首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 941 毫秒
1.
The central–marginal hypothesis (CMH) predicts that population size, genetic diversity and genetic connectivity are highest at the core and decrease near the edges of species' geographic distributions. We provide a test of the CMH using three replicated core‐to‐edge transects that encompass nearly the entire geographic range of the endemic streamside salamander (Ambystoma barbouri). We confirmed that the mapped core of the distribution was the most suitable habitat using ecological niche modelling (ENM) and via genetic estimates of effective population sizes. As predicted by the CMH, we found statistical support for decreased genetic diversity, effective population size and genetic connectivity from core to edge in western and northern transects, yet not along a southern transect. Based on our niche model, habitat suitability is lower towards the southern range edge, presumably leading to conflicting core‐to‐edge genetic patterns. These results suggest that multiple processes may influence a species' distribution based on the heterogeneity of habitat across a species' range and that replicated sampling may be needed to accurately test the CMH. Our work also emphasizes the importance of identifying the geographic range core with methods other than using the Euclidean centre on a map, which may help to explain discrepancies among other empirical tests of the CMH. Assessing core‐to‐edge population genetic patterns across an entire species' range accompanied with ENM can inform our general understanding of the mechanisms leading to species' geographic range limits.  相似文献   

2.
The central‐marginal hypothesis (CMH) posits that range margins exhibit less genetic diversity and greater inter‐population genetic differentiation compared to range cores. CMH predictions are based on long‐held “abundant‐centre” assumptions of a decline in ecological conditions and abundances towards range margins. Although much empirical research has confirmed CMH, exceptions remain almost as common. We contend that mangroves provide a model system to test CMH that alleviates common confounding factors and may help clarify this lack of consensus. Here, we document changes in black mangrove (Avicennia germinans) population genetics with 12 nuclear microsatellite loci along three replicate coastlines in the United States (only two of three conform to underlying “abundant‐centre” assumptions). We then test an implicit prediction of CMH (reduced genetic diversity may constrain adaptation at range margins) by measuring functional traits of leaves associated with cold tolerance, the climatic factor that controls these mangrove distributional limits. CMH predictions were confirmed only along the coastlines that conform to “abundant‐centre” assumptions and, in contrast to theory, range margin A. germinans exhibited functional traits consistent with greater cold tolerance compared to range cores. These findings support previous accounts that CMH may not be a general rule across species and that reduced neutral genetic diversity at range margins may not be a constraint to shifts in functional trait variation along climatic gradients.  相似文献   

3.
The abundant centre hypothesis (ACH) assumes that population abundance, population size, density and per‐capita reproductive output should peak at the centre of a species' geographic range and decline towards the periphery. Increased isolation among and decreased reproductive output within edge populations should reduce within‐population genetic diversity and increase genetic differentiation among edge relative to central populations. The ACH also predicts asymmetrical gene flow, with net movement of migrants from the centre to edges. We evaluated these ecological assumptions and population‐genetic predictions in the endemic flowering plant Leavenworthia stylosa. Although populations were more spatially isolated near range edges, the geographic centre was surrounded by and not coincident with areas of peak population abundance, and plant density increased towards range edges. Per‐capita seed number was not associated with distance to the range centre, but seed number/m2 increased near range edges. In support of ACH predictions, allelic diversity at 12 microsatellite loci declined with distance from the range centre, and pairwise FST values were higher between edge populations than between central populations. Coalescent analyses confirmed that gene flow was most infrequent between edge populations, but there was not an asymmetric pattern of gene flow predicted by the ACH. This study shows that among‐population demographic variability largely did not support the ACH, while patterns of genetic diversity, differentiation and gene flow were generally consistent with its predictions. Such mixed support has frequently been observed in tests of the ACH and raises concerns regarding the generality of this hypothesis for species range limits.  相似文献   

4.
Understanding the factors that govern the distribution of species is a central goal of evolutionary ecology. It is commonly assumed that geographic range limits reflect ecological niche limits and that species experience increasingly marginal conditions towards the edge of their ranges. Using spatial data and ecological niche models we tested these hypotheses in Arabidopsis lyrata. Specifically, we asked whether range limits coincide with predicted niche limits in this system and whether the suitability of sites declines towards the edge of the species’ range in North America. We further explored patterns of environmental change towards the edge of the range and asked whether genome‐wide patterns of genetic diversity decline with increasing peripherality and environmental marginality. Our results suggest that latitudinal range limits coincide with niche limits. Populations experienced increasingly marginal environments towards these limits – though patterns of environmental change were more complex than most theoretical models for range limits assume. Genomic diversity declined towards the edge of the species’ range and with increasing distance from the estimated centre of the species’ niche in environmental space, but not with the suitability of sites based on niche model predictions. Thus while latitudinal range limits in this system are broadly associated with niche limits, the link between environmental conditions and genetic diversity (and thus the adaptive potential of populations) is less clear.  相似文献   

5.
Genetic diversity is important for species' fitness and evolutionary processes but our knowledge on how it varies across a species' distribution range is limited. The abundant centre hypothesis (ACH) predicts that populations become smaller and more isolated towards the geographic range periphery – a pattern that in turn should be associated with decreasing genetic diversity and increasing genetic differentiation. We tested this hypothesis in Adonis vernalis, a dry grassland plant with an extensive Eurasian distribution. Its life‐history traits and distribution characteristics suggest a low genetic diversity that decreases and a high genetic differentiation that increases towards the range edge. We analysed AFLP fingerprints in 28 populations along a 4698‐km transect from the geographic range core in Russia to the western range periphery in Central and Western Europe. Contrary to our expectation, our analysis revealed high genetic diversity (range of proportion of polymorphic bands = 56–81%, He = 0.168–0.238) and low genetic differentiation across populations (ΦST = 0.18). However, in congruence with the genetic predictions of the ACH, genetic diversity decreased and genetic differentiation increased towards the range periphery. Spanish populations were genetically distinct, suggesting a divergent post‐glacial history in this region. The high genetic diversity and low genetic differentiation in the remaining Avernalis populations is surprising given the species' life‐history traits and points to the possibility that the species has been widely distributed in the studied region or that it has migrated from a diverse source in an East–West direction, in the past.  相似文献   

6.
Several hypotheses are available to predict change in genetic diversity when approaching peripheral populations. We used the eastern spadefoot toad in Israel as a model system to examine these hypotheses using population genetics analyses and network theory. Our results contradicted most of the predictions from the ‘abundant centre’ model, that edge populations should have lower density and lower genetic diversity than core populations. Furthermore, dispersal rate between core and peripheral populations is expected to be asymmetric, mostly directed outwards from the core population, but we did not detect such a trend. Our data did not support the hypothesis of no change or a non‐linear change in genetic diversity towards the range edge. However, our results did fit the Fisher (The Genetical Theory of Natural Selection, Clarendon Press, Oxford, 1930) hypothesis, which predicts increase in genetic variability from core to edge of distribution. We attributed this finding to the much harsher climatic and abiotic conditions at the edge, which must be tolerated over generations by both tadpoles and post‐metamorphic individuals in this region. Finally, our results have significant conservation implications for the survival of this species in Israel, where it is critically endangered. We identified two distinct communities, which are genetically linked through two specific rain pools in the Upper Galilee. Details on the spatial subdivision of this species are cardinal for future management and restoration of temporary wetlands in Israel.  相似文献   

7.
Understanding the impact of postglacial recolonization on genetic diversity is essential in explaining current patterns of genetic variation. The central–marginal hypothesis (CMH) predicts a reduction in genetic diversity from the core of the distribution to peripheral populations, as well as reduced connectivity between peripheral populations. While the CMH has received considerable empirical support, its broad applicability is still debated and alternative hypotheses predict different spatial patterns of genetic diversity. Using microsatellite markers, we analysed the genetic diversity of the adder (Vipera berus) in western Europe to reconstruct postglacial recolonization. Approximate Bayesian Computation (ABC) analyses suggested a postglacial recolonization from two routes: a western route from the Atlantic Coast up to Belgium and a central route from the Massif Central to the Alps. This cold‐adapted species likely used two isolated glacial refugia in southern France, in permafrost‐free areas during the last glacial maximum. Adder populations further from putative glacial refugia had lower genetic diversity and reduced connectivity; therefore, our results support the predictions of the CMH. Our study also illustrates the utility of highly variable nuclear markers, such as microsatellites, and ABC to test competing recolonization hypotheses.  相似文献   

8.
The core–periphery hypothesis (CPH) predicts that populations located at the periphery of a species' range should have lower levels of genetic variation than those at the centre of the range. However, most of the research on the CPH focuses on geographic distance and not on ecological distance, or uses categorical definitions of core and periphery to explain the distribution of genetic diversity. We use current climate data and historical climate data from the last glacial maxima to develop quantitative estimates of contemporary and historical ecological suitability using ecological niche models. We analysed genetic diversity using 12 polymorphic microsatellites to estimate changes in heterozygosity, allelic richness and population differentiation in 31 populations of the wood frog (Lithobates sylvaticus) spanning the species’ entire eastern clade (33o to 45o latitude) from Alabama, USA, to Nova Scotia, Canada. Our data support predictions based on the CPH. Populations showed significant differences in genetic diversity across the range, with lower levels of genetic variation at the geographic range edge and in areas with lower levels of historical and contemporary ecological suitability. However, history and geography (not current ecological suitability) best explain the patterns. This study highlights the importance of examining more than just geography when assessing the CPH, and the importance of historical ecological suitability in the maintenance of genetic diversity and population differentiation.  相似文献   

9.
The ‘centre–periphery hypothesis’ (CPH) is a long‐standing postulate in ecology that states that genetic variation and demographic performance of a species decrease from the centre to the edge of its geographic range. This hypothesis is based on an assumed concordance between geographical peripherality and ecological marginality such that environmental conditions become harsher towards the limits of a species range. In this way, the CPH sets the stage for understanding the causes of distribution limits. To date, no study has examined conjointly the consistency of these postulates. In an extensive literature review we discuss the birth and development of the CPH and provide an assessment of the CPH by reviewing 248 empirical studies in the context of three main themes. First, a decrease in species occurrence towards their range limits was observed in 81% of studies, while only 51% demonstrated reduced abundance of individuals. A decline in genetic variation, increased differentiation among populations and higher rates of inbreeding were demonstrated by roughly one in two studies (47, 45 and 48%, respectively). However, demographic rates, size and population performance less often followed CPH expectations (20–30% of studies). We highlight the impact of important methodological, taxonomic, and biogeographical biases on such validation rates. Second, we found that geographic and ecological marginality gradients are not systematically concordant, which casts doubt on the reliability of a main assumption of the CPH. Finally, we attempt to disentangle the relative contribution of geographical, ecological and historical processes on the spatial distribution of genetic and demographic parameters. While ecological marginality gradients explain variation in species' demographic performance better than geographic gradients, contemporary and historical factors may contribute interactively to spatial patterns of genetic variation. We thereby propose a framework that integrates species' ecological niche characteristics together with current and past range structure to investigate spatial patterns of genetic and demographic variation across species ranges.  相似文献   

10.
All species have limited geographic distributions; but the ecological and evolutionary mechanisms causing range limits are largely unknown. That many species’ geographic range limits are coincident with niche limits suggests limited evolutionary potential of marginal populations to adapt to conditions experienced beyond the range. We provide a test of range limit theory by combining population genetic analysis of microsatellite polymorphisms with a transplant experiment within, at the edge of, and 60 km beyond the northern range of a coastal dune plant. Contrary to expectations, lifetime fitness increased toward the range limit with highest fitness achieved by most populations at and beyond the range edge. Genetic differentiation among populations was strong, with very low, nondirectional gene flow suggesting range limitation via constraints to dispersal. In contrast, however, local adaptation was negligible, and a distance‐dependent decline in fitness only occurred for those populations furthest from home when planted beyond the range limit. These results challenge a commonly held assumption that stable range limits match niche limits, but also raise questions about the unique value of peripheral populations in expanding species’ geographical ranges.  相似文献   

11.
We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species’ ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species’ niche space, we created genetically informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i) gENMs predicted population occurrences with up to 12‐fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change.  相似文献   

12.
Species are predicted to respond to global warming through ‘cold‐ward’ shifts in their geographic distributions due to encroachment into newly suitable habitats and/or dieback in areas that become climatically unsuitable. I conduct one of the first‐ever tests of this hypothesis for tropical plant species. I test for changes in the thermal distributions of 239 South American tropical plant species using dated herbarium records for specimens collected between 1970 and 2009. Supporting a priori predictions, many species (59%) exhibit some evidence of significant cold‐ward range shifts even after correcting for collection biases. Over 1/3 of species (35%) show significant cold‐ward movement in their hot thermal limits (mean rate of change = 0.022 °C yr?1). Most of these species (85%; 30% of all study species) show no corresponding shift in their cold thermal limits. These unbalanced changes in the species’ thermal range limits may indicate species that are experiencing dieback due to their intolerance of rising temperatures coupled with an inability to expand into newly climatically suitable habitats. On the other hand, 25% of species show significant cold‐ward shifts in their cold thermal range limits (mean rate of change = 0.003 °C yr?1), but 80% of these species (20% of all study species) show no corresponding shift in their hot thermal range limits. In these cases, the unbalanced shifts may indicate species that are able to ‘benefit’ under global warming, at least temporally, by both tolerating rising temperatures and expanding into new suitable habitat. An important ancillary result of this study is that the number of species exhibiting significant range shifts was greatly influenced by shifting collector biases. This highlights the need to account for biases when analyzing natural history records or other long‐term records.  相似文献   

13.
Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range‐edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range‐edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range‐edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range‐core populations. We also highlight how large‐scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest‐cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range‐edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range‐edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.  相似文献   

14.
Species' geographic range limits are most often not demarcated by obvious dispersal barriers. Poor‐quality habitat at the edge of a species' range can prevent range expansion by preventing outward migration or through reducing adaptive potential resulting from decreased genetic diversity. We identified habitat variables that constrain gene flow across the entire geographic range of an endemic salamander (Ambystoma barbouri) in the eastern United States, and we tested whether increased resistance resulting from these variables provides cryptic dispersal barriers at the range edges. Using polymorphic microsatellite loci, we first identified three genetic clusters that are separated by the Ohio and Kentucky rivers. Through a combination of landscape genetic analyses and generalized dissimilarity modelling, we then classified variables that (i) restrict gene flow in each of the genetic clusters across the geographic distribution of A. barbouri and (ii) become more common towards the peripheries of the distribution. A decrease in limestone availability and an increase in growing season precipitation were correlated with high resistance to gene flow across the range, and both became more common at the edges of the species' distribution. However, other landscape variables were more important for explaining variation in geneflow rates in different portions of the range, such as increased mean annual temperature and frost‐free period in the south vs. growing season precipitation in the north. Taken together, these results suggest that there are both range‐wide and regionally specific cryptic habitat barriers preventing geographic range expansion. Species ‘geographic range limits are probably governed by a set of ecological and evolutionary factors, and our landscape genetic approach could be applied to gain additional insight into many systems.  相似文献   

15.
Species distribution models (SDM) are a useful tool for predicting species range shifts in response to global warming. However, they do not explore the mechanisms underlying biological processes, making it difficult to predict shifts outside the environmental gradient where the model was trained. In this study, we combine correlative SDMs and knowledge on physiological limits to provide more robust predictions. The thermal thresholds obtained in growth and survival experiments were used as proxies of the fundamental niches of two foundational marine macrophytes. The geographic projections of these species’ distributions obtained using these thresholds and existing SDMs were similar in areas where the species are either absent‐rare or frequent and where their potential and realized niches match, reaching consensus predictions. The cold‐temperate foundational seaweed Himanthalia elongata was predicted to become extinct at its southern limit in northern Spain in response to global warming, whereas the occupancy of southern‐lusitanic Bifurcaria bifurcata was expected to increase. Combined approaches such as this one may also highlight geographic areas where models disagree potentially due to biotic factors. Physiological thresholds alone tended to over‐predict species prevalence, as they cannot identify absences in climatic conditions within the species’ range of physiological tolerance or at the optima. Although SDMs tended to have higher sensitivity than threshold models, they may include regressions that do not reflect causal mechanisms, constraining their predictive power. We present a simple example of how combining correlative and mechanistic knowledge provides a rapid way to gain insight into a species’ niche resulting in consistent predictions and highlighting potential sources of uncertainty in forecasted responses to climate change.  相似文献   

16.
During ongoing DNA barcode (COI‐5P) surveys of the macroalgal flora along the northwest Atlantic coast, we discovered a population of Ceramium secundatum in Narragansett Bay, Rhode Island, USA. This species is regarded as common and widespread in the northeast Atlantic, ranging from Norway to Morocco, but until now has not been reported from the western Atlantic. Several lines of evidence suggest that C. secundatum may be introduced to Narragansett Bay: (1) despite extensive collecting, specimens have only been obtained from a limited geographic range in the northwest Atlantic; (2) three other nonindigenous seaweed species are reportedly introduced in this region, which is thought to be a consequence of shipping; and (3) this species is introduced to South Africa and New Zealand. To investigate this suspected introduction, we applied population genetic analyses (using the cox2‐3 spacer) to compare the Narragansett Bay C. secundatum population to native populations in the Republic of Ireland and the United Kingdom. Collectively, analyses of biogeographical and molecular data indicate that C. secundatum is likely introduced to Narragansett Bay. The implications of this discovery are discussed.  相似文献   

17.
According to broad‐scale application of biogeographical theory, widespread retractions of species' rear edges should be seen in response to ongoing climate change. This prediction rests on the assumption that rear edge populations are “marginal” since they occur at the limit of the species' ecological tolerance and are expected to decline in performance as climate warming pushes them to extirpation. However, conflicts between observations and predictions are increasingly accumulating and little progress has been made in explaining this disparity. We argue that a revision of the concept of marginality is necessary, together with explicit testing of population decline, which is increasingly possible as data availability improves. Such action should be based on taking the population perspective across a species' rear edge, encompassing the ecological, geographical and genetic dimensions of marginality. Refining our understanding of rear edge populations is essential to advance our ability to monitor, predict and plan for the impacts of environmental change on species range dynamics.  相似文献   

18.
Studying the evolutionary dynamics of an alien species surviving and continuing to expand after several generations can provide fundamental information on the relevant features of clearly successful invasions. Here, we tackle this task by investigating the dynamics of the genetic diversity in invasive crested porcupine (Hystrix cristata) populations, introduced to Italy about 1500 years ago, which are still growing in size, distribution range and ecological niche. Using genome‐wide RAD markers, we describe the structure of the genetic diversity and the demographic dynamics of the H. cristata invasive populations and compare their genetic diversity with that of native African populations of both H. cristata and its sister species, H. africaeaustralis. First, we demonstrate that genetic diversity is lower in both the invasive Italian and the North Africa source range relative to other native populations from sub‐Saharan and South Africa. Second, we find evidence of multiple introduction events in the invasive range followed by very limited gene flow. Through coalescence‐based demographic reconstructions, we also show that the bottleneck at introduction was mild and did not affect the introduced genetic diversity. Finally, we reveal that the current spatial expansion at the northern boundary of the range is following a leading‐edge model characterized by a general reduction of genetic diversity towards the edge of the expanding range. We conclude that the level of genome‐wide diversity of H. cristata invasive populations is less important in explaining its successful invasion than species‐specific life‐history traits or the phylogeographic history in the native source range.  相似文献   

19.
Gene flow may influence the formation of species range limits, and yet little is known about the patterns of gene flow with respect to environmental gradients or proximity to range limits. With rapid environmental change, it is especially important to understand patterns of gene flow to inform conservation efforts. Here we investigate the species range of the selfing, annual plant, Mimulus laciniatus, in the California Sierra Nevada. We assessed genetic variation, gene flow, and population abundance across the entire elevation‐based climate range. Contrary to expectations, within‐population plant density increased towards both climate limits. Mean genetic diversity of edge populations was equivalent to central populations; however, all edge populations exhibited less genetic diversity than neighbouring interior populations. Genetic differentiation was fairly consistent and moderate among all populations, and no directional signals of contemporary gene flow were detected between central and peripheral elevations. Elevation‐driven gene flow (isolation by environment), but not isolation by distance, was found across the species range. These findings were the same towards high‐ and low‐elevation range limits and were inconsistent with two common centre‐edge hypotheses invoked for the formation of species range limits: (i) decreasing habitat quality and population size; (ii) swamping gene flow from large, central populations. This pattern demonstrates that climate, but not centre‐edge dynamics, is an important range‐wide factor structuring M. laciniatus populations. To our knowledge, this is the first empirical study to relate environmental patterns of gene flow to range limits hypotheses. Similar investigations across a wide variety of taxa and life histories are needed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号