首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pattern of genetic variances and covariances among characters, summarized in the additive genetic variance‐covariance matrix, G , determines how a population will respond to linear natural selection. However, G itself also evolves in response to selection. In particular, we expect that, over time, G will evolve correspondence with the pattern of multivariate nonlinear natural selection. In this study, we substitute the phenotypic variance‐covariance matrix ( P ) for G to determine if the pattern of multivariate nonlinear selection in a natural population of Anolis cristatellus, an arboreal lizard from Puerto Rico, has influenced the evolution of genetic variances and covariances in this species. Although results varied among our estimates of P and fitness, and among our analytic techniques, we find significant evidence for congruence between nonlinear selection and P , suggesting that natural selection may have influenced the evolution of genetic constraint in this species.  相似文献   

2.
Pollen size varies little within angiosperm species, but differs extensively between species, suggesting the action of strong selection. Nevertheless, the potential for genetic responses of pollen size to selection, as determined by additive genetic variance and genetic correlations with other floral traits, has received little attention. To assess this potential, we subjected Brassica rapa to artificial selection for large and small pollen during three generations. This selection caused significant divergence in pollen diameter, with additive genetic effects accounting for over 30% of the observed phenotypic variation in pollen size. Such heritable genetic variation suggests that natural selection could effect evolutionary change in this trait. Selection on pollen size also elicited correlated responses in pollen number (–), flower size (+), style length (+), and ovule number (+), suggesting that pollen size cannot evolve independently. The correlated responses of pollen number, flower size and ovule number probably reflect the genetically determined and physically constrained pattern of resource allocation in B. rapa. In contrast, the positive correlation between pollen size and style length may represent a widespread gametic‐phase disequilibrium in angiosperms that arises from nonrandom fertilization success of large pollen in pistils with long styles.  相似文献   

3.
Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple‐herbivore communities—particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic‐selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one‐third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance.  相似文献   

4.
In nature, selection varies across time in most environments, but we lack an understanding of how specific ecological changes drive this variation. Ecological factors can alter phenotypic selection coefficients through changes in trait distributions or individual mean fitness, even when the trait‐absolute fitness relationship remains constant. We apply and extend a regression‐based approach in a population of Soay sheep (Ovis aries) and suggest metrics of environment‐selection relationships that can be compared across studies. We then introduce a novel method that constructs an environmentally structured fitness function. This allows calculation of full (as in existing approaches) and partial (acting separately through the absolute fitness function slope, mean fitness, and phenotype distribution) sensitivities of selection to an ecological variable. Both approaches show positive overall effects of density on viability selection of lamb mass. However, the second approach demonstrates that this relationship is largely driven by effects of density on mean fitness, rather than on the trait‐fitness relationship slope. If such mechanisms of environmental dependence of selection are common, this could have important implications regarding the frequency of fluctuating selection, and how previous selection inferences relate to longer term evolutionary dynamics.  相似文献   

5.
Abstract When selection acts on social or behavioral traits, the fitness of an individual depends on the phenotypes of its competitors. Here, we describe methods and statistical inference for measuring natural selection in small social groups. We measured selection on throat color alleles that arises from microgeographic variation in allele frequency at natal sites of side‐blotched lizards (Uta stansburiana). Previous game‐theoretic analysis indicates that two color morphs of female side‐blotched lizards are engaged in an offspring quantity‐quality game that promotes a density‐and frequency‐dependent cycle. Orange‐throated females are r‐strategists. They lay large clutches of small progeny, which have poor survival at high density, but good survival at low density. In contrast, yellow‐throated females are K‐strategists. They lay small clutches of large progeny, which have good survival at high density. We tested three predictions of the female game: (1) orange progeny should have a fitness advantage at low density; (2) correlational selection acts to couple color alleles and progeny size; and (3) this correlational selection arises from frequency‐dependent selection in which large hatchling size confers an advantage, but only when yellow alleles are rare. We also confirmed the heritability of color, and therefore its genetic basis, by producing progeny from controlled matings. A parsimonious cause of the high heritability is that three alleles (o, b, y) segregate as one genetic factor. We review the physiology of color formation to explain the possible genetic architecture of the throat color trait. Heritability of color was nearly additive in our breeding study, allowing us to compute a genotypic value for each individual and thus predict the frequency of progeny alleles released on 116 plots. Rather than study the fitness of individual progeny, we studied how the fitness of their color alleles varied with allele frequency on plots. We confirmed prediction 1: When orange alleles are present in female progeny, they have higher fitness at low density when compared to other alleles. Even though the difference in egg size of the female morphs was small (0.02 g), it led to knife‐edged survival effects for their progeny depending on local social context. Selection on hatchling survival was not only dependent on color alleles, but on a fitness interaction between color alleles and hatchling size, which confirmed prediction 2. Sire effects, which are not confounded by maternal phenotype, allowed us to resolve the frequency dependence of correlational selection on egg size and color alleles and thereby confirmed prediction 3. Selection favored large size when yellow sire alleles were rare, but small size when they were common. Correlational selection promotes the formation of a self‐reinforcing genetic correlation between the morphs and life‐history variation, which causes selection in the next density and frequency cycle to be exacerbated. We discuss general conditions for the evolution of self‐reinforcing genetic correlations that arise from social selection associated with frequency‐dependent sexual and natural selection.  相似文献   

6.
Although there is substantial evidence that skeletal measures of body size are heritable in wild animal populations, it is frequently assumed that the nonskeletal component of body weight (or ‘condition’) is determined primarily by environmental factors, in particular nutritional state. We tested this assumption by quantifying the genetic and environmental components of variance in fledgling body condition index (=relative body weight) in a natural population of collared flycatchers (Ficedula albicollis), and compared the strength of natural selection on individual breeding values with that on phenotypic values. A mixed model analysis of the components of variance, based on an ‘animal model’ and using 18 years of data on 17 717 nestlings, revealed a significant additive genetic component of variance in body condition, which corresponded to a narrow sense heritability (h2) of 0.30 (SE=0.03). Nongenetic contributions to variation in body condition were large, but there was no evidence of dominance variance nor of contributions from early maternal or common environment effects (pre‐manipulation environment) in condition at fledging. Comparison of pre‐ and post‐selection samples revealed virtually identical h2 of body condition index, despite the fact that there was a significant decrease (35%) in the levels of additive genetic variance from fledging to breeding. The similar h2 in the two samples occurred because the environmental component of variance was also reduced by selection, suggesting that natural selection was acting on both genotypic and environmental variation. The effects of selection on genetic variance were confirmed by calculation of the selection differentials for both phenotypic values and best linear unbiased predictor (BLUP) estimates of breeding values: there was positive directional selection on condition index both at the phenotypic and the genotypic level. The significant h2 of body condition index is consistent with data from human and rodent populations showing significant additive genetic variance in relative body mass and adiposity, but contrasts with the common assumption in ecology that body condition reflects an individual’s nongenetic nutritional state. Furthermore, the substantial reduction in the additive genetic component of variance in body condition index suggests that selection on environmental deviations cannot alone explain the maintenance of additive genetic variation in heritable traits, but that other mechanisms are needed to explain the moderate to high heritabilities of traits under consistent and strong directional selection.  相似文献   

7.
Evolutionary biologists have developed several indices, such as selection gradients (β) and the opportunity for sexual selection (Is), to quantify the actual and/or potential strength of sexual selection acting in natural or experimental populations. In a recent paper, Klug et al. (J. Evol. Biol. 23 , 2010, 447) contend that selection gradients are the only legitimate metric for quantifying sexual selection. They argue that Is and similar mating‐system‐based metrics provide unpredictable results, which may be uncorrelated with selection acting on a trait, and should therefore be abandoned. We find this view short‐sighted and argue that the choice of metric should be governed by the research question at hand. We describe insights that measures such as the opportunity for selection can provide and also argue that Klug et al. have overstated the problems with this approach while glossing over similar issues with the interpretation of selection gradients. While no metric perfectly characterizes sexual selection in all circumstances, thoughtful application of existing measures has been and continues to be informative in evolutionary studies.  相似文献   

8.
We expand current methods for calculating selection coefficients using path analysis and demonstrate how to analyse nonlinear selection. While this incorporation is a straightforward extension of current procedures, the rules for combining these traits to calculate selection coefficients can be complex. We demonstrate our method with an analysis of selection in an experimental population of Arabidopsis thaliana consisting of 289 individuals. Multiple regression analyses found positive directional selection and positive nonlinear selection only for inflorescence height. In contrast, the path analyses also revealed positive directional selection for number of rosette leaves and positive nonlinear selection for leaf number and time of inflorescence initiation. These changes in conclusions came about because indirect selection was converted into direct selection with the change in causal structure. Path analysis has great promise for improving our understanding of natural selection but must be used with caution since coefficient estimates depend on the assumed causal structure.  相似文献   

9.
To understand natural selection we need to integrate its measure across environments. We present a method for measuring phenotypic selection that combines the potential for both environmental variation and phenotypic plasticity. The method uses path analysis and a measure of selection that is analogous to selection on breeding values. For individuals growing in alternative environments, paths are created that represent potential changes in the environment. The probabilities for these changes are then multiplied by the path coefficients to calculate selection coefficients. Selection on plasticity is measured as the difference in selection within each environment. We illustrate these methods using data on selection in an experimental population of Arabidopsis thaliana. Individuals from 36 families were grown in one of four environments, a factorial combination of shaded/open and early/late shading. For final height of the inflorescence, there was positive selection in both the open and shaded environments and negative selection on plasticity of height. For bolting time, there was also positive selection in both environments, but no selection on plasticity. We show how to use this information to examine how selection would change with changes in environmental frequencies and their transition probabilities. These methods can be expanded to encompass continuous traits and continuous environments as well as other complexities of natural selection.  相似文献   

10.
Morphologically variable F2 genotypes derived from hybridization of coastal and inland ecotypes of the annual plant Diodia teres were used to identify selection on morphological traits in the natural habitat of each ecotype. These ecotypes occur in very different habitats, and have evolved pronounced morphological differentiation. Selection analysis can suggest whether present patterns of selection can explain morphological differences between ecotypes. F2 genotypes were characterized morphologically, clonally replicated, and transplanted into the habitat of each ecotype. Selection was measured on six morphological traits. Directional and stabilizing selection occurred on many traits; direction and strength of selection varied sharply at different stages of growth, as revealed by a path-analysis approach that divided selection into a set of independent components. Directional selection favored traits of the native population at the coastal habitat, but less so at the inland habitat. Selection was of sufficient strength to create the observed morphological differences between ecotypes in 25–100 generations, given constant selection and sufficient genetic variation. In effects on fitness, most traits were neither independent nor consistently interactive with other traits. Rather, many traits entered into strong but evanescent interactions affecting particular components of fitness. Observed interactions did not support the hypothesis that the morphology of each ecotype was functionally integrated to a high degree.  相似文献   

11.
Adaptation through natural selection may be the only means by which small and fragmented plant populations will persist through present day environmental change. A population's additive genetic variance for fitness (VA(W)) represents its immediate capacity to adapt to the environment in which it exists. We evaluated this property for a population of the annual legume Chamaecrista fasciculata through a quantitative genetic experiment in the tallgrass prairie region of the Midwestern United States, where changing climate is predicted to include more variability in rainfall. To reduce incident rainfall, relative to controls receiving ambient rain, we deployed rain exclusion shelters. We found significant VA(W) in both treatments. We also detected a significant genotype‐by‐treatment interaction for fitness, which suggests that the genetic basis of the response to natural selection will differ depending on precipitation. For the trait‐specific leaf area, we detected maladaptive phenotypic plasticity and an interaction between genotype and environment. Selection for thicker leaves was detected with increased precipitation. These results indicate capacity of this population of C. fasciculata to adapt in situ to environmental change.  相似文献   

12.
The evolutionary response of organisms to global climate change is expected to be strongly conditioned by preexisting standing genetic variation. In addition, natural selection imposed by global climate change on fitness‐related traits can be heterogeneous over time. We estimated selection of life‐history traits of an entire genetic lineage of the plant Arabidopsis thaliana occurring in north‐western Iberian Peninsula that were transplanted over multiple years into two environmentally contrasting field sites in southern Spain, as southern environments are expected to move progressively northwards with climate change in the Iberian Peninsula. The results indicated that natural selection on flowering time prevailed over that on recruitment. Selection favored early flowering in six of eight experiments and late flowering in the other two. Such heterogeneity of selection for flowering time might be a powerful mechanism for maintaining genetic diversity in the long run. We also found that north‐western A. thaliana accessions from warmer environments exhibited higher fitness and higher phenotypic plasticity for flowering time in southern experimental facilities. Overall, our transplant experiments suggested that north‐western Iberian A. thaliana has the means to cope with increasingly warmer environments in the region as predicted by trends in global climate change models.  相似文献   

13.
Empirical estimates of selection gradients caused by predators are common, yet no one has quantified how these estimates vary with predator ontogeny. We used logistic regression to investigate how selection on gastropod shell thickness changed with predator size. Only small and medium purple shore crabs (Hemigrapsus nudus) exerted a linear selection gradient for increased shell‐thickness within a single population of the intertidal snail (Littorina subrotundata). The shape of the fitness function for shell thickness was confirmed to be linear for small and medium crabs but was humped for large male crabs, suggesting no directional selection. A second experiment using two prey species to amplify shell thickness differences established that the selection differential on adult snails decreased linearly as crab size increased. We observed differences in size distribution and sex ratios among three natural shore crab populations that may cause spatial and temporal variation in predator‐mediated selection on local snail populations.  相似文献   

14.
We compare morphological characteristics of male and female Barisia imbricata, Mexican alligator lizards, and find that mass, head length, coloration, incidence of scars from conspecifics, tail loss, and frequency of bearing the color/pattern of the opposite sex are all sexually dimorphic traits. Overall size (measured as snout–vent length), on the other hand, is not different between the two sexes. We use data on bite scar frequency and fecundity to evaluate competing hypotheses regarding the selective forces driving these patterns. We contend that sexual selection, acting through male‐male competition, may favor larger mass and head size in males, whereas large females are likely favored by natural selection for greater fecundity. In addition, the frequency of opposite‐sex patterning in males versus females may indicate that the costs of agonistic interactions among males are severe enough to allow for an alternative mating strategy. Finally, we discuss how sexual and natural selective forces may interact to drive or mask the evolution of sexually dimorphic traits.  相似文献   

15.
I consider the possibility of selection favouring large body size in a population of snow petrels (Pagodroma nivea), a long‐lived seabird species. I measured natural selection on body size traits in a population from 1987 to 1998. There was evidence of selection on body size associated with fecundity and survival. Directional selection on bill length and stabilizing selection on tarsus length associated with reproductive success were detected among males. Selection associated with survival favoured males with longer bills. However, selection was weak in all cases. No evidence of selection acting on female body size traits was detected. Offspring–parents regression suggested that bill length and tarsus length were heritable. Although I was able to identify the targets of selection in this population, I could not demonstrate the ecological implications of both tarsus length and bill length variation. The selection on male, but not on female, body size traits suggests factors such as intrasexual competition for nests and/or mates rather than factors such as feeding efficiency as mechanisms of selection on bill size.  相似文献   

16.
It has been assumed that herbivores constitute a selective agent for the evolution of plant resistance. However, few studies have tested this hypothesis. In this study, we look at the annual weed Datura stramonium for evidence of current natural selection for resistance to herbivorous insects. Paternal half-sib families obtained through controlled crosses were exposed to herbivores under natural conditions. The plants were damaged by two folivorous insects: the tobacco flea beetle Epitrix parvula and the grasshopper Sphenarium purpurascens. Selection was estimated using a multiple-regression analysis of plant size and of damage by the two herbivores on plant fitness measured as fruit production for both individual phenotypes and family breeding values (genetic analysis). Directional phenotypic selection was detected for both larger plant size and lower resistance to the flea beetles, whereas stabilizing phenotypic selection was revealed for resistance to S. purpurascens. However, performing the same analyses on the breeding values of the characters revealed directional and stabilizing selection only for plant size. Thus, no agreement existed between the results of the two types of analyses, nor was there any detectable potential for genetic change in the studied population because of selection on herbivore resistance. The narrow-sense heritability of every trait studied was small (all <0.1) and not different from zero. The potential for evolutionary response to natural selection for higher resistance to herbivores in the studied population of D. stramonium is probably limited by lack of genetic variation. Natural selection acts on phenotypes, and the detection of phenotypic selection on resistance to herbivores confirms their ecological importance in determining plant fitness. However, evolutionary inferences based solely on phenotypic selection analyses must be interpreted with caution.  相似文献   

17.
During the past decade, two lines of research have advanced our understanding of micro‐evolution. On the one hand, a number of studies have generated evidence for strong selection on phenotypes ( Kingsolver et al. 2001 ) and the contemporary (sometimes deemed ‘rapid’) evolution of phenotypic traits ( Hendry & Kinnison 1999 ). On the other hand, other studies have sought to identify the genes that underlie ecologically important traits ( Ungerer et al. 2008 ). Over the next decade, micro‐evolutionists might expect considerable progress from the study of contemporary evolution at both the phenotypic and genetic level simultaneously. In this issue of Molecular Ecology, Le Rouzic et al. (2011) present a teaser for this approach. They examined contemporary evolution of an adaptive trait with a well‐studied genetic basis, the number of lateral plates, in threespine stickleback (Gasterosteus aculeatus L.). A time series of 20 years of change for this trait after introduction into a pond in Norway was compared with a similar time series of 12 years following the invasion of a lake in Alaska. Using a modelling approach, the authors then teased apart selection acting upon the phenotype and selection acting on a major effect gene. In both time series, selection was strong and consistent. The models suggested that selection could act directly on the phenotype, or through the gene’s pleiotropic effects.  相似文献   

18.
Island populations have long been important for understanding the dynamics and mechanisms of evolution in natural systems. While genetic drift is often strong on islands due to founder events and population bottlenecks, the strength of selection can also be strong enough to counteract the effects of drift. Here, we used several analyses to identify the roles of genetic drift and selection on genetic differentiation and diversity of Canada lynx (Lynx canadensis) across eastern Canada, including the islands of Cape Breton and Newfoundland. Specifically, we assessed whether we could identify a genetic component to the observed morphological differentiation that has been reported across insular and mainland lynx. We used a dinucleotide repeat within the promoter region of a functional gene that has been linked to mammalian body size, insulin‐like growth factor‐1 (IGF‐1). We found high genetic differentiation at neutral molecular markers but convergence of allele frequencies at the IGF‐1 locus. Thus, we showed that while genetic drift has influenced the observed genetic structure of lynx at neutral molecular markers, natural selection has also played a role in the observed patterns of genetic diversity at the IGF‐1 locus of insular lynx.  相似文献   

19.
With novel developments in sequencing technologies, time‐sampled data are becoming more available and accessible. Naturally, there have been efforts in parallel to infer population genetic parameters from these data sets. Here, we compare and analyse four recent approaches based on the Wright–Fisher model for inferring selection coefficients (s) given effective population size (Ne), with simulated temporal data sets. Furthermore, we demonstrate the advantage of a recently proposed approximate Bayesian computation (ABC)‐based method that is able to correctly infer genomewide average Ne from time‐serial data, which is then set as a prior for inferring per‐site selection coefficients accurately and precisely. We implement this ABC method in a new software and apply it to a classical time‐serial data set of the medionigra genotype in the moth Panaxia dominula. We show that a recessive lethal model is the best explanation for the observed variation in allele frequency by implementing an estimator of the dominance ratio (h).  相似文献   

20.
Using both multivariate and univariate regression techniques, I measured selection acting through female reproductive success in two hermaphroditic species with precise pollen placement but different pollinators: hummingbird-pollinated Lobelia cardinalis and bumblebee-pollinated L. siphilitica. Six traits were analyzed in two populations of L. cardinalis and one population of L. siphilitica: flower number, mean number of flowers open per day, inflorescence height, number of days in flower, median-flower date and nectar-stigma distance. In another study it was found that female reproductive success in one population of L. cardinalis was much less pollen limited than in the other two populations, and it was therefore expected that selection of female reproductive traits in this population would be weaker. In the univariate analyses correlations caused nearly all traits to have significant directional selection coefficients. However, in the multivariate analyses no traits in L. siphilitica experienced directional or quadratic selection. Selection acted differently in the two L. cardinalis populations. The less pollen-limited population experienced positive directional selection on flower number and median-flower date, while in the other L. cardinalis population there was positive directional selection on flower number and nectar-stigma distance and both positive directional and positive quadratic selection on height. The functional significance of floral traits in these two species and the probable effect of increased sample sizes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号