首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In hybrid zones in which two divergent taxa come into secondary contact and interbreed, selection can maintain phenotypic diversity despite widespread genetic introgression. Red‐breasted (Sphyrapicus ruber) and red‐naped (S. nuchalis) sapsuckers meet and hybridize along a narrow contact zone that stretches from northern California to southern British Columbia. We found strong evidence for changes in the structure of this hybrid zone across time, with significant temporal shifts in allele frequencies and in the proportions of parental phenotypes across the landscape. In addition to these shifts, we found that differences in plumage predict genetic differences (R2 = 0.80), suggesting that plumage is a useful proxy for assessing ancestry. We also found a significant bimodal distribution of hybrids across the contact zone, suggesting that premating barriers may be driving reproductive isolation, perhaps as a result of assortative mating based on plumage differences. However, despite evidence of selection and strong patterns of population structure between parental samples, we found only weak patterns of genetic divergence. Using museum specimens and genomic data, this study of sapsuckers provides insight into the ways in which phenotypic and genetic structure have changed over a 40‐year period, as well as insight into the mechanisms that may contribute to the maintenance of the hybrid zone over time.  相似文献   

2.
Three species of closely related woodpeckers (sapsuckers; Sphyrapicus) hybridize where they come into contact, presenting a rare ‘λ‐shape’ meeting of hybrid zones. Two of the three arms of this hybrid zone are located on either side of the Interior Plateau of British Columbia, Canada bordering the foothills of the Coast Mountains and the Rocky Mountains. The third arm is located in the eastern foothills of the Rocky Mountains. The zones of hybridization present high variability of phenotypes and alleles in relatively small areas and provide an opportunity to examine levels of reproductive isolation between the taxa involved. We examined phenotypes (morphometric traits and plumage) and genotypes of 175 live birds across the two hybrid zones. We used the Genotyping By Sequencing (GBS) method to identify 180 partially diagnostic single nucleotide polymorphisms (SNPs) to generate a genetic hybrid index (GHI) for each bird. Phenotypically diverged S. ruber and S. nuchalis are genetically closely related, while S. nuchalis and S. varius have similar plumage but are well separated at the genetic markers studied. The width of both hybrid zones is narrower than expected under neutrality, and analyses of both genotypes and phenotypes indicate that hybrids are rare in the hybrid zone. Rarity of hybrids indicates assortative mating and/or some form of fitness reduction in hybrids, which might maintain the species complex despite close genetic distance and introgression. These findings further support the treatment of the three taxa as distinct species.  相似文献   

3.
Hybrid zones, where two divergent taxa meet and interbreed, offer unique opportunities to investigate how climate contributes to reproductive isolation between closely related taxa and how these taxa may respond to climatic changes. Red‐naped (Sphyrapicus nuchalis) and Red‐breasted (Sphyrapicus ruber) sapsuckers (Aves: Picidae) hybridize along a narrow contact zone that stretches from northern California to British Columbia. The hybrid zone between these species has been studied extensively for more than 100 years and represents an excellent system for investigations of the evolution of reproductive isolation. Shifts in the proportions of phenotypes at hybrid localities since 1910 that were inferred using specimens from museum collections were confirmed using species distribution models. We predicted the historical, current, and future distributions of parental and hybrid sapsuckers using Random Forests models to quantify how climate change is affecting hybrid zone movement in the Pacific Northwest. We found observed distribution shifts of parental sapsuckers were likely the result of climate change over the past 100 years, with these shifts predicted to continue for both sapsuckers over the next 80 years. We found Red‐breasted Sapsuckers are predicted to continue to expand, while Red‐naped Sapsuckers are predicted to contract substantially under future climate scenarios. As a result of the predicted changes, the amount of overlap in the distribution of these sapsuckers may decrease. Using hybrid phenotypes, we found the climate niche occupied by the hybrid zone is predicted to disappear under future conditions. The disappearance of this climate niche where the two parental species come into contact and hybridize may lead to a substantial reduction in genetic introgression. Understanding the impacts of global climate change on hybrid zones may help us to better understand how speciation has been shaped by climate in the past, as well as how evolution may respond to climate change in the future.  相似文献   

4.
Hybridization has presented a challenge for taxonomists and conservation biologists, since hybridizing forms could be stable evolutionary entities or ephemeral forms that are blending together. However, hybrid zones also provide a unique opportunity for evolutionary biologists who study the interaction between gene flow and reproductive isolation in speciation. Three forms of woodpeckers (sapsuckers; genus Sphyrapicus) in North America that are mostly geographically separated but hybridize with each other where they come into contact present a remarkable system for the study of hybridization. We provide the first comprehensive analysis of phenotypic and genetic variation across a hybrid zone between two of these forms, the red‐breasted Sphyrapicus ruber and yellow‐bellied S. varius sapsuckers. The objective was to infer whether selection maintains the differences between forms. Our analysis of eight morphometric and 20 plumage traits, and two molecular markers showed clear differences between the forms and roughly concordant clinal variation across a narrow hybrid zone. Thirty percent of sampled birds in the hybrid zone had mixed west/east genotypes at the genetic markers examined. The center of the genetic cline was located 20 km west of the crest of the Rocky Mountains. The width of the zone was 122 km, narrower than would be expected under neutral blending given reasonable estimates of the age of the zone and individual dispersal distances. Heterozygote deficit and cytonuclear disequilibrium at the centre of the hybrid zone suggested nonrandom mating or limited hybridization. Given these patterns and lack of evidence for habitat segregation we conclude that this hybrid zone is maintained by selection, most likely in the form of hybrid inferiority. This study provides an illustrative example of extensive hybridization between stable entities, providing additional evidence against the historical practice of treating hybridizing forms as members of the same species.  相似文献   

5.
6.
Hybrid zones are a valuable tool for studying the process of speciation and for identifying the genomic regions undergoing divergence and the ecological (extrinsic) and nonecological (intrinsic) factors involved. Here, we explored the genomic and geographic landscape of divergence in a hybrid zone between Papilio glaucus and Papilio canadensis. Using a genome scan of 28,417 ddRAD SNPs, we identified genomic regions under possible selection and examined their distribution in the context of previously identified candidate genes for ecological adaptations. We showed that differentiation was genomewide, including multiple candidate genes for ecological adaptations, particularly those involved in seasonal adaptation and host plant detoxification. The Z chromosome and four autosomes showed a disproportionate amount of differentiation, suggesting genes on these chromosomes play a potential role in reproductive isolation. Cline analyses of significantly differentiated genomic SNPs, and of species‐diagnostic genetic markers, showed a high degree of geographic coincidence (81%) and concordance (80%) and were associated with the geographic distribution of a climate‐mediated developmental threshold (length of the growing season). A relatively large proportion (1.3%) of the outliers for divergent selection were not associated with candidate genes for ecological adaptations and may reflect the presence of previously unrecognized intrinsic barriers between these species. These results suggest that exogenous (climate‐mediated) and endogenous (unknown) clines may have become coupled and act together to reinforce reproductive isolation. This approach of assessing divergence across both the genomic and geographic landscape can provide insight about the interplay between the genetic architecture of reproductive isolation and endogenous and exogenous selection.  相似文献   

7.
Reproductive isolation can be initiated by changes in one or a few key traits that prevent random mating among individuals in a population. During the early stages of speciation, when isolation is often incomplete, there will be a heterogeneous pattern of differentiation across regions of the genome between diverging populations, with loci controlling these key traits appearing the most distinct as a result of strong diversifying selection. In this study, we used Illumina‐sequenced ddRAD tags to identify genomewide patterns of differentiation in three recently diverged island populations of the Monarcha castaneiventris flycatcher of the Solomon Islands. Populations of this species have diverged in plumage colour, and these differences in plumage colour, in turn, are used in conspecific recognition and likely important in reproductive isolation. Previous candidate gene sequencing identified point mutations in MC1R and ASIP, both known pigmentation genes, to be associated with the difference in plumage colour between islands. Here, we show that background levels of genomic differentiation based on over 70,000 SNPs are extremely low between populations of distinct plumage colour, with no loci reaching the level of differentiation found in either candidate gene. Further, we found that a phylogenetic analysis based on these SNPs produced a taxonomy wherein the two melanic populations appear to have evolved convergently, rather than from a single common ancestor, in contrast to their original classification as a single subspecies. Finally, we found evidence that the pattern of low genomic differentiation is the result of both incomplete lineage sorting and gene flow between populations.  相似文献   

8.
Hybrid zones are geographic regions where isolating barriers between divergent populations are challenged by admixture. Identifying factors that facilitate or inhibit hybridization in sympatry can illuminate the processes that maintain those reproductive barriers. We analysed patterns of hybridization and phenotypic variation across two newly discovered hybrid zones between three subspecies of barn swallow (Hirundo rustica). These subspecies differ in ventral coloration and wing length, traits that are targets of sexual and natural selection, respectively, and are associated with genome‐wide differentiation in allopatry. We tested the hypothesis that the degree of divergence in these traits is associated with the extent of hybridization in secondary contact. We applied measures of population structure based on >23,000 SNPs to confirm that named subspecies correspond to distinct genomic clusters, and assessed coincidence between geographic clines for ancestry and phenotype. Although gene flow was ongoing across both hybrid zones and pairwise FST between subspecies was extremely low, we found striking differences in the extent of hybridization. In the more phenotypically differentiated subspecies pair, clines for ancestry, wing length and ventral coloration were steep and coincident, suggestive of strong isolation and, potentially, selection associated with phenotype. In the less phenotypically differentiated pair, gene flow and phenotypic variation occurred over a wide geographic span, indicative of weaker isolation. Traits associated with genome‐wide differentiation in allopatry may thus also contribute to isolation in sympatry. We discuss potentially important additional roles for evolutionary history and ecology in shaping variation in the extent hybridization between closely related pairs of subspecies.  相似文献   

9.
Investigating secondary contact of historically isolated lineages can provide insight into how selection and drift influence genomic divergence and admixture. Here, we studied the genomic landscape of divergence and introgression following secondary contact between lineages of the Western Diamondback Rattlesnake (Crotalus atrox) to determine whether genomic regions under selection in allopatry also contribute to reproductive isolation during introgression. We used thousands of nuclear loci to study genomic differentiation between two lineages that have experienced recent secondary contact following isolation, and incorporated sampling from a zone of secondary contact to identify loci that are resistant to gene flow in hybrids. Comparisons of patterns of divergence and introgression revealed a positive relationship between allelic differentiation and resistance to introgression across the genome, and greater‐than‐expected overlap between genes linked to lineage‐specific divergence and loci that resist introgression. Genes linked to putatively selected markers were related to prominent aspects of rattlesnake biology that differ between populations of Western Diamondback rattlesnakes (i.e., venom and reproductive phenotypes). We also found evidence for selection against introgression of genes that may contribute to cytonuclear incompatibility, consistent with previously observed biased patterns of nuclear and mitochondrial alleles suggestive of partial reproductive isolation due to cytonuclear incompatibilities. Our results provide a genome‐scale perspective on the relationships between divergence and introgression in secondary contact that is relevant for understanding the roles of selection in maintaining partial isolation of lineages, causing admixing lineages to not completely homogenize.  相似文献   

10.
Understanding the origin of new species is a central goal in evolutionary biology. Diverging lineages often evolve highly heterogeneous patterns of genetic differentiation; however, the underlying mechanisms are not well understood. We investigated evolutionary processes governing genetic differentiation between the hybridizing campions Silene dioica (L.) Clairv. and S. latifolia Poiret. Demographic modelling indicated that the two species diverged with gene flow. The best‐supported scenario with heterogeneity in both migration rate and effective population size suggested that a small proportion of the loci evolved without gene flow. Differentiation (F ST) and sequence divergence (d XY) were correlated and both tended to peak in the middle of most linkage groups, consistent with reduced gene flow at highly differentiated loci. Highly differentiated loci further exhibited signatures of selection. In between‐species population pairs, isolation by distance was stronger for genomic regions with low between‐species differentiation than for highly differentiated regions that may contain barrier loci. Moreover, differentiation landscapes within and between species were only weakly correlated, suggesting that linked selection due to shared recombination and gene density landscapes is not the dominant determinant of genetic differentiation in these lineages. Instead, our results suggest that divergent selection shaped the genomic landscape of differentiation between the two Silene species, consistent with predictions for speciation in the face of gene flow.  相似文献   

11.
The maintenance of species barriers in the face of gene flow is often thought to result from strong selection against intermediate genotypes, thereby preserving genetic differentiation. Most speciation genomic studies thus aim to identify exceptionally divergent loci between populations, but divergence will be affected by many processes other than reproductive isolation (RI) and speciation. Through genomic studies of recombinant hybrids sampled in the wild, genetic variation associated with RI can be observed in situ, because selection against incompatible genotypes will leave detectable patterns of variation in the hybrid genomes. To better understand the mechanisms directly involved in RI, we investigated three natural ‘replicate’ hybrid zones between two divergent Populus species via locus‐specific patterns of ancestry across recombinant hybrid genomes. As expected, genomic patterns in hybrids and their parental species were consistent with the presence of underdominant selection at several genomic regions. Surprisingly, many loci displayed greatly increased between‐species heterozygosity in recombinant hybrids despite striking genetic differentiation between the parental genomes, the opposite of what would be expected with selection against intermediate genotypes. Only a limited, reproducible set of genotypic combinations was present in hybrid genomes across localities. In the absence of clearly delimited ‘hybrid habitats’, our results suggest that complex epistatic interactions within genomes play an important role in advanced stages of RI between these ecologically divergent forest trees. This calls for more genomic studies that test for unusual patterns of genomic ancestry in hybridizing species.  相似文献   

12.
Ecological speciation, driven by adaptation to contrasting environments, provides an attractive opportunity to study the formation of distinct species, and the role of selection and genomic divergence in this process. Here, we focus on a particularly clear‐cut case of ecological speciation to reveal the genomic bases of reproductive isolation and morphological differences between closely related Senecio species, whose recent divergence within the last ~200 000 years was likely driven by the uplift of Mt. Etna (Sicily). These species form a hybrid zone, yet remain morphologically and ecologically distinct, despite active gene exchange. Here, we report a high‐density genetic map of the Senecio genome and map hybrid breakdown to one large and several small quantitative trait loci (QTL). Loci under diversifying selection cluster in three 5 cM regions which are characterized by a significant increase in relative (FST), but not absolute (dXY), interspecific differentiation. They also correspond to some of the regions of greatest marker density, possibly corresponding to ‘cold‐spots’ of recombination, such as centromeres or chromosomal inversions. Morphological QTL for leaf and floral traits overlap these clusters. We also detected three genomic regions with significant transmission ratio distortion (TRD), possibly indicating accumulation of intrinsic genetic incompatibilities between these recently diverged species. One of the TRD regions overlapped with a cluster of high species differentiation, and another overlaps the large QTL for hybrid breakdown, indicating that divergence of these species may have occurred due to a complex interplay of ecological divergence and accumulation of intrinsic genetic incompatibilities.  相似文献   

13.
The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study ‘replicated’ instances of secondary contact between closely related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry‐informative panel of such SNPs. We then compared their frequencies in newly sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi‐stable variants (Dobzhansky‐Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact.  相似文献   

14.
The processes of adaptation and speciation are expected to shape genomic variation within and between diverging species. Here we analyze genomic heterogeneity of genetic differentiation and introgression in a hybrid zone between two bird species (Manacus candei and M. vitellinus) using 59 100 SNPs, a whole genome assembly, and Bayesian models. Measures of genetic differentiation () and introgression (genomic cline center [α] and rate [β]) were highly heterogeneous among loci. We identified thousands of loci with elevated parameter estimates, some of which are likely to be associated with variation in fitness in Manacus populations. To analyze the genomic organization of differentiation and introgression, we mapped SNPs onto a draft assembly of the M. vitellinus genome. Estimates of , α, and β were autocorrelated at very short physical distances (< 100 bp), but much less so beyond this. In addition, average statistical associations (linkage disequilibrium) between SNPs were generally low and were not higher in admixed populations than in populations of the parental species. Although they did not occur with a constant probability across the genome, loci with elevated , α, and β were not strongly co-localized in the genome. Contrary to verbal models that predict clustering of loci involved in adaptation and isolation in discrete genomic regions, these results are consistent with the hypothesis that genetic regions involved in adaptive divergence and reproductive isolation are scattered throughout the genome. We also found that many loci were characterized by both exceptional genetic differentiation and introgression, consistent with the hypothesis that loci involved in isolation are also often characterized by a history of divergent selection. However, the concordance between isolation and differentiation was only partial, indicating a complex architecture and history of loci involved in isolation.  相似文献   

15.
F. Bonhomme 《Molecular ecology》2016,25(13):3187-3202
Ecophenotypic differentiation among replicate ecotype pairs within a species complex is often attributed to independent outcomes of parallel divergence driven by adaptation to similar environmental contrasts. However, the extent to which parallel phenotypic and genetic divergence patterns have emerged independently is increasingly questioned by population genomic studies. Here, we document the extent of genetic differentiation within and among two geographic replicates of the coastal and marine ecotypes of the European anchovy (Engraulis encrasicolus) gathered from Atlantic and Mediterranean locations. Using a genome‐wide data set of RAD‐derived SNPs, we show that habitat type (marine vs. coastal) is the most important component of genetic differentiation among populations of anchovy. By analysing the joint allele frequency spectrum of each coastal–marine ecotype pair, we show that genomic divergence patterns between ecotypes can be explained by a postglacial secondary contact following a long period of allopatric isolation (c. 300 kyrs). We found strong support for a model including heterogeneous migration among loci, suggesting that secondary gene flow has eroded past differentiation at different rates across the genome. Markers experiencing reduced introgression exhibited strongly correlated differentiation levels among Atlantic and Mediterranean regions. These results support that partial reproductive isolation and parallel genetic differentiation among replicate pairs of anchovy ecotypes are largely due to a common divergence history prior to secondary contact. They moreover provide comprehensive insights into the origin of a surprisingly strong fine‐scale genetic structuring in a high gene flow marine fish, which should improve stock management and conservation actions.  相似文献   

16.
Studies of hybrid zone dynamics often investigate a single sampling period and draw conclusions from that temporal snapshot. Stochasticity can, however, result in loci with spurious outlier patterns, which is exacerbated by limited temporal or geographic sampling. Comparing admixed populations from different geographic regions is one way to detect repeatedly divergent genomic regions potentially involved in reproductive isolation. Temporal comparisons also allow us to control partially for the role of stochasticity, but the power of temporal sampling has not yet been adequately explored. In North America, black‐capped (Poecile atricapillus) and Carolina (P. carolinensis) chickadees hybridize in a contact zone extending from New Jersey to Kansas. The hybrid zone is likely maintained by strong intrinsic selection against hybrids, and it is moving north. We used a reduced representation genomic approach and temporally spaced sampling—two samples of ~80 individuals separated by a decade—to determine the pattern and consistency of selection and genomic introgression in the chickadee hybrid zone. We report consistently low introgression for highly divergent loci between P. atricapillus and P. carolinensis in this moving hybrid zone. This is strong evidence that these loci may be linked to genomic regions involved in reproductive isolation between chickadees.  相似文献   

17.
Comparative studies of closely related taxa can provide insights into the evolutionary forces that shape genome evolution and the prevalence of convergent molecular evolution. We investigated patterns of genetic diversity and differentiation in stonechats (genus Saxicola), a widely distributed avian species complex with phenotypic variation in plumage, morphology and migratory behaviour, to ask whether similar genomic regions have become differentiated in independent, but closely related, taxa. We used whole‐genome pooled sequencing of 262 individuals from five taxa and found that levels of genetic diversity and divergence are strongly correlated among different stonechat taxa. We then asked whether these patterns remain correlated at deeper evolutionary scales and found that homologous genomic regions have become differentiated in stonechats and the closely related Ficedula flycatchers. Such correlation across a range of evolutionary divergence and among phylogenetically independent comparisons suggests that similar processes may be driving the differentiation of these independently evolving lineages, which in turn may be the result of intrinsic properties of particular genomic regions (e.g. areas of low recombination). Consequently, studies employing genome scans to search for areas important for reproductive isolation or adaptation should account for corresponding regions of differentiation, as these regions may not necessarily represent speciation islands or evidence of local adaptation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号