首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Multi‐cellular organisms are under constant attack from parasites, making immune defence a critical aspect of fitness. In vertebrate animals, genes of the major histocompatibility complex (MHC) determine the breadth of pathogens to which individuals can respond. Having many MHC alleles can confer better protection against infectious disease, and balancing selection at MHC is widespread. Indeed, MHC loci are famously variable, with some populations harbouring thousands of alleles (Biedrzycka et al., 2018; Robinson, Soormally, Hayhurst, & Marsh, 2016). MHC has also long fascinated behavioural ecologists because mate choice—for example, preferring MHC‐dissimilar partners—may amplify the effects of natural selection (Penn & Potts, 1999). But despite keen interest in the evolutionary ecology of MHC, extensive duplication (Minias, Pikus, Whittingham, & Dunn, 2019) has made these genes challenging to study. In a From the Cover article in this issue of Molecular Ecology, Stervander, Dierickx, Thorley, Brooke, and Westerdahl (2020) characterizes class I MHC in a Critically Endangered songbird, relating genotype to mate choice and survivorship. By inferring copy number and patterns of allelic co‐segregation, the authors pave the way to elucidating the genomic architecture of MHC in this bottlenecked population. These insights help reconcile apparently counterintuitive findings: no effect of MHC genotype on mate choice or survival, and high MHC diversity within individuals despite low diversity at the population level. The latter finding is cause for optimism regarding conservation prospects. Moreover, these results suggest that ancient duplication events can have longstanding effects on the adaptive landscapes of natural and sexual selection.  相似文献   

2.
Although mate choice by males does occur in nature, our understanding of its importance in driving evolutionary change remains limited compared with that for female mate choice. Recent theoretical models have shown that the evolution of male mate choice is more likely when individual variation in male mating effort and mating preferences exist and positively covary within populations. However, relatively little is known about the nature of such variation and its maintenance within natural populations. Here, using the Trinidadian guppy (Poecilia reticulata) as a model study system, we report that mating effort and mating preferences in males, based on female body length (a strong correlate of fecundity), positively covary and are significantly variable among subjects. Individual males are thus consistent, but not unanimous, in their mate choice. Both individual mating effort (including courtship effort) and mating preference were significantly repeatable. These novel findings support the assumptions and predictions of recent evolutionary models of male mate choice, and are consistent with the presence of additive genetic variation for male mate choice based on female size in our study population and thus with the opportunity for selection and further evolution of large female body size through male mate choice.  相似文献   

3.
High‐throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b‐RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b‐RAD protocols on non‐model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b‐RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade‐off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≥20 reads to acquire good genotyping results. Finally, we demonstrated that selective‐base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b‐RAD protocols on non‐model organisms with different genome sizes, helping decision‐making for a reliable and cost‐effective genotyping.  相似文献   

4.
Mating systems have broad impacts on how sexual selection and mate choice operate within a species, but studies of mating behavior in the laboratory may not reflect how these processes occur in the wild. Here, we examined the mating behavior of the neotropical butterfly Heliconius erato in the field by releasing larvae and virgin females and observing how they mated. H. erato is considered a pupal‐mating species (i.e., males mate with females as they emerge from the pupal case). However, we observed only two teneral mating events, and experimentally released virgins were almost all mated upon recapture. Our study confirms the presence of some pupal‐mating behavior in H. erato, but suggests that adult mating is likely the prevalent mating strategy in this species. These findings have important implications for the role of color pattern and female mate choice in the generation of reproductive isolation in this diverse genus.  相似文献   

5.
Assortative mating is a potential outcome of sexual selection, and estimating its level is important to better understand local adaptation and underlying trait evolution. However, assortative mating studies frequently base their conclusions on small numbers of individuals sampled over short periods of time and limited spatial scales even though spatiotemporal variation is common. Here, we characterized assortative mating patterns over 10 years in four populations of the blue tit (Cyanistes caeruleus), a passerine bird. We focused on two plumage ornaments—the blue crown and the yellow breast patch. Based on data for 1,657 pairs of birds, we found large interannual variation: assortative mating varied from positive to negative. To determine whether there was nonetheless a general trend in the data, we ran a within‐study meta‐analysis. It revealed that assortative mating was moderately positive for both ornaments. It also showed that mating patterns differed among populations and especially between two neighboring populations that displayed phenotypic divergence. Our results therefore underscore that long‐term studies are needed to draw broad conclusions about mating patterns in natural populations. They also call for studying the potential role of assortative mating in local adaptation and evolution of ornaments in both sexes.  相似文献   

6.
Pathogenic fungi are a growing health concern worldwide, particularly in large, densely populated cities. The dramatic upsurge of pigeon populations in cities has been implicated in the increased incidence of invasive fungal infections. In this study, we used a culture‐independent, high‐throughput sequencing approach to describe the diversity of clinically relevant fungi (CRF) associated with pigeon faeces and map the relative abundance of CRF across Seoul, Korea. In addition, we tested whether certain geographical, sociological and meteorological factors were significantly associated with the diversity and relative abundance of CRF. Finally, we compared the CRF diversity of fresh and old pigeon faeces to identify the source of the fungi and the role of pigeons in dispersal. Our results demonstrated that both the composition and relative abundance of CRF are unevenly distributed across Seoul. The green area ratio and the number of multiplex houses were positively correlated with species diversity, whereas wind speed and number of households were negatively correlated. The number of workers and green area ratio were positively correlated with the relative abundance of CRF, whereas wind speed was negatively correlated. Because many CRF were absent in fresh faeces, we inferred that most species cannot survive the gastrointestinal tract of pigeons and instead are likely transmitted through soil or air and use pigeon faeces as a substrate for proliferation.  相似文献   

7.
8.
9.
Mate preferences are costly and are thought to evolve due to the direct and/or indirect benefits they provide. Such costs and benefits may vary in response to intrinsic and extrinsic factors with important evolutionary consequences. Limited attention has been given to quantifying such variation and understanding its causes, most notably with respect to the direction and strength of preferences for multivariate sexual displays. In Drosophila serrata, female preferences target a pheromone blend of long‐chain cuticular hydrocarbons (CHCs). We used a factorial design to test whether female age and mating status generated variation in the strength and direction of sexual selection on male CHCs. Replicate choice mating trials were conducted using young and old females (4 or 10 days post‐emergence) that were either virgin or previously mated. The outcome of such trials is known to capture variation in female mate preferences, although male–male interactions may also contribute. Directional sexual selection on male CHCs was highly significant within each treatment, but there was little evidence of any variation among treatments. The absence of treatment effects implies that the multivariate combination of male CHCs preferred by females was constant with respect to female age and mating status. To the extent that male–male interactions may also contribute, our results similarly imply that these did not vary among treatments groups. With respect to D. serrata mate preferences, our results suggest that either plasticity with respect to age and mating status is not beneficial to females, or preference expression is somehow constrained.  相似文献   

10.
Identifying species and population genetic compositions of biological invasions at early life stages and/or from environmental (e)DNA using targeted high‐throughput sequencing (HTS) metabarcode assays offers powerful and cost‐effective means for early detection, analysis of spread patterns, and evaluating population changes. The present study develops, tests, and applies this method with a targeted sequence assay designed to simultaneously identify and distinguish between the closely related invasive Eurasian zebra and quagga mussels (Dreissena polymorpha and D. rostriformis) and their relatives and discern their respective population genetic patterns. Invasions of these dreissenid mussel species have markedly changed freshwater ecosystems throughout North America and Europe, exerting severe ecological and economic damage. Their planktonic early life stages (eggs and larvae) are morphologically indistinguishable, yet each species exerts differential ecological effects, with the quagga often outcompeting the zebra mussel as adults. Our targeted assay analyzes genetic variation from a diagnostic sequence region of the mitochondrial (mt)DNA cytochrome oxidase I (COI) gene, to assess temporal and spatial inter‐ and intra‐specific genetic variability. The assay facilitates analysis of environmental (e)DNA from water, early life stages from thousands of individuals, and simultaneous analysis of 50–100 tagged field‐collected samples. Experiments evaluated its accuracy and performance using: (a) mock laboratory communities containing known DNA quantities per taxon, (b) aquaria with mixed‐species/haplotype compositions of adults, and (c) field‐collected water and plankton versus traditional sampling of adult communities. Results delineated species compositions, relative abundances, and population‐level diversity differences among ecosystems, habitats, time series, and life stages from two allopatric concurrent invasions in the Great Lakes (Lake Erie) and the Hudson River, which had separate founding histories. Findings demonstrate application of this targeted assay and our approach to accurately and simultaneously discern species‐ and population‐level differences across spatial and temporal scales, facilitating early detection and ecological understanding of biological invasions.  相似文献   

11.
Sexual selection theory predicts that, when body size is correlated with fecundity, there should be fitness advantages for mate choice of the largest females. Moreover, because larger males are expected to monopolise the largest females, this should result in an assortative mating based on body size. Although such patterns could be expected in both explosive and prolonged breeders, non‐assortative mating should be more widespread in species under time constraints. However, patterns of sexual selection are largely unexplored in explosive breeding species, and contrasting patterns have been found previously. We expect that the active choice of partners may be particularly risky when the time period during which sexual partners are available is severely limited. Therefore, to avoid missing an entire reproductive act, males and females should pair irrespective of traits, such as body size. We tested this hypothesis by investigating the mating patterns of the Pacific horned toad, Ceratophrys stolzmanni, a short‐lived fossorial species inhabiting Neotropical dry forests. This species is particularly adequate to test our prediction because it reproduces explosively over the course of a single night per year. Although the number of eggs laid was proportional to the size of females, and individuals of both sexes showed variation in body size, there was no assortative mating based either on size, body condition or age of mates. Egg size was not influenced by either female size or clutch size. The larger body size of females compared to males is likely due to fecundity selection, that is, the selective pressure that enhances reproductive output. Although we cannot dismiss the possibility that individuals could select their partners based on other criteria than those related to size or age, the results fit well our prediction, showing that the explosive breeding makes improbable an active choice of partners in both sexes and therefore favours a random mating pattern.  相似文献   

12.
Because mating entails both costs and potential benefits to both sexes, males and females should be under selection to make optimal choices from among available potential mates. For example, in some cases, individuals may benefit by using information on potential mates' previous sexual histories to make mate choices. In such cases, the form and direction of these benefits may vary both between the sexes and based on the sexual history of the choosing individuals themselves. We investigated the effects of recent previous sexual history on the mate choice and mating behavior of both males and females of the crayfish Orconectes limosus. In one experiment, we found that opposite‐sex dyads comprising crayfish that had both mated 7–8 d previously with other conspecifics were significantly less likely to mate than dyads in which at least one crayfish was unmated. In a second experiment, we found that, when presented with a choice of tethered (but free to move) opposite‐sex conspecifics, only virgin females discriminated between males based on sexual history, showing a preference for virgin males over recently mated males. Mated females, mated males, and virgin males showed no preferences based on the sexual histories of potential mates. We discuss the implications of these inferences in the context of what was previously known about mating behavior and potential sperm limitation in crustaceans and other taxa.  相似文献   

13.
14.
While few species introduced into a new environment become invasive, those that do provide critical information on ecological mechanisms that determine invasions success and the evolutionary responses that follow invasion. Aedes albopictus (the Asian tiger mosquito) was introduced into the naturalized range of Aedes aegypti (the yellow fever mosquito) in the United States in the mid‐1980s, resulting in the displacement of A. aegypti in much of the south‐eastern United States. The rapid displacement was likely due to the superior competitive ability of A. albopictus as larvae and asymmetric mating interference competition, in which male A. albopictus mate with and sterilize A. aegypti females, a process called “satyrization.” The goal of this study was to examine the genomic responses of a resident species to an invasive species in which the mechanism of character displacement is understood. We used double‐digest restriction enzyme DNA sequencing (ddRADseq) to analyse outlier loci between selected and control lines of laboratory‐reared A. aegypti females from two populations (Tucson, AZ and Key West, Florida, USA), and individual females classified as either “resisted” or “mated with” A. albopictus males via mating trials of wild‐derived females from four populations in Florida. We found significant outlier loci in comparing selected and control lines and between mated and nonmated A. aegypti females in the laboratory and wild‐derived populations, respectively. We found overlap in specific outlier loci between different source populations that support consistent genomic signatures of selection within A. aegypti. Our results point to regions of the A. aegypti genome and potential candidate genes that may be involved in mating behaviour, and specifically in avoiding interspecific mating choices.  相似文献   

15.
Understanding the factors that contribute to the generation of reproductively isolated forms is a fundamental goal of evolutionary biology. Cryptic species are an especially interesting challenge to study in this context since they lack obvious morphological differentiation that provides clues to adaptive divergence that may drive reproductive isolation. Geographical isolation in refugial areas during glacial cycling is known to be important for generating genetically divergent populations, but its role in the origination of new species is still not fully understood and likely to be situation dependent. We combine analysis of 35,434 single‐nucleotide polymorphisms (SNPs) with environmental niche modeling (ENM) to investigate genomic and ecological divergence in three cryptic species formerly classified as the field vole (Microtus agrestis). The SNPs demonstrate high genomic divergence (pairwise FST values of 0.45–0.72) and little evidence of gene flow among the three field vole cryptic species, and we argue that genetic drift may have been a particularly important mechanism for divergence in the group. The ENM reveals three areas as potential glacial refugia for the cryptic species and differing climatic niches, although with spatial overlap between species pairs. This evidence underscores the role that glacial cycling has in promoting genetic differentiation and reproductive isolation by subdivision into disjunct distributions at glacial maxima in areas relatively close to ice sheets. Future investigation of the intrinsic barriers to gene flow between the field vole cryptic species is required to fully assess the mechanisms that contribute to reproductive isolation. In addition, the Portuguese field vole (M. rozianus) shows a high inbreeding coefficient and a restricted climatic niche, and warrants investigation into its conservation status.  相似文献   

16.
The functional role of the bacterial organisms in the reef ecosystem and their contribution to the coral well‐being remain largely unclear. The first step in addressing this gap of knowledge relies on in‐depth characterization of the coral microbial community and its changes in diversity across coral species, space and time. In this study, we focused on the exploration of microbial community assemblages associated with an ecologically important Caribbean scleractinian coral, Porites astreoides, using Illumina high‐throughput sequencing of the V5 fragment of 16S rRNA gene. We collected data from a large set of biological replicates, allowing us to detect patterns of geographical structure and resolve co‐occurrence patterns using network analyses. The taxonomic analysis of the resolved diversity showed consistent and dominant presence of two OTUs affiliated with the order Oceanospirillales, which corroborates a specific pattern of bacterial association emerging for this coral species and for many other corals within the genus Porites. We argue that this specific association might indicate a symbiotic association with the adult coral partner. Furthermore, we identified a highly diverse rare bacterial ‘biosphere’ (725 OTUs) also living along with the dominant bacterial symbionts, but the assemblage of this biosphere is significantly structured along the geographical scale. We further discuss that some of these rare bacterial members show significant association with other members of the community reflecting the complexity of the networked consortia within the coral holobiont.  相似文献   

17.
DNA metabarcoding is a promising method for describing communities and estimating biodiversity. This approach uses high‐throughput sequencing of targeted markers to identify species in a complex sample. By convention, sequences are clustered at a predefined sequence divergence threshold (often 3%) into operational taxonomic units (OTUs) that serve as a proxy for species. However, variable levels of interspecific marker variation across taxonomic groups make clustering sequences from a phylogenetically diverse dataset into OTUs at a uniform threshold problematic. In this study, we use mock zooplankton communities to evaluate the accuracy of species richness estimates when following conventional protocols to cluster hypervariable sequences of the V4 region of the small subunit ribosomal RNA gene (18S) into OTUs. By including individually tagged single specimens and “populations” of various species in our communities, we examine the impact of intra‐ and interspecific diversity on OTU clustering. Communities consisting of single individuals per species generated a correspondence of 59–84% between OTU number and species richness at a 3% divergence threshold. However, when multiple individuals per species were included, the correspondence between OTU number and species richness dropped to 31–63%. Our results suggest that intraspecific variation in this marker can often exceed 3%, such that a single species does not always correspond to one OTU. We advocate the need to apply group‐specific divergence thresholds when analyzing complex and taxonomically diverse communities, but also encourage the development of additional filtering steps that allow identification of artifactual rRNA gene sequences or pseudogenes that may generate spurious OTUs.  相似文献   

18.
Microeukaryotic plankton (0.2–200 μm) are critical components of aquatic ecosystems and key players in global ecological processes. High‐throughput sequencing is currently revolutionizing their study on an unprecedented scale. However, it is currently unclear whether we can accurately, effectively and quantitatively depict the microeukaryotic plankton communities using traditional size‐fractionated filtering combined with molecular methods. To address this, we analysed the eukaryotic plankton communities both with, and without, prefiltering with a 200 μm pore‐size sieve –by using SSU rDNA‐based high‐throughput sequencing on 16 samples with three replicates in each sample from two subtropical reservoirs sampled from January to October in 2013. We found that ~25% reads were classified as metazoan in both size groups. The species richness, alpha and beta diversity of plankton community and relative abundance of reads in 99.2% eukaryotic OTUs showed no significant changes after prefiltering with a 200 μm pore‐size sieve. We further found that both >0.2 μm and 0.2–200 μm eukaryotic plankton communities, especially the abundant plankton subcommunities, exhibited very similar, and synchronous, spatiotemporal patterns and processes associated with almost identical environmental drivers. The lack of an effect on community structure from prefiltering suggests that environmental DNA from larger metazoa is introduced into the smaller size class. Therefore, size‐fractionated filtering with 200 μm is insufficient to discriminate between the eukaryotic plankton size groups in metabarcoding approaches. Our results also highlight the importance of sequencing depth, and strict quality filtering of reads, when designing studies to characterize microeukaryotic plankton communities.  相似文献   

19.
Speciation can be initiated by adaptive divergence between populations in ecologically different habitats, but how sexually based reproductive barriers contribute to this process is less well understood. We here test for sexual isolation between ecotypes of threespine stickleback fish residing in adjacent lake and stream habitats in the Lake Constance basin, Central Europe. Mating trials exposing females to pairings of territorial lake and stream males in outdoor mesocosms allowing for natural reproductive behaviour reveal that mating occurs preferentially between partners of the same ecotype. Compared to random mating, this sexual barrier reduces gene flow between the ecotypes by some 36%. This relatively modest strength of sexual isolation is surprising because comparing the males between the two ecotypes shows striking differentiation in traits generally considered relevant to reproductive behaviour (body size, breeding coloration, nest size). Analysing size differences among the individuals in the mating trials further indicates that assortative mating is not related to ecotype differences in body size. Overall, we demonstrate that sexually based reproductive isolation promotes divergence in lake–stream stickleback along with other known reproductive barriers, but we also caution against inferring strong sexual isolation from the observation of strong population divergence in sexually relevant traits.  相似文献   

20.
Metabarcoding has the potential to become a rapid, sensitive, and effective approach for identifying species in complex environmental samples. Accurate molecular identification of species depends on the ability to generate operational taxonomic units (OTUs) that correspond to biological species. Due to the sometimes enormous estimates of biodiversity using this method, there is a great need to test the efficacy of data analysis methods used to derive OTUs. Here, we evaluate the performance of various methods for clustering length variable 18S amplicons from complex samples into OTUs using a mock community and a natural community of zooplankton species. We compare analytic procedures consisting of a combination of (1) stringent and relaxed data filtering, (2) singleton sequences included and removed, (3) three commonly used clustering algorithms (mothur, UCLUST, and UPARSE), and (4) three methods of treating alignment gaps when calculating sequence divergence. Depending on the combination of methods used, the number of OTUs varied by nearly two orders of magnitude for the mock community (60–5068 OTUs) and three orders of magnitude for the natural community (22–22191 OTUs). The use of relaxed filtering and the inclusion of singletons greatly inflated OTU numbers without increasing the ability to recover species. Our results also suggest that the method used to treat gaps when calculating sequence divergence can have a great impact on the number of OTUs. Our findings are particularly relevant to studies that cover taxonomically diverse species and employ markers such as rRNA genes in which length variation is extensive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号