首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Vir-c mutation is a virescent chloroplast mutation found in a line of plants derived from protoplast fusions between a Nicotina tabacum line and a line containing N. tabacum nuclei with Nicotiana suaveolens cytoplasm. Vir-c displays a lag period in chlorophyll accumulation and granal stack formation in young leaves. We examined total chloroplast protein in young leaves and showed the mutant contains 1.3 to 2.1 times less stromal protein, and 2.9 to 4.3 times less thylakoid protein when compared to the N. tabacum var “Turkish Samsun” control. Electrophoretic patterns of total thylakoid proteins indicated three polypeptides were specifically decreased in amount within the context of the overall reduction in thylakoid protein. Electrophoresis of thylakoid proteins synthesized by chloroplasts isolated from half-expanded leaves demonstrated that mutant chloroplasts did not synthesize a 37.5 kilodalton polypeptide which was synthesized by “Samsun” chloroplasts. A polypeptide of this molecular weight was synthesized by Vir-c chloroplasts isolated from mature leaves which had recovered the normal phenotype. Restriction digestion and electrophoresis of the mutant's chloroplast DNA produced a pattern of restriction fragments different from either N. tabacum or N. suaveolens chloroplast DNA.  相似文献   

2.
The effect of light quality on the composition, function and structure of the thylakoid membranes, as well as on the photosynthetic rates of intact fronds from Asplenium australasicum, a shade plant, grown in blue, white, or red light of equal intensity (50 microeinsteins per square meter per second) was investigated. When compared with those isolated from plants grown in white and blue light, thylakoids from plants grown in red light have higher chlorophyll a/chlorophyll b ratios and lower amounts of light-harvesting chlorophyll a/b-protein complexes than those grown in blue light. On a chlorophyll basis, there were higher levels of PSII reaction centers, cytochrome f and coupling factor activity in thylakoids from red light-grown ferns, but lower levels of PSI reaction centers and plastoquinone. The red light-grown ferns had a higher PSII/PSI reaction center ratio of 4.1 compared to 2.1 in blue light-grown ferns, and a larger apparent PSI unit size and a lower PSII unit size. The CO2 assimilation rates in fronds from red light-grown ferns were lower on a unit area or fresh weight basis, but higher on a chlorophyll basis, reflecting the higher levels of electron carriers and electron transport in the thylakoids.

The structure of thylakoids isolated from plants grown under the three light treatments was similar, with no significant differences in the number of thylakoids per granal stack or the ratio of appressed membrane length/nonappressed membrane length. The large freeze-fracture particles had the same size in the red-, blue-, and white-grown ferns, but there were some differences in their density. Light quality is an important factor in the regulation of the composition and function of thylakoid membranes, but the effects depend upon the plant species.

  相似文献   

3.
Inbred lines from different varieties of cultivated plants characterized by a white yellow irregular pattern on the leaves obtained after selection in the inbred generation (S3) of winter rye (Secale cereale L.) were the object of the present studies. The feature of a white yellow irregular pattern in all lines was monomeric and recessive. This trait in L158b, wch, and zp was determined by the same recessive gene marked with the symbol wyv1, "white yellow virescent." The gene responsible for the appearance of the above feature in line L24 was nonallelic to the gene wyv1, therefore it was designated as the sequent gene of the same series--wyv2. The studied forms of plants were characterized by a diminution in the number of plastids and in chlorophyll (a plus b) content in mesophyll cells of leaves. Contrary to typical ultrastructure of chloroplasts in dark green plants (control), plastids in lines with the white yellow virescent pattern on the leaves showed variations in ultrastructure from numerous granal and intergranal thylakoids to a reduced number.  相似文献   

4.
5.
Characteristics of a virescent cotton mutant   总被引:5,自引:4,他引:1       下载免费PDF全文
Benedict CR  Kohel RJ 《Plant physiology》1968,43(10):1611-1616
The virescent cotton (Gossypium hirsutum) mutant described here differs from normal cultivated cotton by a single mutation in the nucleus. The mutant exhibits nuclear control of chlorophyll and carotenoid development. Young leaves are distinctly yellow and become green with age. There is no unusual photometabolism of 14CO2 or 14C-acetate in this mutant. It is probable that the nuclear virescent mutation is in a locus concerned with making structural units. The yellow leaves do show a high photosynthetic capacity on a chlorophyll basis. At saturating light intensity the rate of CO2 fixation is 8 fold higher than the green control leaves. Thus, impaired pigment synthesis which could be lethal is offset by a high photosynthetic capacity in the virescent leaves.  相似文献   

6.
Detached etiolated wheat (Triticum aestivum L. cv. Chris) leaves accumulated plastid pigments at a high rate, developed chloroplasts with stacked thylakoids, and stored plastid starch when wetted on filter paper in light. A moderate water deficit of — 10 bars markedly reduced the accumulation of chlorophyll and carotenoids in the 8-day-old detached leaves during greening. δ-Aminolevulinic acid treatment of stressed leaf segments resulted in slightly increased pigment accumulations but benzyladenine application restored plastid pigment formation in stressed tissue to within 15% of the pigment content of the nonstressed detached leaves. The addition of δ-aminolevulinic acid to benzyladenine-treated stressed leaf segments improved both chlorophyll and carotenoid formation to nearly the amounts found in nonstressed leaf tissue. Stressed leaf sections developed plastids that were small, lacked starch, contained few thylakoids per granum, and possessed dilated thylakoids. Benzyladenine application to the stressed leaf segments did not restore normal plastid stacking but benzyladenine induced the formation of extended intergranal lamellae and stimulated pigment accumulations in both stressed and nonstressed detached leaves. Starch was absent in plastids of benzyladeninetreated leaf sections.  相似文献   

7.
Liquidambar styraciflua L. seedlings and tissue-cultured plantlets were grown under high, medium, or low (315, 155, or 50 microeinsteins per square meter per second photosynthetically active radiation) quantum flux densities. Net photosynthesis, chlorophyll content, and chloroplast ultrastructure of leaves differentiated from these conditions were investigated. Seedling photosynthetic rates at light saturation were positively related to light pretreatments, being 6.44, 4.73, and 2.75 milligrams CO2 per square decimeter per hour for high, medium, and low light, respectively. Cultured plantlets under all light conditions had appreciably higher photosynthetic rates than noncultured seedlings; corresponding rates were 12.14, 13.55, and 11.36 milligrams CO2 per square decimeter per hour. Chlorophyll in seedlings and plantlets was significantly higher in low light-treated plants. Seedling leaves had chloroplasts with abundant starch regardless of light pretreatment. In high light, starch granules were predominant and associated with disrupted granal structure. Low light seedling chloroplasts had smaller starch grains and well-formed grana. In contrast, tissue culture-differentiated leaves were devoid of starch; grana were well organized in higher quantum flux density treatments, but disorganized at low flux densities.  相似文献   

8.
The effects of phytochrome status on chlorophyll content and on steady-state levels of thylakoid proteins were investigated in green leaves of Nicotiana tabacum L. plants grown under white light. Far-red light given either as a pulse at the end of each photoperiod, or as a supplement to white light during the photoperiod, reduced chlorophyll content per unit area and per unit dry weight. These differences were also observed after resolving chlorophyll-containing polypeptides by gel electrophoresis. Chlorophyll a:b ratio was unchanged. Both Coomassie blue-stained gels and immunochemical analyses showed that, in contrast to the observations in etiolated barley (K Apel, K Kloppstech [1980] Planta 150: 426-430) and pea (J Bennett [1981] Eur J Biochem 118: 61-70) seedlings, and in etiolated tobacco leaves (this report), in fully deetiolated tobacco plants changes in chlorophyll content were not correlated with obvious changes in the steady-state levels of thylakoid proteins (e.g. light-harvesting, chlorophyll a/b-binding proteins).  相似文献   

9.
W.S. Chow  J. Barber 《BBA》1980,593(1):149-157
Salt-induced changes in thylakoid stacking and chlorophyll fluorescence do not occur with granal membranes obtained by treatment of stacked thylakoids with digitonin. In contrast to normal untreated thylakoids, digitonin prepared granal membranes remain stacked under all ionic conditions and exhibit a constant high level of chlorophyll fluorescence. However, unstacking of these granal membranes is possible if they are pretreated with either acetic anhydride or linolenic acid.Trypsin treatment of the thylakoids inhibits the salt induced chlorophyll fluorescence and stacking changes but stacking of these treated membranes does occur when the pH is lowered, with the optimum being at about pH 4.5. This type of stacking is due to charge neutralization and does not require the presence of the 2000 dalton fragment of the polypeptide associated with the chlorophyll achlorophyll b light harvesting complex and known to be lost during treatment with trypsin (Mullet, J.E. and Arntzen, C.J. (1980) Biochim. Biophys. Acta 589, 100–117).Using the method of 9-aminoacridine fluorescence quenching it is argued that the surface charge density, on a chlorophyll basis, of unstacked thylakoid membranes is intermediate between digitonin derived granal and stromal membranes, with granal having the lowest value.The results are discussed in terms of the importance of surface negative charges in controlling salt induced chlorophyll fluorescence and thylakoid stacking changes. In particular, emphasis is placed on a model involving lateral diffusion of different types of chlorophyll protein complex within the thylakoid lipid matrix.  相似文献   

10.
Summary We analyzed the formation of thylakoids and grana during the development of pea chloroplasts, illuminated by white, red and blue low intensity light. The total length of granal and intergranal thylakoids, and the length of granal thylakoids per unit area of plastid section were measured. Initially the greatest increase in length of granal thylakoids and the highest incidence of grana with large thylakoid content occurred in red light. On the other hand, with illumination times of over 12 hours blue light appeared to be more efficient in stimulating grana formation and thylakoid growth.  相似文献   

11.
High photosynthetic rate of a chlorophyll mutant of cotton   总被引:4,自引:3,他引:1       下载免费PDF全文
In a chlorophyll mutant (virescent) and wild-type cotton (Gossypium hirsutum L.), a number of photosynthetic parameters have been measured and compared with those published for other chlorophyll mutants. (a) The photosynthetic rates at 230 w/m2 (400-700 nm) from a tungsten lamp were 36.8 mg CO2 fixed/dm2·hr (virescent) and 39.5 mg CO2 fixed/dm2·hr (wild-type). On a chlorphyll basis, the photosynthetic rates were 36.8 and 12.1 mg CO2 fixed/mg chl·hr, respectively. (b) The photosynthetic rates at 13 w/m2 (400-700 nm) from a tungsten source were 7.1 mg CO2 fixed/dm2·hr (virescent) and 7.4 mg CO2 fixed/dm2·hr (wild-type). On a chlorophyll basis, the photosynthetic rates were 6.0 and 1.4 mg CO2 fixed/mg chl·hr, respectively. (c) The chlorophyll a/b ratios of the virescent and wild-type leaves were 3.3 and 4.1 (d) The chlorophyll/carotenoid ratios for the virescent and wild-type leaves were 3.2 and 7.3, respectively. (e) The photosynthetic carbon metabolism of the chlorophyll mutant was through the reductive pentose phosphate cycle. (f) The CO2 compensation points for the virescent and wild-type plants were similar. (g) The mutant and wild-type leaves have the same quantum yield in the red part of the visible spectrum, but the virescent leaves have a lower quantum yield in the blue part of the spectrum. (h) Virescent and wild-type leaves contain similar levels on a protein basis of several reductive pentose phosphate cycle enzymes.  相似文献   

12.
Maize (Zea mays L.) is a commercially important crop. Its yield can be reduced by mutations in biosynthetic and degradative pathways that cause death. In this paper, we describe the necrotic leaf (nec-t) mutant, which was obtained from an inbred line, 81647. The nec-t mutant plants had yellow leaves with necrotic spots, reduced chlorophyll content, and the etiolated seedlings died under normal growth conditions. Transmission electron microscopy revealed scattered thylakoids, and reduced numbers of grana lamellae and chloroplasts per cell. Histochemical staining suggested that spot formation of nec-t leaves might be due to cell death. Genetic analysis showed that necrosis was caused by the mutation of a recessive locus. Using simple sequence repeat markers, the Nec-t gene was mapped between mmc0111 and bnlg2277 on the short arm of chromosome 2. A total of 1287 individuals with the mutant phenotype from a F2 population were used for physical mapping. The Nec-t gene was located between markers T31 and H8 within a physical region of 131.7 kb.  相似文献   

13.
Abstract. The ultrastructure of chloroplasts from palisade and spongy tissue was studied in order to analyse the adaptation of chloroplasts to the light gradient within the bifacial leaves of pea. Chloroplasts of two nuclear gene mutants of Pisum sativum (chlorotica-29 and chlorophyll b-less 130A), grown under normal light conditions, were compared with the wild type (WT) garden-pea cv. ‘Dippes Gelbe Viktoria’. The differentiation of the thylakoid membrane system of plastids from normal pea leaves exhibited nearly the same degree of grana formation in palisade and in spongy tissue. Using morphometrical measurements, only a slight increase in grana stacking capacity was found in chloroplasts of spongy tissue. In contrast, chloroplasts of mutant leaves differed in grana development in palisade and spongy tissue, respectively. Their thylakoid systems appeared to be disorganized and not developed as much as in chloroplasts from normal pea leaves. Grana contained fewer lamellae per granum, the number of grana per chloroplast section was reduced and the length of appressed thylakoid regions was decreased. Nevertheless, chloroplasts of the mutants were always differentiated into grana and stroma thylakoids. The structural changes observed and the reduction of the total chlorophyll content correlated with alterations in the polypeptide composition of thylakoid membrane preparations from mutant chloroplasts. In sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), polypeptide bands with a relative molecular mass of 27 and 26 kilodalton (kD) were markedly reduced in mutant chloroplasts. These two polypeptides represented the major apoproteins of the light harvesting chlorophyll a/b complex from photosystem II (LHC-II) as inferred from a comparison with the electrophoretic mobility of polypeptides isolated from the LHC-II.  相似文献   

14.
RAPSCH  S.; ASCASO  C. 《Annals of botany》1985,56(4):467-473
Detached leaves of Spinacia oleracea were incubated with evernicacid, the main phenolic substance present in Evernia prunastrithalli. This lichen substance produced a decrease in the amountof total chlorophyll and chlorophyll a in treated spinach leaves.Chloroplast structure suffered a decrease in several parameters,i.e. chloroplast area, number of grana, granal width, numberof thylakoids per granum and starch content. The submicroscopicstructure of the chloroplast membranes revealed smaller particlediameters in several of the fracture faces in the evernic acidtreated samples and even a decrease in the density of particlesin the EF, fracture face. The alterations observed may be relatedto changes in photosynthetic activity, probably by modificationof both photosystem I and photosystem II activities. Evernic acid, chloroplast structure, TEM, thylakoidal membrane, freeze-etching, chlorophyll content  相似文献   

15.
The photosynthetic CO2-fixation rates, chlorophyll content, chloroplast ultrastructure and other leaf characteristics (e.g. variable fluorescence, stomata density, soluble carbohydrate content) were studied in a comparative way in sun and shade leaves of beech (Fagus sylvatica) and in high-light and low-light seedlings.
  1. Sun leaves of the beech possess a smaller leaf area, higher dry weight, lower water content, higher stomata density, higher chlorophyll a/b ratios and are thicker than the shade leaves. Sun leaves on the average contain more chlorophyll in a leaf area unit; the shade leaf exhibits more chlorophyll on a dry weight basis. Sun leaves show higher rates for dark respiration and a higher light saturation of photosynthetic CO2-fixation. Above 2000 lux they are more efficient in photosynthetic quantum conversion than the shade leaves.
  2. The development of HL-radish plants proceeds much faster than that of LL-plants. The cotyledons of HL-plants show a higher dry weight, lower water content, a higher ratio of chlorophyll a/b and a higher gross photosynthesis rate than the cotyledons of the LL-plants, which possess a higher chlorophyll content per dry weight basis. The large area of the HL-cotyledon on the one hand, as well as the higher stomata density and the higher respiration rate in the LL-cotyledon on the other hand, are not in agreement with the characteristics of sun and shade leaves respectively.
  3. The development, growth and wilting of wheat leaves and the appearance of the following leaves (leaf succession) is much faster at high quanta fluence rates than in weak light. The chlorophyll content is higher in the HL-leaf per unit leaf area and in the LL-leaf per g dry weight. There are no differences in the stomata density and leaf area between the HL- and LL-leaf. There are fewer differences between HL- and LL-leaves than in beech or radish leaves.
  4. The chloroplast ultrastructure of shade-type chloroplasts (shade leaves, LL-leaves) is not only characterized by a much higher number of thylakoids per granum and a higher stacking degree of thylakoids, but also by broader grana than in sun-type chloroplasts (sun leaves, HL-leaves). The chloroplasts of sun leaves and of HL-leaves exhibit large starch grains.
  5. Shade leaves and LL-leaves exhibit a higher maximum chlorophyll fluorescence and it takes more time for the fluorescence to decline to the steady state than in sun and HL-leaves. The variable fluorescence VF (ratio of fluorescence decrease to steady state fluorescence) is always higher in the sun and HL-leaf of the same physiological stage (maximum chlorophyll content of the leaf) than in the shade and LL-leaf. The fluorescence emission spectra of sun and HL-leaves show a higher proportion of chlorophyli fluorescence in the second emission maximum F2 than shade and LL-leaves.
  6. The level of soluble carbohydrates (reducing sugars) is significantly higher in sun and HL-leaves than in shade and LL-leaves and even reflects changes in the amounts of the daily incident light.
  7. Some but not all characteristics of mature sun and shade leaves are found in HL- and LL-leaves of seedlings. Leaf thickness, dry weight, chlorophyll content, soluble carbohydrate level, photosynthetic CO2-fixation, height and width of grana stacks and starch content, are good parameters to describe the differences between LL- and HL-leaves; with some reservations concerning age and physiological stage of leaf, a/b ratios, chlorophyll content per leaf area unit and the variable fluorescence are also suitable.
  相似文献   

16.
The mechanism of chilling resistance was investigated in 4-week-old plants of the chilling-sensitive cultivated tomato, Lycopersicon esculentum Mill. cv H722, and rooted cuttings of its chilling-resistant wild relative, L. hirsutum Humb. and Bonpl., which were chilled for 3 days at 2°C with a 14-hour photoperiod and light intensity of 250 micromoles per square meter per second. This chilling stress reduced the chlorophyll fluorescence ratio, stomatal conductance, and dry matter accumulation more in the sensitive L. esculentum than in the resistant L. hirsutum. Photosynthetic CO2 uptake at the end of the chilling treatment was reduced more in the resistant L. hirsutum than in L. esculentum, but recovered at a faster rate when the plants were returned to 25°C. The reduction of the spin trap, Tiron, by isolated thylakoids at 750 micromoles per square meter per second light intensity was taken as a relative indication of the tendency for the thylakoids to produce activated oxygen. Thylakoids isolated from the resistant L. hirsutum with or without chilling treatment were essentially similar, whereas those from chilled leaves of L. esculentum reduced more Tiron than the nonchilled controls. Whole chain photosynthetic electron transport was measured on thylakoids isolated from chilled and control leaves of the two species at a range of assay temperatures from 5 to 25°C. In both species, electron transport of the thylakoids from chilled leaves was lower than the controls when measured at 25°C, and electron transport declined as the assay temperature was reduced. However, the temperature sensitivity of thylakoids from chilled L. esculentum was altered such that at all temperatures below 20°C, the rate of electron transport exceeded the control values. In contrast, the thylakoids from chilled L. hirsutum maintained their temperature sensitivity, and the electron transport rates were proportionately reduced at all temperatures. This sublethal chilling stress caused no significant changes in thylakoid galactolipid, phospholipid, or protein levels in either species. Nonchilled thylakoid membranes from L. hirsutum had fourfold higher levels of the fatty acid 16:1, than those from L. esculentum. Chilling caused retailoring of the acyl chains in L. hirsutum but not in L. esculentum. The chilling resistance of L. hirsutum may be related to an ability to reduce the potential for free radical production by close regulation of electron transport within the chloroplast.  相似文献   

17.
Nuclear gene affecting greening in virescent peanut leaves   总被引:5,自引:2,他引:3       下载免费PDF全文
Chlorophyll synthesis induced by continuous illumination of dark-grown seedlings has been followed in wild-type and virescent peanut leaves. Compared to the wild-type leaves, chlorophyll synthesis in the virescent leaves shows a 72-hour lag period before the onset of a phase of rapid chlorophyll accumulation. The development of chloroplast grana and the activity of many enzymes of the reductive pentose phosphate cycle, phosphoenolpyruvate carboxylase, and malate dehydrogenase are reduced in the virescent leaves during the lag phase of chlorophyll accumulation. Although nucleic acid synthesis in the virescent leaves in normal, there is a distinctly lower rate of protein synthesis. The low level of protein synthesis during the lag period might limit the synthesis of a factor(s) essential for the development of both cell and chloroplast constituents.  相似文献   

18.
Greening of etiolated bean leaves in far red light   总被引:14,自引:11,他引:3       下载免费PDF全文
Eight-day-old dark-grown bean leaves were greened by prolonged irradiation with far red light. Growth, chlorophyll content, oxygen-evolving capacity, photophosphorylation capacity, chloroplast structure (by electron microscopy), and in vivo forms of chlorophyll (by low temperature absorption and derivative spectroscopy on intact leaves) were followed during the greening process. Chlorophyll a accumulated slowly but continuously during the 7 days of the experiment (each day consisted of 12 hours of far red light and 12 hours of darkness). Chlorophyll b was not detected until the 5th day. The capacity for oxygen evolution and photophosphorylation began at about the 2nd day. Electron microscopy showed little formation of grana during the 7 days but rather unfused stacks of primary thylakoids. The thylakoids would fuse to give grana if the leaves were placed subsequently in white light. The low temperature spectroscopy of intact leaves showed that the chlorophyll a was differentiated into three forms with absorption maxima near 670, 677, and 683 nanometers at −196 C during the first few hours and that these forms accumulated throughout the greening process. Small amounts of two longer wavelength forms with maxima near 690 and 698 nanometers appeared at about the same time as photosynthetic activity.  相似文献   

19.
The ultrastructure of chloroplasts and the photosynthetic physiological properties of Panax ginseng C. A. Mey. grown under different light qualities with same light transmission rate (25 % of sun light) were investigated. The results showed that the thylakoid membranes of Panax ginseng chloroplasts are well deve lopted, and the number of grana and granal lame llae under green and violet film are more than that under red and blue film. The content of chlorophyll in the same area of leaves and the absorption spectra area of chlorophylls and leaves under violet and green film are higher than those under other films. All the photosynthetic rates are very low, and their sequence from high to low are violet, green, red and blue . Green film is advantageous to the accumulation of chlorophylls and the development of thylakoid membranes and red film is advantageous to the accumulation of chlorophyll b. Blue film reduced granal thylakoid staking and decreased the photosynthetic rate. A superior trend of the photosynthetic physiologic properties as well as the structure of chloropiasts of Panasc ginseng leaves under violet film,being composed with red and blue film is significant.  相似文献   

20.
We have found nuclear, recessive mutants in Zea mays L. where assembly of the major chlorophyll (a/b) light-harvesting complex (LHC) was not delayed relative to most other thylakoid protein complexes during thylakoid biogenesis. This contrasts with the normal development of maize chloroplasts (NR Baker, R Leech 1977 Plant Physiol 60: 640-644). All four mutants examined were allelic and virescent, and displayed visibly higher yields of leaf Chl fluorescence during greening. Fully greened mutants had normal leaf Chl fluorescence yield and normal levels of LHC, and grew to maturity under field conditions. Therefore, delayed LHC assembly is not an obligate feature of thylakoid differentiation.

Assigning the molecular basis for the mutation should provide information concerning reguation of LHC assembly. Several possibilities are discussed. The pleiotropic mutant phenotype is not attributable to defects in thylakoid glycerolipid synthesis. Thylakoids isolated from greening mutant leaf sections had elevated glycerolipid/Chl ratios. In addition, both the molar distribution and acyl composition of four major glycerolipids were normal for developing mutant thylakoids.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号