首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to demonstrate the efficacy of a novel peroxisome proliferator-activated receptor (PPAR) agonist and known PPARalpha and PPARdelta agonists to increase HDL-cholesterol (HDL-C) in the St. Kitts vervet, a nonhuman primate model of atherosclerosis. Four groups (n = 6) were studied and each group was assigned one of the following "treatments": a) vehicle only (vehicle); b) the PPARdelta selective agonist GW501516 (GW); c) the PPARalpha/delta agonist T913659 (T659); and d) the PPARalpha agonist TriCor (fenofibrate). No statistically significant changes were seen in body weight, total plasma cholesterol, plasma triglycerides, VLDL-C, LDL-C, or apolipoprotein B (apoB) concentrations. Each of the PPARalpha and PPARdelta agonists investigated in this study increased plasma HDL-C, apoA-I, and apoA-II concentrations and increased HDL particle size in St. Kitts vervets. The maximum percentage increase in HDL-C from baseline for each group was as follows: vehicle, 5%; GW, 43%; T659, 43%; and fenofibrate, 20%. Treatment with GW and T659 resulted in an increase in medium-sized HDL particles, whereas fenofibrate showed increases in large HDL particles. These data provide additional evidence that PPARalpha and PPARdelta agonists (both mixed and selective) have beneficial effects on HDL-C in these experimental primates.  相似文献   

2.
A series of 3-(4-alkoxyphenyl)propanoic acid derivatives was prepared as candidate peroxisome proliferator-activated receptor (PPAR) delta-selective agonists, based on our previously discovered potent human PPARalpha/delta dual agonist TIPP-401 as a lead compound. Structure-activity relationship studies clearly indicated the importance of the chain length of the alkoxy group at the 4-position, and the n-butoxy compound exhibited the most potent PPARdelta transactivation activity and highest PPARdelta selectivity. The (S)-enantiomer of a representative compound exhibited extremely potent PPARdelta transactivation activity, comparable with or somewhat superior to that of the known PPARdelta-selective agonist, GW-501516. The representative compound regulated the expression of genes involved in lipid and glucose homeostasis, and should be useful not only as a chemical tool to study PPARdelta function, but also as a candidate drug for the treatment of metabolic syndrome.  相似文献   

3.
A series of amphipathic 3-phenylbenzisoxazoles were found to be potent agonists of human PPARalpha, gamma and delta. The optimization of acid proximal structure for in vitro and in vivo potency is described. Results of po dosed efficacy studies in the db/db mouse model of type 2 diabetes showed efficacy equal or superior to Rosiglitazone in correcting hyperglycemia and hypertriglyceridemia. Good functional receptor selectivity for PPARalpha and gamma over PPARdelta can be obtained.  相似文献   

4.
3-(4-Alkoxyphenyl)propanoic acid derivatives were prepared as candidate peroxisome proliferator-activated receptor (PPAR) alpha/delta/gamma pan agonists, based on our previous SAR studies directed toward the development of subtype-selective PPAR agonists. Those studies indicated that the steric bulkiness of substituents introduced at the distal benzene ring had an important influence on PPAR activity. The finding that a 4-adamantyl derivative exhibited not only PPARalpha/delta activity but also significant PPARgamma activity prompted us to search for structurally novel phenylpropanoic acid derivatives with more potent adipocyte differentiation activity than the well-known PPARgamma agonist, rosiglitazone, as well as well-balanced PPARalpha and PPARdelta agonistic activities. A representative phenylpropanoic acid derivative (12) bearing a 4-adamantylphenyl substituent proved to be a well-balanced PPAR-pan agonist with activities to regulate the expression of genes involved in lipid and glucose homeostasis, and should be useful as a candidate drug for the treatment of altered PPAR function.  相似文献   

5.
Recent literature has suggested the benefit of selective PPARdelta agonists for the treatment of atherosclerosis and other disease states associated with the metabolic syndrome. Herein we report the synthesis and structure-activity relationships of a series of novel and selective PPARdelta agonists. Our search began with identification of a novel benzothiophene template which was modified by the addition of various thiazolyl, isoxazolyl, and benzyloxy-benzyl moieties. Further elucidation of the SAR led to the identification of benzofuran and indole based templates. During the course of our research, we discovered three new chemical templates with varying degrees of affinity and potency for PPARdelta versus the PPARalpha and PPARgamma subtypes.  相似文献   

6.
A series of alpha-alkyl-substituted phenylpropanoic acids was prepared as dual agonists of peroxisome proliferator-activated receptors alpha and delta (PPARalpha/delta). Structure-activity relationship studies indicated that the shape of the linking group and the shape of the substituent at the distal benzene ring play key roles in determining the potency and the selectivity of PPAR subtype transactivation. Structure-activity relationships among the amide series (10) and the reversed amide series (13) are similar, but not identical, especially in the case of the compounds bearing a bulky hydrophobic substituent at the distal benzene ring, indicating that the hydrophobic tail part of the molecules in these two series binds at somewhat different positions in the large binding pocket of PPAR. alpha-Alkyl-substituted phenylpropanoic acids of (S)-configuration were identified as potent human PPARalpha/delta dual agonists. Representative compounds exhibited marked nuclear receptor selectivity for PPARalpha and PPARdelta. Subtype-selective PPAR activation was also examined by analysis of the mRNA expression of PPAR-regulated genes.  相似文献   

7.
Oxazole containing glycine and oximinobutyric acid derivatives were synthesized as PPARalpha agonists by incorporating polymethylene spacer as a replacement of commonly used phenylene group that connects the acidic head with lipophilic tail. Compound 13a was found to be a selective and potent PPARalpha agonist. Further 1,3-dioxane-2-carboxylic acid derivative 20 was synthesized by replacing the tetramethylene spacer of NS-220, a selective PPARalpha agonist with phenylene group and found to exhibit PPARalpha/gamma dual agonism. These results suggest that compounds possessing polymethylene spacer between pharmacophore and lipophilic tail exhibit predominantly PPARalpha agonism whereas those with an aromatic phenylene spacer shows PPARalpha/gamma dual agonism.  相似文献   

8.
A series of oxadiazole-substituted alpha-isopropoxy phenylpropanoic acids with dual agonist activity on PPARalpha and PPARgamma is described. Several of these compounds also showed partial agonist activity on PPARdelta. Resolution of one analogue showed that PPARalpha and PPARgamma activity resided in mainly one enantiomer, whereas PPARdelta activity was retained in both enantiomers.  相似文献   

9.
The peroxisome proliferator-activated receptors (PPARs) include three receptor subtypes encoded by separate genes: PPARalpha, PPARdelta, and PPARgamma. PPARgamma has been implicated as a mediator of adipocyte differentiation and the mechanism by which thiazolidinedione drugs exert in vivo insulin sensitization. Here we characterized novel, non-thiazolidinedione agonists for PPARgamma and PPARdelta that were identified by radioligand binding assays. In transient transactivation assays these ligands were agonists of the receptors to which they bind. Protease protection studies showed that ligand binding produced specific alterations in receptor conformation. Both PPARgamma and PPARdelta directly interacted with a nuclear receptor co-activator (CREB-binding protein) in an agonist-dependent manner. Only the PPARgamma agonists were able to promote differentiation of 3T3-L1 preadipocytes. In diabetic db/db mice all PPARgamma agonists were orally active insulin-sensitizing agents producing reductions of elevated plasma glucose and triglyceride concentrations. In contrast, selective in vivo activation of PPARdelta did not significantly affect these parameters. In vivo PPARalpha activation with WY-14653 resulted in reductions in elevated triglyceride levels with minimal effect on hyperglycemia. We conclude that: 1) synthetic non-thiazolidinediones can serve as ligands of PPARgamma and PPARdelta; 2) ligand-dependent activation of PPARdelta involves an apparent conformational change and association of the receptor ligand binding domain with CREB-binding protein; 3) PPARgamma activation (but not PPARdelta or PPARalpha activation) is sufficient to potentiate preadipocyte differentiation; 4) non-thiazolidinedione PPARgamma agonists improve hyperglycemia and hypertriglyceridemia in vivo; 5) although PPARalpha activation is sufficient to affect triglyceride metabolism, PPARdelta activation does not appear to modulate glucose or triglyceride levels.  相似文献   

10.
Computational analysis of the ligand binding pocket of the three PPAR receptor subtypes was utilized in the design of potent PPARalpha agonists. Optimum PPARalpha potency and selectivity were obtained with substituents having van der Waals volume around 260. Compound 6 had a PPARalpha potency of 0.002 microM and a selectivity ratio to PPARgamma and PPARdelta of 410 and 2000, respectively.  相似文献   

11.
Type-2 diabetes (T2D) is a complex metabolic disease characterized by insulin resistance in the liver and peripheral tissues accompanied by a defect in pancreatic beta-cell. Since their discovery three subtypes of Peroxisomes Proliferators Activated Receptors were identified namely PPARalpha, PPARgamma and PPARbeta/(delta). We were interested in designing novel PPARgamma selective agonists and/or dual PPARalpha/gamma agonists. Based on the typical topology of synthetic PPAR agonists, we focused our design approach on 4,4-dimethyl-1,2,3,4-tetrahydroquinoline as novel cyclic tail.  相似文献   

12.
We have developed a new class of PPARalpha/gamma dual agonists, which show excellent agonistic activity in PPARalpha/gamma transactivation assay. In particular, (R)-9d was identified as a potent PPARalpha/gamma dual agonist with EC(50)s of 0.377 microM in PPARalpha and 0.136 microM in PPARgamma, respectively. Interestingly, the structure-activity relationship revealed that the stereochemistry of the identified PPARalpha/gamma dual agonists significantly affects their agonistic activities in PPARalpha than in PPARgamma.  相似文献   

13.
Lipid accumulation in nonadipose tissues is increasingly linked to the development of type 2 diabetes in obese individuals. We report here the design, synthesis, and evaluation of a series of novel PPARalpha selective activators containing 1,3-dicarbonyl moieties. Structure-activity relationship studies led to the identification of PPARalpha selective activators (compounds 10, 14, 17, 18, and 21) with stronger potency and efficacy to activate PPARalpha over PPARgamma and PPARdelta. Experiments in vivo showed that compounds 10, 14, and 17 had blood glucose lowering effect in diabetic db/db mouse model after two weeks oral dosing. The data strongly support further testing of these lead compounds in other relevant disease animal models to evaluate their potential therapeutic benefits.  相似文献   

14.
We report the design and synthesis of equipotent PPARalpha/gamma dual agonists starting from selective PPAR alpha agonist 1. In vivo data for 7 in the Zucker fa/fa rat are presented.  相似文献   

15.
16.
We report the solid-phase synthesis and pharmacological evaluation of a new series of small-molecule agonists of the human peroxisome proliferator-activated receptor delta (PPARdelta) based on a lead structure from our PPARalpha program. Compound 33 showed good pharmacokinetics.  相似文献   

17.
18.
19.
Using a known dual PPARalpha/gamma activator (5) as a structural template, SAR evaluations led to the identification of triple PPARalpha/gamma/delta activators (18-20) with equal potency and efficacy on all three receptors. These compounds could become useful tools for studying the combined biological effects of PPARalpha/gamma/delta activation.  相似文献   

20.
A series of azaindole-alpha-alkyloxyphenylpropionic acid analogues was synthesized and evaluated for PPAR agonist activities. Structure-activity relationship was developed for PPARalpha/gamma dual agonism. One of the synthesized compound 7a was identified as a potent, selective PPARalpha/gamma dual agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号