首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is a widely used approach to study DNA methylation genome-wide. Here, we developed a MeDIP-Seq protocol compatible with the Ion Torrent semiconductor-based sequencing platform that is low cost, rapid, and scalable. We applied this protocol to demonstrate MeDIP-Seq on the Ion Torrent platform provides adequate coverage of CpG cytosines, the methylation states of which we validated at single-base resolution on the Infinium HumanMethylation450 BeadChip array, and accurately identifies sites of differential DNA methylation. Furthermore, we applied an integrative approach to further investigate and confirm the role of DNA methylation in alternative splicing and to profile 5mC and 5hmC variants of DNA methylation in normal human brain tissue that is localized over distinct genomic regions. These applications of MeDIP-Seq on the Ion Torrent platform have broad utility and add to the current methodologies for profiling genome-wide DNA methylation states in normal and disease conditions.  相似文献   

2.
DNA methylation and cell memory   总被引:5,自引:0,他引:5  
A D Riggs 《Cell biophysics》1989,15(1-2):1-13
In this paper we address the question: How do replicating mammalian cells remember with high fidelity their proper state of differentiation? Several possible mechanisms for cell memory are discussed, and it is concluded that only mechanisms involving DNA methylation are supported by strong experimental evidence. This evidence is reviewed. The establishment and modulation of methylation patterns are discussed and a hemimethylation model for stem cells is presented. The overall conclusion is that, although little is yet known about the details, there should be little doubt about the existence of a methylation system functioning at least to aid cell memory.  相似文献   

3.
In order to evaluate the permanent chromatin remodeling in plant allowing their high developmental plasticity, three sugarbeet cell lines (Beta vulgaris L. altissima) originating from the same mother plant and exhibiting graduate states of differentiation were analyzed. Cell differentiation has been estimated by the cell redox state characterized by 36 biochemical parameters as reactive oxygen species steady-state levels, peroxidation product contents and enzymatic or non-enzymatic protective systems. Chromatin remodeling has been estimated by the measurement of levels of DNA methylation, histone acetylation and corresponding enzyme activities that were shown to differ between cell lines. Furthermore, distinct loci related to proteins involved in cell cycle, gene expression regulation and cell redox state were shown by restriction landmark genome scanning or bisulfite sequencing to display differential methylation states in relation to the morphogenic capacity of the lines. DNA methylating, demethylating and/or histone acetylating treatments allowed to generate a collection of sugarbeet cell lines differing by their phenotypes (from organogenic to dedifferentiated), methylcytosine percentages (from 15.0 to 43.5%) and acetylated histone ratios (from 0.37 to 0.52). Correlations between methylcytosine or acetylated histone contents and levels of various parameters (23 or 7, respectively, out of 36) of the cell redox state could be established. These data lead to the identification of biomarkers of sugarbeet morphogenesis in vitro under epigenetic regulation and provide evidence for a connection between plant morphogenesis in vitro, cell redox state and epigenetic mechanisms.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.A. Causevic and M.-V. Gentil contributed equally to this work.  相似文献   

4.
5.
In this review, we will provide a brief reminder of epigenetic phenomena in general, and DNA methylation in particular. We will then underline the characteristics of the in vivo organization of the genome that limit the applicability of in vitro results. We will use several examples to point out the connections between DNA methylation and nuclear architecture. Finally, we will outline some of the hopes and challenges for future research in the field. The study of DNA methylation, its effectors, and its roles, illustrates the complementarity of in vitro approaches and cell biology.  相似文献   

6.
7.
8.
Nitric oxide in physiology and pathology   总被引:8,自引:0,他引:8  
Summary Nitric oxide (NO) can exert a multitude of biological actions. NO, formed froml-arginine by a calcium-dependent enzyme (NO synthase) plays a key physiological role in regulating vascular tone and integrity. NO, formed by a constitutive neuronal isoform of NO synthase, likewise plays an important neuromodulator role. By contrast, high levels of NO can be generated following induction of a calcium-independent isoform of NO synthase. This excessive production of NO can provoke hypotension such as that observed in septic shock, and can exert cytotoxic actions leading to tissue injury and inflammation. Selective inhibitors of this inducible isoform thus have therapeutic potential in a number of disease states.  相似文献   

9.
10.
11.
In order to gain more insight into the relationships between DNA methylation and genome stability, chromosomal and molecular evolutions of four Epstein-Barr virus-transformed human lymphoblastoid cell lines were followed in culture for more than 2 yr. The four cell lines underwent early, strong overall demethylation of the genome. The classical satellite-rich, heterochromatic,juxtacentromeric regions of chromosomes 1, 9, and 16 and the distal part of the long arm of the Y chromosome displayed specific behavior with time in culture. In two cell lines, they underwent a strong demethylation, involving successively chromosomes Y, 9, 16, and 1, whereas in the two other cell lines, they remained heavily methylated. For classical satellite 2-rich heterochromatic regions of chromosomes 1 and 16, a direct relationship could be established between their demethylation, their undercondensation at metaphase, and their involvement in non-clonal rearrangements. Unstable sites distributed along the whole chromosomes were found only when the heterochromatic regions of chromosomes 1 and 16 were unstable. The classical satellite 3-rich heterochromatic region of chromosomes 9 and Y, despite their strong demethylation, remained condensed and stable. Genome demethylation and chromosome instability could not be related to variations in mRNA amounts of the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B and DNA demethylase. These data suggest that the influence of DNA demethylation on chromosome stability is modulated by a sequence-specific chromatin structure.  相似文献   

12.
13.
I A Khodosova 《Tsitologiia》1985,27(3):259-267
The enzymatic methylation of specific cytosine residues in DNA plays a part in controlling gene expression. Low methylation levels may be a necessary condition for gene expression. The chemical carcinogens exert their effect on the enzymatic methylation of mammalian DNA and can cause hypomethylation. Demethylated sites do not become remethylated in the subsequent cell cycles. The consequence of DNA hypomethylation may be both stimulation of cell differentiation and initiation of carcinogenesis.  相似文献   

14.
Stocco C 《Steroids》2012,77(1-2):27-35
Aromatase is expressed in multiple tissues, indicating a crucial role for locally produced oestrogens in the differentiation, regulation and normal function of several organs and processes. This review is an overview of the role of aromatase in different tissues under normal physiological conditions and its contribution to the development of some oestrogen-related pathologies.  相似文献   

15.
Mitochondrial megachannel, a multiprotein complex, is localized in close contacts of the outer and the inner mitochondrial membranes. It plays important role in many aspects of cell physiology and its opening can have different consequences. This review summarizes the present knowledge about structure and function of the megachannel in the cell.  相似文献   

16.
《Epigenetics》2013,8(5):396-401
We have previously identified differentially expressed genes in cell models of diabetic nephropathy and renal biopsies. Here we have performed quantitative DNA methylation profiling in cell models of diabetic nephropathy. Over 3,000 CpG units in the promoter regions of 192 candidate genes were assessed in unstimulated human mesangial cells (HMCs) and proximal tubular epithelial cells (PTCs) compared to HMCs or PTCs exposed to appropriate stimuli. A total of 301 CpG units across 38 genes (~20%) were identified as differentially methylated in unstimulated HMCs versus PTCs. Analysis of amplicon methylation values in unstimulated versus stimulated cell models failed to demonstrate a >20% difference between amplicons. In conclusion, our results demonstrate that (1) specific DNA methylation signatures are present in HMCs and PTCs, and (2) standard protocols for exposure of renal cells to stimuli that alter gene expression may be insufficient to replicate possible alterations in DNA methylation profiles in diabetic nephropathy.  相似文献   

17.

Background

It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure.

Results

I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance.

Conclusions

I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.  相似文献   

18.
Pulmonary neuroendocrine cells are scant and widespread within the pulmonary epithelium. The function they play is not fully known, more studies are needed to clearly define it. They have been implicated however, as either the culprit or victim of many pulmonary diseases. That is the reason, why so many scientists take interest in the pulmonary neuroendocrine system. This paper reviews current information regarding pulmonary neuroendocrine cells, their origin, morphology, ontogeny, role, neuroendocrine cell markers, dysplasia and hyperplasia of pulmonary neuroendocrine cells in various conditions, diffuse idiopathic pulmonary neuroendocrine cell hyperplasia, typical carcinoid, atypical carcinoid, small-cell lung carcinoma, large-cell neuroendocrine carcinoma and the unusual spectrum of pulmonary neuroendocrine tumours.  相似文献   

19.
Free radicals are molecules with odd number of electrons and a high instability. Free radicals, which can occur in both organic (i.e., quinones) and inorganic molecules (i.e., O2-), are very reactive and their reactions are critical for the normal activity of a wide spectrum of biologic processes. They are also produced in the catalytic action of a variety of cellular enzymes and electron transport processes and are implicated in a number of physiologic and pathologic processes. Organisms can be exposed to free radicals in many ways other than through the processes of normal metabolism. Irradiation of organisms with electromagnetic radiation generates primary radicals (e-aq, OH., and H.), which can then undergo secondary reactions with dissolved O2 or with cellular solutes. In addition, a wide variety of environmental agents (drugs capable of redox cycling, and xenobiotics that can form free radical metabolites) including the aging process cause free radical damage to cells. This review deals with the reactions they can undergo and discusses the free radicals related to toxicology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号