首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate‐induced range shifts result in the movement of a sample of genotypes from source populations to new regions. The phenotypic consequences of those shifts depend upon the sample characteristics of the dispersive genotypes, which may act to either constrain or promote phenotypic divergence, and the degree to which plasticity influences the genotype–environment interaction. We sampled populations of the damselfly Erythromma viridulum from northern Europe to quantify the phenotypic (latitude–body size relationship based on seven morphological traits) and genetic (variation at microsatellite loci) patterns that occur during a range expansion itself. We find a weak spatial genetic structure that is indicative of high gene flow during a rapid range expansion. Despite the potentially homogenizing effect of high gene flow, however, there is extensive phenotypic variation among samples along the invasion route that manifests as a strong, positive correlation between latitude and body size consistent with Bergmann's rule. This positive correlation cannot be explained by variation in the length of larval development (voltinism). While the adaptive significance of latitudinal variation in body size remains obscure, geographical patterns in body size in odonates are apparently underpinned by phenotypic plasticity and this permits a response to one or more environmental correlates of latitude during a range expansion.  相似文献   

2.
During recent decades, many species have responded to global warming by poleward range expansions. We require a better mechanistic understanding of the nature and extent of such processes to assess how climate change might affect biodiversity. Wing-dimorphic bush-crickets are excellent objects to study dispersal and colonization processes at the range margin because the long-winged morphs (macropters) represent dispersal units of otherwise flightless species. Moreover, these insects produce noisy songs and can easily be mapped. The present study comprised a detailed investigation of the population dynamics and genetics at the edge of the range of Roesel's bush-cricket, Metrioptera roeselii . We mapped the distribution of this insect in a previously unoccupied area of 185 km2 and examined the genetic structure at the range margin using four polymorphic microsatellite loci. The results obtained demonstrate that the European heat wave in 2003 induced a strong immigration of macropters in the area stemming from multiple sources, whereas only few immigrants were recorded in the two subsequent years. Macropters were genotyped in a distance of up to 19.1 km from their origin, considerably exceeding the known dispersal distances for this species. Moreover, the data show that strong local founder effects are equalized on a large scale by the high number of immigrants from multiple sources. The present study demonstrates that macropters are of high significance for the range expansion of wing-dimorphic insects because a single-year climatic anomaly can induce strong dispersal processes.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 118–127.  相似文献   

3.
It is prevalent to use ecological niche models in the analysis of species expansion and niche changes. However, it is difficult to estimate the niche when alien species fail to establish in exotic areas. Here, we applied the tolerance niche concept, which means that niche of species can live and grow but preclude a species from establishing self‐sustaining populations, in such fail‐to‐establish events. Taking the rapidly expanded bird, Asian openbill (Anastomus oscitans), as a model species, we investigated niche dynamics and its potential effects on the population by Niche A and ecospat, predicted potential distribution by biomod2. Results showed that niche expansion has occurred in two non‐native populations caused by the tolerance of colder and wetter environments, and potential distribution mainly concentrated on equatorial islands. Our study suggested that the expanded niche belongs to tolerance niche concept according to the populations'' dynamics and GPS tracking evidence. It is essential to consider source populations when we analyze the alien species. We recommended more consideration to the application of tolerance niche in alien species research, and there is still a need for standard measurement frameworks for analyzing the tolerance niche.  相似文献   

4.
The genetic consequences of range expansions have generally been investigated at wide geographical and temporal scales, long after the colonization event. A unique ecological system enabled us to both monitor the colonization dynamics and decipher the genetic footprints of expansion over a very short time period. Each year an epidemic of the poplar rust (Melampsora larici‐populina) expands clonally and linearly along the Durance River, in the Alps. The colonization dynamics observed in 2004 showed two phases with different genetic outcomes. Upstream, fast colonization maintained high genetic diversity. Downstream, the colonization wave progressively faltered, diversity eroded, and differentiation increased, as expected under recurrent founder events. In line with the high dispersal abilities of rust pathogens, we provide evidence for leapfrog dispersal of clones. Our results thus emphasize the importance of colonization dynamics in shaping spatial genetic structure in the face of high gene flow.  相似文献   

5.
Currently many attempts are made to reconstruct the colonization history of plant species after the last ice age. A surprising finding is that during the colonization phase genetic diversity did not decrease as much as expected. In this paper we examine whether long distance seed dispersal events could play a role in the unexpected maintenance of genetic diversity during range expansion. This study is based on simulations carried out with a maternally inherited haploid locus using a cellular automaton. The simulations reveal a close relationship between the frequency of long distance seed dispersal events and the amount of genetic diversity preserved during colonization. In particular, when the colonized region is narrow, a complete loss of genetic diversity results from the occurrence of very rare long distance dispersal (LDD) events. We call this phenomenon the 'embolism effect'. However, slightly higher rates of LDD events reverse this effect, up to the point that diversity is better preserved than in a pure diffusion model. This phenomenon is linked to the reorganization of the genetic structure during colonization and is called the 'reshuffling effect'.  相似文献   

6.
Conventional wisdom predicts that sequential founder events will cause genetic diversity to erode in species with expanding geographic ranges, limiting evolutionary potential at the range margin. Here, we show that invasive European starlings (Sturnus vulgaris) in South Africa preserve genetic diversity during range expansion, possibly as a result of frequent long‐distance dispersal events. We further show that unfavourable environmental conditions trigger enhanced dispersal, as indicated by signatures of selection detected across the expanding range. This brings genetic variation to the expansion front, counterbalancing the cumulative effects of sequential founding events and optimizing standing genetic diversity and thus evolutionary potential at range margins during spread. Therefore, dispersal strategies should be highlighted as key determinants of the ecological and evolutionary performances of species in novel environments and in response to global environmental change.  相似文献   

7.
The Marble gallwasp Andricus kollari has a native range divided into two geographically separated lifecycles. In Eastern Europe and Turkey, the lifecycle involves a sexual generation on Turkey oak, Quercus cerris, while in Iberia and North Africa the sexual generation host is cork oak, Q. suber. Over the last 500 years, A. kollari has expanded its range into northern Europe, following human planting of Q. cerris from Italy and the Balkans. We ask: (i) what is the genetic relationship between eastern and western distributions of Andricus kollari? Can we determine which lifecycle is ancestral, and how long ago they diverged? (ii) To what extent have eastern and western native ranges contributed to northwards range expansion? (iii) Is there any evidence for hybridization between the two life cycle types? We present analyses of allozyme data for 13 polymorphic loci and of sequence variation for a 433 bp fragment of the mitochondrial cytochrome b gene. These show: (i) that four haplotype lineages (one in Spain, two in Hungary/Italy and one in Turkey) diverged more or less simultaneously between 1 and 2 million years ago, suggesting the existence of at least four refuges through recent ice age cycles. Our data cannot resolve which lifecycle type is ancestral. (ii) Populations north of putative refuges are divided into two sets. Populations in south‐west France are allied to Spain, while all remaining populations in northern Europe have been colonized from Italy and the Balkans. (iii) The transition from one race to another in south‐west France is marked by abrupt transitions in the frequency of refuge‐specific private alleles and corresponds closely to the northern limit of the distribution of cork oak. Although hybrids were detected in north‐west France, none were detected where the two lifecycles meet in south‐western France. The biology of oak gallwasps predicts that any hybrid zone will be narrow, and limited to regions where Q. cerris and Q. suber meet. Our data suggest that eastern and western A. kollari are effectively separate species.  相似文献   

8.
For a species rapidly expanding its geographic range, such as during biological invasion, most alleles in the introduced range will have their evolutionary origins in the native range. Yet, the way in which historical processes occurring over evolutionary time in the native range contribute to the diversity sampled during contemporary invasion is largely unknown. We used chloroplast DNA (cpDNA) gene genealogies and coalescent methods to study two congeneric plants, Silene latifolia and S. vulgaris. We examined how phylogenetic diversity was shaped by demographic growth and historical range expansions in the native European range, and how this history affected the diversity sampled during their recent invasion of North America. Genealogies from both species depart from neutrality, likely as a result of demographic expansion in the ancestral range, the timing of which corresponds to shortly after each species originated. However, the species differ in the spatial distribution of cpDNA lineages across the native range. Silene latifolia shows a highly significant phylogeographic structure that most likely reflects different avenues of the post-glacial expansion into northern Europe from Mediterranean refugia. By contrast, cpDNA lineages in S. vulgaris have been widely scattered across Europe during, or since, the most recent post-glacial expansion. These different evolutionary histories resulted in dramatic differences in how phylogenetic diversity was sampled during invasion of North America. In S. latifolia, relatively few, discrete invasion events from a structured native range resulted in a rather severe genetic bottleneck, but also opportunities for admixture among previously isolated lineages. In S. vulgaris, lack of genetic structure was accompanied by more representative sampling of phylogenetic diversity during invasion, and reduced potential for admixture. Our results provide clear insights into how historical processes may feed forward to influence the phylogenetic diversity of species invading new geographic ranges.  相似文献   

9.
1. The British distribution of the butterfly Gonepteryx rhamni (L.) follows closely the range of its natural host plants, Rhamnus catharticus L. and Frangula alnus Miller, suggesting that it is one of the few British butterflies that has a host‐limited distribution. In North Wales, this species has its range margin, and it was recorded only occasionally in a 35‐km2 area prior to the 1980s. Frangula alnus bushes were planted in the area in about 1986, allowing the hypothesis that G. rhamni would expand its range following increased host plant availability to be tested. 2. From 1996 to 1998, the distribution of the butterfly and its host plants, R. catharticus (native), Rhamnus alaternus L. (introduced), and F. alnus (introduced to the area but native to Britain), was mapped in the study area. It was found that the butterfly was more widespread than any of its host plants. Frangula alnus was the most widespread of the host plants, and received most eggs, suggesting that the carrying capacity of the habitat would have increased substantially following the planting of this species. Gonepteryx rhamni was able to complete its lifecycle on both introduced species in the study area. 3. A mark–release–recapture study showed that adult G. rhamni moved an average of 512 m, and 50% of movements were further than 400 m; these values are underestimates. The relatively high mobility of this species suggests that it probably perceives host plants and nectar sources as resource patches (patchy population) in this fragmented landscape, and this population now represents a satellite population of the butterfly's main distribution in Britain. 4. The results presented here confirm empirically the host‐limited distribution of G. rhamni, which expanded following the planting of extra host plants.  相似文献   

10.
Many studies have been carried out on predictive traits, such as geographical range, but most of them were related to introduced species and considered the invasion as a whole. The contrasting results previously obtained suggest that studies should take into account the dynamics of the invasion process (immigration, establishment, spread). We hypothesise that the geographical range reflects the species tolerance to new environments, and is related especially to the establishment and spread of the invasion process. First, data on spontaneous invasive birds in France since 1950 were collected to determine the relation between geographical range and spontaneous invasions of French biogeographical areas. Second, the urban context, assumed to be free of immigration, was used to focus on this relation during the establishment and spread of species. For all species recorded, we determined the geographical range from an atlas, measured as the distribution range area RA (occupied area in km2) and the latitudinal range LR (km from north to south). Our results on spontaneous invaders show that the geographical range, especially RA, could help to predict the extent of an invasion once it has started. In the urban context, RA and LR discriminated urban colonists from urban avoiders, which supported the link between the geographical range and establishment/spread success. The geographical range participates, with other traits, in defining an ‘ideal invader’. We suggest that the dynamics of the invasion process i.e., considering each step of invasion rather than an entity, should be an important conceptual tool for future predictive studies.  相似文献   

11.
  1. An outbreak of Cacosceles newmannii (Coleoptera: Cerambycidae) was detected for the first time on sugarcane (Saccharum spp.) in 2015 in KwaZulu-Natal, South Africa. Although primary host plants of this native species remain unknown, these are central to testing hypotheses concerning the outbreak.
  2. We hypothesized that this species has undergone a host plant shift (i.e. a feeding association with a novel host plant).
  3. We compared δ13C and δ15N ratios of adult beetles retrieved from South African museum collections, collected between 1891 and 2016 (n = 23; ‘pre-outbreak’), with samples from infested fields in 2017 (n = 9, ‘post-outbreak’) and in 2019 (n = 23, ‘post-outbreak’), as well as diverse, plausible host plants (n = 42 samples across 10 species) from infested fields and surrounding patches of indigenous and commercial forest vegetation. We used Bayesian isotope mixing models to infer the relative contribution of the different plants to the diet of C. newmannii.
  4. Pre-outbreak, C3 plants contributed strongly to the larval diet, whereas post-outbreak, C4 plants were the largest component of their diet. There was some indication of C4 plants contributing to their diet pre-outbreak.
  5. Our results suggest that the outbreak of this polyphagous beetle was not a dramatic host shift but rather a rapid increase in the proportion of C4 plants already in their diet.
  6. We concluded that plants from the families Fabaceae and Poaceae are the most likely host plants of this species. Nevertheless, the drivers of this rapid outbreak on sugarcane remain poorly determined and should be the focus of future research.
  相似文献   

12.
Dispersal strategies are important mechanisms underlying the spatial distribution and colonizing ability of all mobile species. In the current study, we use highly polymorphic microsatellite markers to evaluate local dispersal and colonization dynamics of the round goby (Neogobius melanostomus), an aquatic invader expanding its range from lake to river environments in its introduced North American range. Genetic structure, genotype assignment and genetic diversity were compared among 1262 round gobies from 20 river and four lake sites in three Great Lakes tributaries. Our results indicate that a combination of short-distance diffusion and long-distance dispersal, collectively referred to as 'stratified dispersal', is facilitating river colonization. Colonization proceeded upstream yearly (approximately 500 m/year; 2005-2009) in one of two temporal replicates while genetic structure was temporally stable. Contiguous dispersal from the lake was observed in all three rivers with a substantial portion of river fish (7.3%) identified as migrants. Genotype assignment indicated a separate introduction occurred upstream of the invasion front in one river. Genetic diversity was similar and relatively high among lake and recently colonized river populations, indicating that founder effects are mitigated through a dual-dispersal strategy. The remarkable success of round goby as an aquatic invader stresses the need for better diffusion models of secondary range expansion for presumably sessile invasive species.  相似文献   

13.
Aims This study aimed to document and describe the current range expansion of the great‐tailed grackle (Quiscalus mexicanus Gmelin) into the USA. By examining the habitat associations and pattern of spread of this species, I intended to determine the factors responsible for this remarkable expansion by a tropical species into a temperate environment. Location This study focused on the spread of the great‐tailed grackle in the continental USA, Canada and Baja California. Methods I used published records, museum specimens, and egg collections to document this range expansion from 1880 through 2002. In addition I surveyed large portions of Arizona, Nevada, southern Utah and southern California for great‐tailed grackles during 2000 and 2001. The data gathered was used to create maps in order to quantify the rate of spread of this species. Results Between 1880 and 2000 the great‐tailed grackle expanded its breeding range in the USA from c. 64,000 km2 to more than 3,561,000 km2, an increase of 5530%. The average annual rate of increase is 3.4%, but has lessened during the past 20 years. Northward movement in the eastern portion of the range has slowed down, reflecting this decrease. However, in the central and western portion of the species range, the rate of northward movement is still accelerating. During this expansion, the average time between first sighting in a state and first breeding was 5.8 years. The species has become less migratory during its range expansion, wintering in 17 of the 20 states where it breeds. Main conclusions This range expansion has been marked by great‐tailed grackles preferring human‐modified environments as breeding grounds, especially in the western states. This association appears to benefit the species in two ways; nest predation is lessened in such areas compared with natural conditions, whereas human activities tend to generate an abundant and consistent food supply for feeding offspring. Wintering birds are often associated with cattle feed lots and large‐scale dairies, where abundant waste grain provides them with a reliable food supply. Given the continued human population increase throughout large areas of the western USA, the great‐tailed grackle will continue its range expansion.  相似文献   

14.
Climate change is causing widespread geographical range shifts, which likely reflects different processes at leading and trailing range margins. Progressive warming is thought to relax thermal barriers at poleward range margins, enabling colonization of novel areas, but imposes increasingly unsuitable thermal conditions at equatorward margins, leading to range losses from those areas. Few tests of this process during recent climate change have been possible, but understanding determinants of species’ range limits will improve predictions of their geographical responses to climate change and variation in extinction risk. Here, we examine the relationship between poleward and equatorward range margin dynamics with respect to temperature‐related geographical limits observed for 34 breeding passerine species in North America between 1984–1988 and 2002–2006. We find that species’ equatorward range margins were closer to their upper realized thermal niche limits and proximity to those limits predicts equatorward population extinction risk through time. Conversely, the difference between breeding bird species’ poleward range margin temperatures and the coolest temperatures they tolerate elsewhere in their ranges was substantial and remained consistent through time: range expansion at species’ poleward range margins is unlikely to directly reflect lowered thermal barriers to colonization. The process of range expansion may reflect more complex factors operating across broader areas of species’ ranges. The latitudinal extent of breeding bird ranges is decreasing through time. Disparate responses observed at poleward versus equatorward margins arise due to differences in range margin placement within the realized thermal niche and suggest that climate‐induced geographical shift at equatorward range limits more strongly reflect abiotic conditions than at their poleward range limits. This further suggests that observed geographic responses to date may fail to demonstrate the true cost of climate change on the poleward portion of species’ distributions. Poleward range margins for North American breeding passerines are not presently in equilibrium with realized thermal limits.  相似文献   

15.
Phenotypic differentiation is often interpreted as a result of local adaptation of individuals to their environment. Here, we investigated the skull morphological differentiation in 11 populations of the white‐footed mouse (Peromyscus leucopus). These populations were sampled in an agricultural landscape in the Montérégie region (Québec, Canada), at the northern edge of the distribution of the white‐footed mouse. We found a strong pattern of phenotypic differentiation matching the genetic structure across these populations. Landscape fragmentation and the presence of geographic barriers, in particular north–south oriented rivers, contribute to this differentiation and modulate the pattern of rapid ongoing northward range expansion of the white‐footed mouse in response to climate warming. We conclude that while large rivers and postglacial recolonization routes have shaped the current pattern of distribution and differentiation of white‐footed mouse populations, further local differentiation is occurring, at the scale of the landscape. We posit that the northern expansion of the white‐footed mouse is achieved through successive independent founder events in a fragmented landscape at the northern range edge of the species. The phenotypic differentiation we observe is thus a result of a number of mechanisms operating at different spatial and temporal scales.  相似文献   

16.
Species range expansions are crucial for understanding niche formation and the interaction with the environment. Here, we studied the bumblebee Bombus haematurus Kriechbaumer, 1870, a species historically distributed from northern Serbia through northern Iran which has very recently started expanding northwestward into Central Europe without human-mediated dispersal (i.e., it is a natural spread). After updating the global distribution of this species, we investigated if niche shifts took place during this range expansion between newly colonized and historical areas. In addition, we have explored which climatic factors may have favored the natural range expansion of the species. Our results indicated that Bombus haematurus has colonized large territories in 7 European countries outside the historical area in the period from the 1980s to 2018, a natural expansion over an area that equals 20% of the historical distribution. In addition, this bumblebee performs generalism in flower visitation and it occurs in different habitats, although a preference for forested areas clearly emerges. The land-use associated with the species in the colonized areas is similar to the historical distribution, indicating that no major niche shifts occurred during the spread. Furthermore, in recently colonized localities, the range expansion was associated with warming temperatures during the winter and also during both queen overwintering and emergence phases. These findings document a case of natural range expansion due to environmental change rather than due to niche shifts, and specifically they suggest that warmer winters could be linked to the process of natural colonization of new areas.  相似文献   

17.
18.
19.
We are limited in our ability to predict climate-change-induced range shifts by our inadequate understanding of how non-climatic factors contribute to determining range limits along putatively climatic gradients. Here, we present a unique combination of observations and experiments demonstrating that seed predation and soil properties strongly limit regeneration beyond the upper elevational range limit of sugar maple, a tree species of major economic importance. Most strikingly, regeneration beyond the range limit occurred almost exclusively when seeds were experimentally protected from predators. Regeneration from seed was depressed on soil from beyond the range edge when this soil was transplanted to sites within the range, with indirect evidence suggesting that fungal pathogens play a role. Non-climatic factors are clearly in need of careful attention when attempting to predict the biotic consequences of climate change. At minimum, we can expect non-climatic factors to create substantial time lags between the creation of more favourable climatic conditions and range expansion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号