N, D139N, and H154N/H189N mutant enzymes, while the H154N mutant enzyme gave an 8-fold decrease in K Ser. For all three single mutant enzymes, V1/Et and V1/K Ser Et decrease at low pH and give a pKa of about 7, while the V1/Et of the double mutant enzyme was pH independent. The solvent deuterium kinetic isotope effects on V 1 and V1/K Ser decreased compared to wild type for the H154N mutant enzyme and increased for the H189N mutant enzyme but was about the same as that of wild type for D139N and H154N/H189N. Data suggest that H154, H189, and D139 play different catalytic roles for SAT. H154 likely serves as a general base, accepting a proton from the beta-hydroxyl of serine as the tetrahedral intermediate is formed upon nucleophilic attack on the thioester carbonyl of acetyl-CoA. However, activity is not completely lost upon elimination of H154, and thus, H189 may be able to serve as a backup general base at a lower efficiency compared to H154; it also aids in binding and orienting the serine substrate. Aspartate 139, in dyad linkage with H154, likely facilitates catalysis by increasing the basicity of H154.  相似文献   

16.
SufC, a cytoplasmic ABC-ATPase, is one of the most conserved Suf proteins. SufC forms a stable complex with SufB and SufD, and the SufBCD complex interacts with other Suf proteins in the Fe-S cluster assembly. We have determined the crystal structure of SufC from Thermus thermophilus HB8 in nucleotide-free and ADP-Mg-bound states at 1.7A and 1.9A resolution, respectively. The overall architecture of the SufC structure is similar to other ABC ATPases structures, but there are several specific motifs in SufC. Three residues following the end of the Walker B motif form a novel 3(10) helix which is not observed in other ABC ATPases. Due to the novel 3(10) helix, a conserved glutamate residue involved in ATP hydrolysis is flipped out. Although this unusual conformation is unfavorable for ATP hydrolysis, salt-bridges formed by conserved residues and a strong hydrogen-bonding network around the novel 3(10) helix suggest that the novel 3(10) helix of SufC is a rigid conserved motif. Compared to other ABC-ATPase structures, a significant displacement occurs at a linker region between the ABC alpha/beta domain and the alpha-helical domain. The linker conformation is stabilized by a hydrophobic interaction between conserved residues around the Q loop. The molecular surfaces of SufC and the C-terminal helices of SufD (PDB code: 1VH4) suggest that the unusual linker conformation conserved among SufC proteins is probably suitable for interacting with SufB and SufD.  相似文献   

17.
Endo-1,4-Xylanase II is an enzyme which degrades the linear polysaccharide beta-1,4-xylan into xylose. This enzyme shows highest enzyme activity around 55 °C, even without being stabilized by the disulphide bridges. A set of nine high resolution crystal structures of Xylanase II (1.11–1.80 Å) from Trichoderma reesei were selected and analyzed in order to identify the invariant water molecules, ion pairs and water-mediated ionic interactions. The crystal structure (PDB-id: 2DFB) solved at highest resolution (1.11 Å) was chosen as the reference and the remaining structures were treated as mobile molecules. These structures were then superimposed with the reference molecule to observe the invariant water molecules using 3-dimensional structural superposition server. A total of 37 water molecules were identified to be invariant molecules in all the crystal structures, of which 26 invariant molecules have hydrogen bond interactions with the back bone of residues and 21 invariant water molecules have interactions with side chain residues. The structural and functional roles of these water molecules and ion pairs have been discussed. The results show that the invariant water molecules and ion pairs may be involved in maintaining the structural architecture, dynamics and function of the Endo-1,4-Xylanase II.  相似文献   

18.
Chymotrypsin is a prominent member of the family of serine proteases. The present studies demonstrate the presence of a native fragment containing 14 residues from Ile16 to Trp29 in alpha-chymotrypsin that binds to chymotrypsin at the active site with an exceptionally high affinity of 2.7 +/- 0.3 x 10(-11) M and thus works as a highly potent competitive inhibitor. The commercially available alpha-chymotrypsin was processed through a three phase partitioning system (TPP). The treated enzyme showed considerably enhanced activity. The 14 residue fragment was produced by autodigestion of a TPP-treated alpha-chymotrypsin during a long crystallization process that lasted more than four months. The treated enzyme was purified and kept for crystallization using vapour the diffusion method at 295 K. Twenty milligrams of lyophilized protein were dissolved in 1 mL of 25 mM sodium acetate buffer, pH 4.8. It was equilibrated against the same buffer containing 1.2 M ammonium sulfate. The rectangular crystals of small dimensions of 0.24 x 0.15 x 0.10 mm(3) were obtained. The X-ray intensity data were collected at 2.2 angstroms resolution and the structure was refined to an R-factor of 0.192. An extra electron density was observed at the binding site of alpha-chymotrypsin, which was readily interpreted as a 14 residue fragment of alpha-chymotrypsin corresponding to Ile-Val-Asn-Gly-Glu-Glu-Ala-Val-Pro-Gly-Ser-Trp-Pro-Trp(16-29). The electron density for the eight residues of the C-terminus, i.e. Ala22-Trp29, which were completely buried in the binding cleft of the enzyme, was of excellent quality and all the side chains of these eight residues were clearly modeled into it. However, the remaining six residues from the N-terminus, Ile16-Glu21 were poorly defined although the backbone density was good. There was a continuous electron density at 3.0 sigma between the active site Ser195 Ogamma and the carbonyl carbon atom of Trp29 of the fragment. The final refined coordinates showed a distance of 1.35 angstroms between Ser195 Ogamma and Trp29 C indicating the presence of a covalent linkage between the enzyme and the native fragment. This meant that the enzyme formed an acyl intermediate with the autodigested fragment Ile16-Trp29. In addition to the O-C covalent bond, there were several hydrogen bonds and hydrophobic interactions between the enzyme and the native fragment. The fragment showed a high complementarity with the binding site of alpha-chymotrypsin and the buried part of the fragment matched excellently with the corresponding buried part of Turkey ovomucoid inhibitor of alpha-chymotrypsin.  相似文献   

19.
The majority of adenovirus serotypes can bind to the coxsackievirus and adenovirus receptor (CAR) on human cells despite only limited conservation of the amino acid residues that comprise the receptor-binding sites of these viruses. Using a fluorescence anisotropy-based assay, we determined that the recombinant knob domain of the fiber protein from adenovirus serotype (Ad) 2 binds the soluble, N-terminal domain (domain 1 (D1)) of CAR with 8-fold greater affinity than does the recombinant knob domain from Ad12. Homology modeling predicted that the increased affinity of Ad2 knob for CAR D1 could result from additional contacts within the binding interface contributed by two residues, Ser408 and Tyr477, which are not conserved in the Ad12 knob. Consistent with this structural model, substitution of serine and tyrosine for the corresponding residues in the Ad12 knob (P417S and S489Y) increased the binding affinity by 4- and 8-fold, respectively, whereas the double mutation increased binding affinity 10-fold. X-ray structure analysis of Ad12 knob mutants P417S and S489Y indicated that both substituted residues potentially could form additional hydrogen bonds across the knob-CAR interface. Structural changes resulting from these mutations were highly localized, implying that the high tolerance for surface variation conferred by the stable knob scaffold can minimize the impact of antigenic drift on binding specificity and affinity during evolution of virus serotypes. Our results suggest that the interaction of knob domains from different adenovirus serotypes with CAR D1 can be accurately modeled using the Ad12 knob-CAR D1 crystal structure as a template.  相似文献   

20.
The isolated reactive site beta-hairpin loop of Bowman-Birk-type proteinase inhibitors has become a widely studied proteinomimetic because it retains the three-dimensional structure and much of the inhibitory potency of the corresponding region of the complete protein. Here we analyse the role of the P1' Ser residue which is highly conserved and intramolecularly hydrogen bonded in the complete proteins. A combined kinetic and structural analysis of variant proteinomimetic peptides demonstrates that the hydrogen-bond potential of the side-chain oxygen atom of the P1' Ser is not essential for the integrity of the reactive site loop and that it provides only a small contribution to the trypsin affinity and no apparent contribution to the stability against tryptic turnover. We conclude that the potential of the P1' side chain to engineer improved inhibition and selectivity for serine proteinases is best explored further in concert with the side chains of the P2 and P5' residues which may interact or compete for the same space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号