首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major goal for ecology and evolution is to understand how abiotic and biotic factors shape patterns of biological diversity. Here, we show that variation in establishment success of nonnative frogs and toads is primarily explained by variation in introduction pathways and climatic similarity between the native range and introduction locality, with minor contributions from phylogeny, species ecology, and life history. This finding contrasts with recent evidence that particular species characteristics promote evolutionary range expansion and reduce the probability of extinction in native populations of amphibians, emphasizing how different mechanisms may shape species distributions on different temporal and spatial scales. We suggest that contemporary changes in the distribution of amphibians will be primarily determined by human-mediated extinctions and movement of species within climatic envelopes, and less by species-typical traits.  相似文献   

2.
    
Rapid evolution may play an important role in the range expansion of invasive species and modify forecasts of invasion, which are the backbone of land management strategies. However, losses of genetic variation associated with colonization bottlenecks may constrain trait and niche divergence at leading range edges, thereby impacting management decisions that anticipate future range expansion. The spatial and temporal scales over which adaptation contributes to invasion dynamics remain unresolved. We leveraged detailed records of the ~130-year invasion history of the invasive polyploid plant, leafy spurge (Euphorbia virgata), across ~500 km in Minnesota, U.S.A. We examined the consequences of range expansion for population genomic diversity, niche breadth, and the evolution of germination behavior. Using genotyping-by-sequencing, we found some population structure in the range core, where introduction occurred, but panmixia among all other populations. Range expansion was accompanied by only modest losses in sequence diversity, with small, isolated populations at the leading edge harboring similar levels of diversity to those in the range core. The climatic niche expanded during most of the range expansion, and the niche of the range core was largely non-overlapping with the invasion front. Ecological niche models indicated that mean temperature of the warmest quarter was the strongest determinant of habitat suitability and that populations at the leading edge had the lowest habitat suitability. Guided by these findings, we tested for rapid evolution in germination behavior over the time course of range expansion using a common garden experiment and temperature manipulations. Germination behavior diverged from the early to late phases of the invasion, with populations from later phases having higher dormancy at lower temperatures. Our results suggest that trait evolution may have contributed to niche expansion during invasion and that distribution models, which inform future management planning, may underestimate invasion potential without accounting for evolution.  相似文献   

3.
    
  1. An outbreak of Cacosceles newmannii (Coleoptera: Cerambycidae) was detected for the first time on sugarcane (Saccharum spp.) in 2015 in KwaZulu-Natal, South Africa. Although primary host plants of this native species remain unknown, these are central to testing hypotheses concerning the outbreak.
  2. We hypothesized that this species has undergone a host plant shift (i.e. a feeding association with a novel host plant).
  3. We compared δ13C and δ15N ratios of adult beetles retrieved from South African museum collections, collected between 1891 and 2016 (n = 23; ‘pre-outbreak’), with samples from infested fields in 2017 (n = 9, ‘post-outbreak’) and in 2019 (n = 23, ‘post-outbreak’), as well as diverse, plausible host plants (n = 42 samples across 10 species) from infested fields and surrounding patches of indigenous and commercial forest vegetation. We used Bayesian isotope mixing models to infer the relative contribution of the different plants to the diet of C. newmannii.
  4. Pre-outbreak, C3 plants contributed strongly to the larval diet, whereas post-outbreak, C4 plants were the largest component of their diet. There was some indication of C4 plants contributing to their diet pre-outbreak.
  5. Our results suggest that the outbreak of this polyphagous beetle was not a dramatic host shift but rather a rapid increase in the proportion of C4 plants already in their diet.
  6. We concluded that plants from the families Fabaceae and Poaceae are the most likely host plants of this species. Nevertheless, the drivers of this rapid outbreak on sugarcane remain poorly determined and should be the focus of future research.
  相似文献   

4.
    
Recent patterns of global change have highlighted the importance of understanding the dynamics and mechanisms of species range shifts and expansions. Unique demographic features, spatial processes, and selective pressures can result in the accumulation and evolution of distinctive phenotypic traits at the leading edges of expansions. We review the characteristics of expanding range margins and highlight possible mechanisms for the appearance of phenotypic differences between individuals at the leading edge and core of the range. The development of life history traits that increase dispersal or reproductive ability is predicted by theory and supported with extensive empirical evidence. Many examples of rapid phenotypic change are associated with trade‐offs that may influence the persistence of the trait once expansion ends. Accounting for the effects of edge phenotypes and related trade‐offs could be critical for predicting the spread of invasive species and population responses to climate change.  相似文献   

5.
    
Matthew J. Troia  Xingli Giam 《Ecography》2019,42(11):1913-1925
Identifying how close species live to their physiological thermal maxima is essential to understand historical warm‐edge elevational limits of montane faunas and forecast upslope shifts caused by future climate change. We used laboratory experiments to quantify the thermal tolerance and acclimation potential of four fishes (Notropis leuciodus, N. rubricroceus, Etheostoma rufilineatum, E. chlorobranchium) that are endemic to the southern Appalachian Mountains (USA), exhibit different historical elevational limits, and represent the two most species‐rich families in the region. All‐subsets selection of linear regression models using AICc indicated that species, acclimation temperature, collection location and month, and the interaction between species and acclimation temperature were important predictors of thermal maxima (Tmax), which ranged from 28.5 to 37.2°C. Next, we implemented water temperature models and stochastic weather generation to characterize the magnitude and frequency of extreme heat events (Textreme) under historical and future climate scenarios across 25 379 stream reaches in the upper Tennessee River system. Lastly, we used environmental niche models to compare warming tolerances (acclimation‐corrected Tmax minus Textreme) between historically occupied versus unoccupied reaches. Historical warming tolerances, ranging from +2.2 to +10.9°C, increased from low to high elevation and were positive for all species, suggesting that Tmax does not drive warm‐edge (low elevation) range limits. Future warming tolerances were lower (?1.2 to +9.3°C) but remained positive for all species under the direst warming scenario except for a small proportion of reaches historically occupied by E. rufilineatum, indicating that Tmax and acclimation potentials of southern Appalachian minnows and darters are adequate to survive future heat waves. We caution concluding that these species are invulnerable to 21st century warming because sublethal thermal physiology remains poorly understood. Integrating physiological sensitivity and warming exposure demonstrates a general and fine‐grained approach to assess climate change vulnerability for freshwater organisms across physiographically diverse riverscapes.  相似文献   

6.
    
Invasions of fresh water by marine organisms have been of great interest to evolutionary biologists and paleontologists because they typically constitute major evolutionary transitions. Recent (< 200 years) invasions of fresh water by brackish or marine species offer an opportunity to understand mechanisms underlying these events, but pathways of invasion from salt water have not been confirmed using genetic data. This study employed mitochondrial DNA sequences (652 base pairs from the cytochrome oxidase I (COI) gene) to reconstruct the geographic and evolutionary history of freshwater invasion by the common estuarine and saltmarsh crustacean Eurytemora affinis (Copepoda; Poppe 1880). Phylogenetic analysis of populations from North America, Europe, and Asia revealed at least eight independent invasions of fresh water from genetically distinct lineages. At least five of these freshwater invasions most likely arose independently in different river drainages, recently from saltwater sources within each river drainage. An analysis of molecular variance (AMOVA) was performed at three geographic scales (among continents, among drainages, and within drainages) to assess the hierarchical distribution of genetic variance. Results indicated that 52% of the genetic variance was explained by differences among drainages, 43% by differences among continents, but only 5% by differences within drainages, thus supporting geographic patterns of invasions inferred from the phylogeny. Physiological experiments were performed to determine whether adults and larvae from saltwater populations could tolerate freshwater conditions. Transfer to zero salinity resulted in high mortalities, but with some survival to the second generation in one population. This study provides genetic evidence and physiological support for rapid transitions from a saline life history into fresh water, with repeated invasions on a global scale.  相似文献   

7.
    
Climate change has profound effects on species' distributions, and it is crucial to understand how well physiological limits correspond to distribution patterns to provide realistic estimations of future range shifts and/or extinctions. Seaweeds are foundation species of global coastal ecosystems, and sea surface temperature is a main predictor to explain their distributions and redistributions under global warming. We here test the hypothesis that, in contrast to other marine ectotherms, physiological knowledge of temperature niches is a weak predictor for seaweed distributions.  相似文献   

8.
    
The small red‐eyed damselfly, Erythromma viridulum (Charpentier), is the first recorded example of a migrant damselfly establishing colonies in the British Isles. To examine the population genetic structure of E. viridulum, a partial genomic library enriched for CA microsatellite loci was constructed. Of the 42 loci tested, 19 amplified spurious bands and 13 were monomorphic, leaving 10 polymorphic loci that resolved distinct alleles within the expected size range. The number of alleles ranged between two (LIST14‐021, LIST14‐40) and eight (LIST14‐002). Observed and expected heterozygosities varied between 0.000–0.698 and 0.045–0.688, respectively.  相似文献   

9.
    
  1. While evolutionary changes in adult traits during range expansion have been recorded in many species, similar changes in the non‐dispersive larval stage have only rarely been documented. Increased activity in the non‐dispersive larval stage is an important ecologically relevant trait in aquatic communities that may be expected to evolve in the edge populations (i) as a result of the combination of spatial sorting in dispersal‐related adult activity and a coupling between adult and larval behaviour and (ii) to meet higher energy demands to allow higher growth rates and a higher investment in costly dispersal‐related traits.
  2. We specifically address whether activity is higher in the larval non‐dispersive aquatic stage at an expanding range front by comparing larvae of replicated core and edge populations of the damselfly Coenagrion scitulum in three common garden experiments where larvae were reared from the egg stage.
  3. As expected, activity in the non‐dispersive larval stage was consistently higher in the edge populations. Although changes in larval activity probably have consequences for ecological interactions, the higher activity was not associated with increased predation rates by dragonfly larvae, potentially because of associated compensatory changes in other antipredator mechanisms.
  4. We documented one of the few cases of a positive coupling of activity in the larval and adult stages. Yet, contrary to larval activity, adult activity did not differ between core and edge populations. This indicates that the higher larval activity we documented is not shaped by a coupling with adult activity. Instead, our results are consistent with the hypothesis that a higher energy need in edge populations shaped the higher larval activity. Edge larvae showed a higher growth rate which is expected to evolve at the initial low population densities in newly founded edge populations. Moreover, higher growth rate showed the expected positive covariation with larval activity.
  5. Increases in activity in the non‐dispersive stage in edge populations at an expansion front should be included in the ongoing debate whether evolutionary changes at invasion fronts are driven by adaptive versus non‐adaptive evolution. Moreover, they may have the potential to affect ecological interactions at expanding range fronts.
  相似文献   

10.
    
Abstract. 1. Rising environmental temperature will likely affect life cycle and range of species. To forecast such effects in an odonate, we simulated the continent‐wide life cycle distribution pattern and range of a dragonfly applying a dynamic population model. 2. The model was used to investigate how much of the current voltinism patterns and distribution range of the species are correctly predicted by using temperature and day length as the only environmental factors. We forecasted the range and voltinism changes on a European extent for the year 2050 using one GCM (CSIRO) driven by one greenhouse gas emission scenario (b2a) according to the IPCC. 3. The model run lead to 80% correctly predicted distribution range, with a sensitivity of 94% and a specificity of 55%, the latter because of high error in predicting absence in southern Europe. 4. The projected voltinism ranged from 1 to 2 years per generation in southern latitudes to 5 years in the north. A comparison with field data indicated correct predictions in 50% of all cases, while the other 50% were slight over‐ or underestimates by half a year per generation. 5. We conclude that the model led to sufficient predictions of range as well as of life cycle pattern in central and northern Europe. Wrong predictions of presence for southern Europe may be caused by factors not recognised in the model, likely competition by con generics, while incorrect voltinism was possibly because of habitat effects. 6. Simulations with increased temperature scenarios implied a future northward shift of the fundamental niche and a decreased development duration towards the northern range.  相似文献   

11.
    
Lepidopteran stemborers are the most destructive insect pests of cereal crops in sub‐Saharan Africa. In nature, these insects are often exposed to multiple environmental stressors, resulting in potent impact on their thermal tolerance. Such environmental stressors may influence their activity, survival, abundance and biogeography. In the present study, we investigate the effects of acclimation to temperature, starvation and desiccation on thermal tolerance, measured as critical thermal limits [critical thermal minima (CTmin) and maxima (CTmax)] on laboratory‐reared economic pest species Chilo partellus Swinhoe (Lepidoptera: Crambidae), Busseola fusca (Fuller) and Sesamia calamistis Hampson (Lepidoptera: Noctuidae) using established protocols. Low temperature acclimation results in improved CTmin for B. fusca and C. partellus, whereas high temperature acclimation enhances the same trait for B. fusca and S. calamistis. Similarly, high temperature and starvation pretreatment improve CTmax for C. partellus relative to S. calamistis and B. fusca. In addition, starvation and desiccation pretreatments improve CTmin for all stemborer species. Furthermore, rapid cold‐hardening (RCH) enhancs CTmin for B. fusca and C. partellus, whereas rapid heat‐hardening (RHH) improves the same trait for C. partellus. However, RCH and RHH impair CTmax for all stemborer species. These findings show differential thermal tolerances after exposure to heterogeneous environmental stress habitats. Chilo partellus, of exotic origin, shows a higher magnitude of basal thermal tolerance plasticity relative to the indigenous African species S. calamistis and B. fusca. This indicates that C. partellus may have a fitness and survival advantage under climate‐induced heterogeneous environments, and also have a greater chance for geographical range expansion and invasion success compared with the indigenous B. fusca and S. calamistis.  相似文献   

12.
While it is generally recognized that noncontiguous (long‐distance) dispersal of small numbers of individuals is important for range expansion over large geographic areas, it is often assumed that colonization on more local scales proceeds by population expansion and diffusion dispersal (larger numbers of individuals colonizing adjacent sites). There are few empirical studies of dispersal modes at the front of expanding ranges, and very little information is available on dispersal dynamics at smaller geographic scales where we expect contiguous (diffusion) dispersal to be prevalent. We used highly polymorphic genetic markers to characterize dispersal modes at a local geographic scale for populations at the edge of the range of a newly invasive grass species (Brachypodium sylvaticum) that is undergoing rapid range expansion in the Pacific Northwest of North America. Comparisons of Bayesian clustering of populations, patterns of genetic diversity, and gametic disequilibrium indicate that new populations are colonized ahead of the invasion front by noncontiguous dispersal from source populations, with admixture occurring as populations age. This pattern of noncontiguous colonization was maintained even at a local scale. Absence of evidence for dispersal among adjacent pioneer sites at the edge of the expanding range of this species suggests that pioneer populations undergo an establishment phase during which they do not contribute emigrants for colonization of neighbouring sites. Our data indicate that dispersal modes change as the invasion matures: initial colonization processes appear to be dominated by noncontiguous dispersal from only a few sources, while contiguous dispersal may play a greater role once populations become established.  相似文献   

13.
    
Geographic range shifts can cause secondary contact and hybridization between closely related species, revealing mechanisms of species formation and integrity. These dynamics typically play out in restricted geographic regions, but highly vagile species may experience major distributional changes resulting in broad areas of contact. The Glossy Ibis (Plegadis falcinellus) is a dispersive waterbird of the Old World and Australia that colonized eastern North America in the early 19th century and came into contact with the native White‐faced Ibis (P. chihi). Putative hybrids between the two species have been observed across North America. To examine the population genomic consequences of this natural invasion, we sequenced 4,616 ultraconserved elements from 66 individuals sampled across the distributions of falcinellus, chihi, and the Puna Ibis (P. ridgwayi) of South America. We found genomic differentiation among the three species. Loci with high sequence divergence were often shared across all pairwise species comparisons, were associated with regions of high nucleotide diversity, and were concentrated on the Z chromosome. We detected signals of genetic admixture between chihi and falcinellus in individuals both near and far from their core area of sympatry. Genomic cline analyses revealed evidence of greater introgression into falcinellus from chihi, but we found little evidence for selection against hybrids. We also found signals of admixture between ridgwayi and South American populations of chihi. Our results indicate vagile species can experience pervasive introgression upon secondary contact, although we suggest these dynamics may be more ephemeral than the stable hybrid zones often observed in less dispersive organisms.  相似文献   

14.
During recent decades, many species have responded to global warming by poleward range expansions. We require a better mechanistic understanding of the nature and extent of such processes to assess how climate change might affect biodiversity. Wing-dimorphic bush-crickets are excellent objects to study dispersal and colonization processes at the range margin because the long-winged morphs (macropters) represent dispersal units of otherwise flightless species. Moreover, these insects produce noisy songs and can easily be mapped. The present study comprised a detailed investigation of the population dynamics and genetics at the edge of the range of Roesel's bush-cricket, Metrioptera roeselii . We mapped the distribution of this insect in a previously unoccupied area of 185 km2 and examined the genetic structure at the range margin using four polymorphic microsatellite loci. The results obtained demonstrate that the European heat wave in 2003 induced a strong immigration of macropters in the area stemming from multiple sources, whereas only few immigrants were recorded in the two subsequent years. Macropters were genotyped in a distance of up to 19.1 km from their origin, considerably exceeding the known dispersal distances for this species. Moreover, the data show that strong local founder effects are equalized on a large scale by the high number of immigrants from multiple sources. The present study demonstrates that macropters are of high significance for the range expansion of wing-dimorphic insects because a single-year climatic anomaly can induce strong dispersal processes.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 118–127.  相似文献   

15.
    
Recent theoretical and experimental models have revealed the role played by evolution during species spread, and in particular have questioned the influence of genetic drift at range edges. By investigating the spread of an aquatic invader in patchy habitats, we quantified genetic drift and explored its consequences for genetic diversity and fitness. We examined the interplay of gene flow and genetic drift in 36 populations of the red swamp crayfish, Procambarus clarkii, in a relatively recently invaded wetland area (30 years, Brière, northwest France). Despite the small spatial scale of our study (15 km2), populations were highly structured according to the strong barrier of land surfaces and revealed a clear pattern of colonization through watercourses. Isolated populations exhibited small effective sizes and low dispersal rates that depended on water connectivity, suggesting that genetic drift dominated in the evolution of allele frequencies in these populations. We also observed a significant decrease in the genetic diversity of isolated populations over only a 2‐year period, but failed to demonstrate an associated fitness cost using fluctuating asymmetry. This study documents the possible strong influence of genetic drift during the spread of a species, and such findings provide critical insights into the current context of profound rearrangements in species distributions due to global change.  相似文献   

16.
    
Climate‐induced range shifts result in the movement of a sample of genotypes from source populations to new regions. The phenotypic consequences of those shifts depend upon the sample characteristics of the dispersive genotypes, which may act to either constrain or promote phenotypic divergence, and the degree to which plasticity influences the genotype–environment interaction. We sampled populations of the damselfly Erythromma viridulum from northern Europe to quantify the phenotypic (latitude–body size relationship based on seven morphological traits) and genetic (variation at microsatellite loci) patterns that occur during a range expansion itself. We find a weak spatial genetic structure that is indicative of high gene flow during a rapid range expansion. Despite the potentially homogenizing effect of high gene flow, however, there is extensive phenotypic variation among samples along the invasion route that manifests as a strong, positive correlation between latitude and body size consistent with Bergmann's rule. This positive correlation cannot be explained by variation in the length of larval development (voltinism). While the adaptive significance of latitudinal variation in body size remains obscure, geographical patterns in body size in odonates are apparently underpinned by phenotypic plasticity and this permits a response to one or more environmental correlates of latitude during a range expansion.  相似文献   

17.
Dispersal strategies are important mechanisms underlying the spatial distribution and colonizing ability of all mobile species. In the current study, we use highly polymorphic microsatellite markers to evaluate local dispersal and colonization dynamics of the round goby (Neogobius melanostomus), an aquatic invader expanding its range from lake to river environments in its introduced North American range. Genetic structure, genotype assignment and genetic diversity were compared among 1262 round gobies from 20 river and four lake sites in three Great Lakes tributaries. Our results indicate that a combination of short-distance diffusion and long-distance dispersal, collectively referred to as 'stratified dispersal', is facilitating river colonization. Colonization proceeded upstream yearly (approximately 500 m/year; 2005-2009) in one of two temporal replicates while genetic structure was temporally stable. Contiguous dispersal from the lake was observed in all three rivers with a substantial portion of river fish (7.3%) identified as migrants. Genotype assignment indicated a separate introduction occurred upstream of the invasion front in one river. Genetic diversity was similar and relatively high among lake and recently colonized river populations, indicating that founder effects are mitigated through a dual-dispersal strategy. The remarkable success of round goby as an aquatic invader stresses the need for better diffusion models of secondary range expansion for presumably sessile invasive species.  相似文献   

18.
The invasion of the zebra mussel, Dreissena polymorpha, into North American waters has resulted in profound ecological disturbances and large monetary losses. This study examined the invasion history and patterns of genetic diversity among endemic and invading populations of zebra mussels using DNA sequences from the mitochondrial cytochrome oxidase I (COI) gene. Patterns of haplotype frequency indicate that all invasive populations of zebra mussels from North America and Europe originated from the Ponto-Caspian Sea region. The distribution of haplotypes was consistent with invasive populations arising from the Black Sea drainage, but could not exclude the possibility of an origin from the Caspian Sea drainage. Similar haplotype frequencies among North American populations of D. polymorpha suggest colonization by a single founding population. There was no evidence of invasive populations arising from tectonic lakes in Turkey, while lakes in Greece and Macedonia contained only Dreissena stankovici. Populations in Turkey might be members of a sibling species complex of D. polymorpha. Ponto-Caspian derived populations of D. polymorpha (theta = 0.0011) and Dreissena bugensis (one haplotype) exhibited low levels of genetic diversity at the COI gene, perhaps as a result of repeated population bottlenecks. In contrast, geographically isolated tectonic lake populations exhibited relatively high levels of genetic diversity (theta = 0.0032 to 0.0134). It is possible that the fluctuating environment of the Ponto-Caspian basin facilitated the colonizing habit of invasive populations of D. polymorpha and D. bugensis. Our findings were concordant with the general trend of destructive freshwater invaders in the Great Lakes arising from the Ponto-Caspian Sea basin.  相似文献   

19.
Urban areas are expanding rapidly, but a few native species have successfully colonized them. The processes underlying such colonization events are poorly understood. Using the blackbird Turdus merula, a former forest specialist that is now one of the most common urban birds in its range, we provide the first assessment of two contrasting urban colonization models. First, that urbanization occurred independently. Second, that following initial urbanization, urban-adapted individuals colonized other urban areas in a leapfrog manner. Previous analyses of spatial patterns in the timing of blackbird urbanization, and experimental introductions of urban and rural blackbirds to uncolonized cities, suggest that the leapfrog model is likely to apply. We found that, across the western Palaearctic, urban blackbird populations contain less genetic diversity than rural ones, urban populations are more strongly differentiated from each other than from rural populations and assignment tests support a rural source population for most urban individuals. In combination, these results provide much stronger support for the independent urbanization model than the leapfrog one. If the former model predominates, colonization of multiple urban centres will be particularly difficult when urbanization requires genetic adaptations, having implications for urban species diversity.  相似文献   

20.
    
It is prevalent to use ecological niche models in the analysis of species expansion and niche changes. However, it is difficult to estimate the niche when alien species fail to establish in exotic areas. Here, we applied the tolerance niche concept, which means that niche of species can live and grow but preclude a species from establishing self‐sustaining populations, in such fail‐to‐establish events. Taking the rapidly expanded bird, Asian openbill (Anastomus oscitans), as a model species, we investigated niche dynamics and its potential effects on the population by Niche A and ecospat, predicted potential distribution by biomod2. Results showed that niche expansion has occurred in two non‐native populations caused by the tolerance of colder and wetter environments, and potential distribution mainly concentrated on equatorial islands. Our study suggested that the expanded niche belongs to tolerance niche concept according to the populations'' dynamics and GPS tracking evidence. It is essential to consider source populations when we analyze the alien species. We recommended more consideration to the application of tolerance niche in alien species research, and there is still a need for standard measurement frameworks for analyzing the tolerance niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号