首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species endemic to sky island systems are isolated to mountain peaks and high elevation plateaux both geographically and ecologically, making them particularly vulnerable to the effects of climate change. Pressures associated with climate change have already been linked to local extinctions of montane species, emphasizing the importance of understanding the genetic diversity and population connectivity within sky islands systems for the conservation management of remaining populations. Our study focuses on the endangered alpine skink Pseudemoia cryodroma, which is endemic to the Victorian Alps in south-eastern Australia, and has a disjunct distribution in montane habitats above 1100 m a.s.l. Using mitochondrial DNA (mtDNA) and microsatellite loci, we investigated species delimitation, genetic connectivity and population genetic structure across the geographic range of this species. We found discordance between genetic markers, indicating historical mtDNA introgression at one of the study sites between P. cryodroma and the closely related, syntopic P. entrecasteauxii. Molecular diversity was positively associated with site elevation and extent of suitable habitat, with inbreeding detected in three of the five populations. These results demonstrate the complex interaction between geography and habitat in shaping the population structure and genetic diversity of P. cryodroma, and highlight the importance of minimising future habitat loss and fragmentation for the long-term persistence of this species.  相似文献   

2.
1. Numerous interacting abiotic and biotic factors influence niche use and assemblage structure of freshwater fishes, but the strength of each factor changes with spatial scale. Few studies have examined the role of interspecific competition in structuring stream fish assemblages across spatial scales. We used field and laboratory approaches to examine microhabitat partitioning and the effect of interspecific competition on microhabitat use in two sympatric stream fishes (Galaxias‘southern’ and Galaxias gollumoides) at large (among streams and among sites within streams) and small (within artificial stream channels) spatial scales. 2. Diurnal microhabitat partitioning and interspecific competition at large spatial scales were analysed among three sympatry streams (streams with allotopic and syntopic sites; three separate catchments) and four allopatry streams (streams with only allotopic sites; two separate catchments). Electro‐fishing was used to sample habitat use of fishes at 30 random points within each site by quantifying four variables for each individual: water velocity, depth, distance to nearest cover and substratum size. Habitat availability was then quantified for each site by measuring those variables at each of 50 random points. Diet and stable isotope partitioning was analysed from syntopic sites only. Diel cycles of microhabitat use and interspecific competition at small spatial scales were examined by monitoring water velocity use over 48 h in artificial stream channels for three treatments: (i) allopatric G. ‘southern’ (10 G. ‘southern’); (ii) allopatric G. gollumoides (10 G. gollumoides) and (iii) sympatry (five individuals of each species). 3. One hundred and ninety‐four G. ‘southern’ and 239 G. gollumoides were sampled across all seven streams, and habitat availability between the two species was similar among all sites. Galaxias‘southern’ utilised faster water velocities than G. gollumoides in both the field and in channel experiments. Both species utilised faster water velocities in channels at night than during the day. Diet differences were observed and were supported by isotopic differences (two of three sites). No interspecific differences were observed for the other three microhabitat variables in the field, and multivariate habitat selection did not differ between species. Interspecific competition had no effect on microhabitat use of either species against any variable either in the field (large scale) or in channels (small scale). 4. The results suggest that niche partitioning occurs along a subset of microhabitat variables (water velocity use and diet). Interspecific competition does not appear to be a major biotic factor controlling microhabitat use by these sympatric taxa at any spatial scale. The results further suggest that stream fish assemblages are not primarily structured by biotic factors, reinforcing other studies de‐emphasising interspecific competition.  相似文献   

3.
Interspecific competition is assumed to play an important role in the ecological differentiation of species and speciation. However, empirical evidence for competition's role in speciation remains surprisingly scarce. Here, we studied the role of interspecific competition in the ecological differentiation and speciation of two closely related songbird species, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia). Both species are insectivorous and ecologically very similar. They hybridize in a secondary contact zone, which is a mosaic of sites where both species co‐occur (syntopy) and sites where only one species is present (allotopy). We analysed fine‐scale habitat data for both species in both syntopic and allotopic sites and looked for associations between habitat use and bill morphology, which have been previously shown to be more divergent in sympatry than in allopatry. We found that the two nightingale species differ in habitat use in allotopic sites, where L. megarhynchos occurred in drier habitats and at slightly higher elevations, but not in syntopic sites. Birds from allotopic sites also showed higher interspecific divergence in relative bill size compared to birds from syntopic sites. Finally, we found an association between bill morphology and elevation. Our results are consistent with the view that interspecific competition in nightingales has resulted in partial habitat segregation in sympatry and that the habitat‐specific food supply has in turn very likely led to bill size divergence. Such ecological divergence may enhance prezygotic as well as extrinsic postzygotic isolation and thus accelerate the completion of the speciation process.  相似文献   

4.
Coexistence of sperm‐dependent asexual hybrids with their sexual progenitors depends on genetic and ecological interactions between sexual and asexual forms. In this study, we investigate genotypic composition, modes of hybridogenetic gametogenesis and habitat preferences of European water frogs (Pelophylax esculentus complex) in a region of sympatric occurrence. Pelophylax esculentus complex comprises parental species P. ridibundus and P. lessonae, whose primary hybridization leads to hybridogenetic lineages of P. esculentus. Hybrids clonally transmit one parental genome and mate with the other parental species, forming a new generation of hybrids. In the region of western Slovakia, we found syntopic occurrence of diploid and triploid hybrids with P. lessonae, syntopic occurrence of all three taxa as well as the existence of pure P. ridibundus populations. All triploid hybrids were exclusively male possessing one ridibundus and two different lessonae genomes (RLL). Sex ratio in diploid hybrids was substantially female‐biased. Irrespective of the population composition, diploid hybrids excluded the lessonae genome from their germ line and produced ridibundus gametes. Contrarily, RLL males unequivocally eliminated the ridibundus genome and produced diploid lessonae sperms. Perpetuation of RLL males in studied populations is most likely achieved by their mating with diploid hybrid females. The composition of water frog populations is also shaped by taxon‐specific habitat preferences. While P. ridibundus preferred larger water bodies (gravelpits, fishery ponds, dead river arms), P. lessonae was most frequently found in marshes and smaller sandpits. Pelophylax esculentus occupied predominately similar habitats as its sexual host P. lessonae.  相似文献   

5.
Besides several exceptions, asexual metazoans are usually viewed as ephemeral sinks for genomes, which become ‘frozen’ in clonal lineages after their emergence from ancestral sexual species. Here, we investigated whether and at what rate the asexuals are able to introgress their genomes back into the parental sexual population, thus more or less importantly affecting the gene pools of sexual species. We focused on hybridogenetic hybrids of western Palaearctic water frogs (Pelophylax esculentus), which originate through hybridization between P. ridibundus and P. lessonae, but transmit only clonal ridibundus genome into their gametes. Although usually mating with P. lessonae, P. esculentus may upon mating with P. ridibundus or another hybrid produce sexually reproducing P. ridibundus offspring with the introgressed ex‐clonal genome. We compared the rate of nuclear amplified fragment length polymorphism (AFLP) and mitochondrial introgression in two types of populations, that is, those where P. ridibundus occurs in isolation and those where it lives with the hybridogens. Although significant differentiation (Φpt) between sexual and clonal ridibundus genomes suggested limited gene flow between sexuals and hybridogens, a non‐negligible (~5%) proportion of P. ridibundus bore introgressed mtDNA and AFLP markers. Whereas transfer of mtDNA was exclusively unidirectional, introgression of nuclear markers was bidirectional. The proportion of introgressed P. ridibundus was highest in syntopic populations with P. esculentus, proving an ongoing and site‐specific interspecific genetic transfer mediated by hybridogenetic hybrids. It turns out that asexual hybrids are not just a sink for genes of sexual species, but may significantly influence the genetic architecture of their sexual counterparts.  相似文献   

6.
A total of 15 microsatellite primer pairs were developed from the Mountain Log Skink, Pseudemoia entrecasteauxii. Nine were used to screen 46 individuals from four populations, and a representative from P. spenceri and P. pagenstecheri. Seven of the loci exhibited large allele variation (16–30) and high heterozygosity (0.24–0.82), and the three populations were genetically differentiated. The markers were also used to screen 36 clutches of known maternity and identified high levels of multiple paternity clutches (57%). The primers developed will provide useful markers for the study of population biology and mating system of these lizards.  相似文献   

7.
Anthropogenic environmental changes are considered critical drivers of the genetic structure of populations and communities through, for example, the facilitation of introgressive hybridization between syntopic species. However, the mechanisms by which environmental perturbations trigger changes in the genetic structure of populations and communities, such as the processes that determine the directionality of hybridization and patterns of mitochondrial introgression over many generations, remain largely unexplored. In this study, the changes in genetic structure of hybridizing members of the Daphnia longispina species complex were reconstructed over the last 100 years for three large temperate lakes under strong anthropogenic pressures via palaeogenetic analyses of resting egg banks. Drastic changes in the genetic structure of the Daphnia community, associated with hybridization events between D. longispina and D. galeata and subsequent introgression, were detected in Lakes Geneva and Bourget. In Lake Bourget, these changes were induced by the successful establishment of D. galeata with rising phosphorus levels and reinforced by the sensitivity of D. longispina to fish predation pressure. In Lake Geneva, the pattern of hybridization during eutrophication is more likely a function of the original taxonomic composition of the species complex in this lake. Lakes seem to require at least a meso‐oligotrophic status to allow D. galeata populations to establish and accordingly no D. galeata genotypes were found in the egg bank of oligotrophic Lake Annecy. In contrast to the generally assumed pattern of unidirectional hybridization in this species complex, bidirectional hybridization was recorded in Lakes Geneva and Bourget. Our results also demonstrate complex genetic trajectories within this species complex and highlight the irreversibility of changes in the genotypic architecture of populations driven by local human pressures. Finally, we show that extensive hybridization and introgression do not necessarily result in a large and homogenous hybrid swarm.  相似文献   

8.
We investigated patterns of habitat segregation and morphological differentiation in syntopic, closely related turdid birds of the alpine zone of the Central Himalayas. Discriminant function analysis of 19 habitat structure parameters and comparisons of additional habitat features revealed that the species were distributed along gradients of vegetation height and vegetation density. In addition, non-vegetational structural habitat features, like microrelief variability or the presence of rocks and boulders, had strong discriminating power. In terms of habitat preferences the species of the guild investigated formed three subsets: shrubbery species (Erithacus pectoralis, E. chrysaeus and Hodgsonius phoenicuroides), species preferring open areas with higher surface roughness (Phoenicurus frontalis, Chaimarrornis leucocephalus) and the high-altitude species Grandala coelicolor. Using discriminant function analysis of 20 characters, morphology was analysed in relation to microhabitat utilization and foraging behaviour. Species inhabiting patches of shrubby thickets and foraging mainly by pedal movements (E. pectoralis, E. chrysaeus and H. phoenicuroides) have in common short rounded wings with high wing loading and strong legs and feet. Species preferably foraging by aerial hawking or perch and pounce techniques in more open areas (P. frontalis, C. chaimarrornis, and to some extent E. cyanurus) have longer wings, shorter tarsi and long rictal bristles. Grandala proved to be well adpated for long-distance flights at high altitudes (long, pointed wings) and for pedal foraging. Overall our results fit the basic assumption of ecomorphological theory that morphological distance reflects ecological distance. The ordination of each species in morphological space closely matched its distribution in ecological space (microhabitat, foraging strategies). Striking associations of morphology with ecology were not only evident for single traits but were also found in multidimensional comparisons: between-species Euclidian distances in ecology calculated from 19 habitat properties were in most cases equivalent to morphological distances calculated from 20 traits. In addition, in one of the two study areas species locations in the plane spanned by DFA axes of habitat use mirrored their positions in the morphological multivariate space. The observed distributions of the species in ecological and morphological space are interpreted as being mainly attributable to individualistic responses to the specific constraints of the alpine environment.  相似文献   

9.
Understanding the emergence of species through the process of ecological speciation is a central question in evolutionary biology which also has implications for conservation and management. Lake trout (Salvelinus namaycush) is renowned for the occurrence of different ecotypes linked to resource and habitat use throughout North America. We aimed to unravel the fine genetic structure of the four lake trout ecotypes in Lake Superior. A total of 486 individuals from four sites were genotyped at 6822 filtered SNPs using RADseq technology. Our results revealed different extent of morphological and genetic differentiation within the different sites. Overall, genetic differentiation was weak but significant and was on average three times higher between sites (mean FST = 0.016) than between ecotypes within sites (mean FST = 0.005) indicating higher level of gene flow or a more recent shared ancestor between ecotypes within each site than between populations of the same ecotype. Evidence of divergent selection was also found between ecotypes and/or in association with morphological variation. Outlier loci found in genes related to lipid metabolism and visual acuity were of particular interest in this context of ecotypic divergence. However, we did not find clear indication of parallelism at the genomic level, despite the presence of phenotypic parallelism among some ecotypes from different sampling sites. Overall, the occurrence of different levels of both genomic and phenotypic differentiation between ecotypes within each site with several differentiated loci linked to relevant biological functions supports the presence of a continuum of divergence in lake trout.  相似文献   

10.

Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster (Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall F ST of 0.0016 (P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus (P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation (P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling.

  相似文献   

11.
Ecomorphological theory indicates that different ecological requirements lead to different organismal designs. Given that species with equal requirements could not coexist, traits leading to more efficient use of resources may be selected to avoid competition among closely related syntopic species, generating specialized ecomorphs. We compared habitat use, diet, thermal biology and morphology among the syntopic Tropidurus semitaeniatus, T. helenae and T. hispidus in the Caatinga of Northeastern Brazil. Tropidurus semitaeniatus and T. helenae are flattened lizards specialized to rocks and rock crevices, whereas T. hispidus has a robust body and generalist habits. We aimed to test the hypothesis that morphological modifications observed in the flattened ecomorphs are related to modifications in diet and habitat use. Also, we hypothesized that specialization to habitat induces morphological modifications, which in turn may constrain lizard performance. Flattened species differed in habitat use, morphology and prey size when compared with the generalist ecomorph. Morphological modifications were related to specializations to rocky habitats and constrained the variety of prey items consumed. This phenotype also reduced their reproductive output when compared with a robust, generalist ecomorph.  相似文献   

12.
Species distribution patterns range from highly disjunct to continuous, depending on their ecological demands and the availability of respective habitats. East African savannahs are mostly interconnected and ecologically comparatively homogenous and thus provide a prerequisite for a rather panmictic distribution pattern for species occurring in this habitat. The Abyssinian white‐eye Zosterops abyssinicus is a savannah inhabiting bird species, representing such a continuous distribution. This species occurs in high abundances and is very mobile, and past population genetic studies have suggested that gene flow is high and genetic differentiation is low even across relatively large geographic distances. Further, only little morphological differences were found. In order to test for potential divergence in acoustic traits despite its interconnected geographic distribution, we analyzed 2795 contact calls of Z. abyssinicus, which were recorded at 19 sites across Kenya. Our data indicate weak, but significant differentiation in call characteristics across latitudinal gradients. We found strong changes in call characteristics in populations where Z. abyssinicus occurs in sympatry with its highland congener, Zosterops poliogaster. However, the changes in call characteristics in sympatry were in different directions and lead to strong differentiation of the sympatric populations to other conspecific populations potentially representing a case of cascade reinforcement. The detected spatial gradients likely result from ecological differences and balancing effects of natural and sexual selection.  相似文献   

13.
14.
Geological history of oceanic islands can have a profound effect on the evolutionary history of insular flora, especially in complex islands such as Tenerife in the Canary Islands. Tenerife results from the secondary connection of three paleo‐islands by a central volcano, and other geological events that further shaped it. This geological history has been shown to influence the phylogenetic history of several taxa, including genus Micromeria (Lamiaceae). Screening 15 microsatellite markers in 289 individuals representing the eight species of Micromeria present in Tenerife, this study aims to assess the genetic diversity and structure of these species and its relation with the geological events on the island. In addition, we evaluate the extent of hybridization among species and discuss its influence on the speciation process. We found that the species restricted to the paleo‐islands present lower levels of genetic diversity but the highest levels of genetic differentiation suggesting that their ranges might have contracted over time. The two most widespread species in the island, M. hyssopifolia and M. varia, present the highest genetic diversity levels and a genetic structure that seems correlated with the geological composition of the island. Samples from M. hyssopifolia from the oldest paleo‐island, Adeje, appear as distinct while samples from M. varia segregate into two main clusters corresponding to the paleo‐islands of Anaga and Teno. Evidence of hybridization and intraspecific migration between species was found. We argue that species boundaries would be retained despite hybridization in response to the habitat's specific conditions causing postzygotic isolation and preserving morphological differentiation.  相似文献   

15.
Genetic analyses indicate that Pinus densata is a natural homoploid hybrid originating from Pinus tabuliformis and Pinus yunnanensis. Needle morphological and anatomical features show relative species stability and can be used to identify coniferous species. Comparative analyses of these needle characteristics and phenotypic differences between the artificial hybrids, P. densata, and parental species can be used to determine the genetic and phenotypic evolutionary consequences of natural hybridization. Twelve artificial hybrid families, the two parental species, and P. densata were seeded in a high‐altitude habitat in Linzhi, Tibet. The needles of artificial hybrids and the three pine species were collected, and 24 needle morphological and anatomical traits were analyzed. Based on these results, variations in 10 needle traits among artificial hybrid families and 22 traits among species and artificial hybrids were predicted and found to be under moderate genetic control. Nineteen needle traits in artificial hybrids were similar to those in P. densata and between the two parental species, P. tabuliformis and P. yunnanensis. The ratio of plants with three needle clusters in artificial hybrids was 22.92%, which was very similar to P. densata. The eight needle traits (needle length, the mean number of stomata in sections 2 mm in length of the convex and flat sides of the needle, mean stomatal density, mesophyll/vascular bundle area ratio, mesophyll/resin canal area ratio, mesophyll/(resin canals and vascular bundles) area ratio, vascular bundle/resin canal area ratio) relative to physiological adaptability were similar to the artificial hybrids and P. densata. The similar needle features between the artificial hybrids and P. densata could be used to verify the homoploid hybrid origin of P. densata and helps to better understand of the hybridization roles in adaptation and speciation in plants.  相似文献   

16.
Species delimitation has seen a paradigm shift as increasing accessibility of genomic‐scale data enables separation of lineages with convergent morphological traits and the merging of recently diverged ecotypes that have distinguishing characteristics. We inferred the process of lineage formation among Australian species in the widespread and highly variable genus Pelargonium by combining phylogenomic and population genomic analyses along with breeding system studies and character analysis. Phylogenomic analysis and population genetic clustering supported seven of the eight currently described species but provided little evidence for differences in genetic structure within the most widely distributed group that containing P. australe. In contrast, morphometric analysis detected three deep lineages within Australian Pelargonium; with P. australe consisting of five previously unrecognized entities occupying separate geographic ranges. The genomic approach enabled elucidation of parallel evolution in some traits formerly used to delineate species, as well as identification of ecotypic morphological differentiation within recognized species. Highly variable morphology and trait convergence each contribute to the discordance between phylogenomic relationships and morphological taxonomy. Data suggest that genetic divergence among species within the Australian Pelargonium may result from allopatric speciation while morphological differentiation within and among species may be more strongly driven by environmental differences.  相似文献   

17.
Poecilogonous species show variation in developmental mode, with larvae that differ both morphologically and ecologically. The spionid polychaete Pygospio elegans shows variation in developmental mode not only between populations, but also seasonally within populations. We investigated the consequences of this developmental polymorphism on the spatial and seasonal genetic structure of P. elegans at four sites in the Danish Isefjord‐Roskilde‐Fjord estuary at six time points, from March 2014 until February 2015. We found genetic differentiation between our sampling sites as well as seasonal differentiation at two of the sites. The seasonal genetic shift correlated with the appearance of new size cohorts in the populations. Additionally, we found that the genetic composition of reproductive individuals did not always reflect the genetic composition of the entire sample, indicating that variance in reproductive success among individuals is a likely explanation for the patterns of chaotic genetic patchiness observed during this and previous studies. The heterogeneous, unpredictable character of the estuary might maintain poecilogony in P. elegans as a bet‐hedging strategy in the Isefjord‐Roskilde‐Fjord complex in comparison with other sites where P. elegans are expected to be fixed to a certain mode of development.  相似文献   

18.
Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond‐breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata; and Southern Leopard frogs, Lithobates sphenocephalus) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond‐breeding amphibian species.  相似文献   

19.
Understanding the extent of interspecific hybridization and how ecological segregation may influence hybridization requires comprehensively sampling different habitats over a range of life history stages. Arctic char (Salvelinus alpinus) and Dolly Varden (S. malma) are recently diverged salmonid fishes that come into contact in several areas of the North Pacific where they occasionally hybridize. To better quantify the degree of hybridization and ecological segregation between these taxa, we sampled over 700 fish from multiple lake (littoral and profundal) and stream sites in two large, interconnected southwestern Alaskan lakes. Individuals were genotyped at 12 microsatellite markers, and genetic admixture (Q) values generated through Bayesian‐based clustering revealed hybridization levels generally lower than reported in a previous study (<0.6% to 5% of samples classified as late‐generation hybrids). Dolly Varden and Arctic char tended to make different use of stream habitats with the latter apparently abandoning streams for lake habitats after 2–3 years of age. Our results support the distinct biological species status of Dolly Varden and Arctic char and suggest that ecological segregation may be an important factor limiting opportunities for hybridization and/or the ecological performance of hybrid char.  相似文献   

20.
The study of the interplay between speciation and hybridization is of primary importance in evolutionary biology. Octocorals are ecologically important species whose shallow phylogenetic relationships often remain to be studied. In the Mediterranean Sea, three congeneric octocorals can be observed in sympatry: Eunicella verrucosa, Eunicella cavolini and Eunicella singularis. They display morphological differences and E. singularis hosts photosynthetic Symbiodinium, contrary to the two other species. Two nuclear sequence markers were used to study speciation and gene flow between these species, through network analysis and Approximate Bayesian Computation (ABC). Shared sequences indicated the possibility of hybridization or incomplete lineage sorting. According to ABC, a scenario of gene flow through secondary contact was the best model to explain these results. At the intraspecific level, neither geographical nor ecological isolation corresponded to distinct genetic lineages in E. cavolini. These results are discussed in the light of the potential role of ecology and genetic incompatibilities in the persistence of species limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号