共查询到20条相似文献,搜索用时 34 毫秒
1.
Genetic differentiation among coastal and offshore common bottlenose dolphins,Tursiops truncatus,in the eastern North Pacific Ocean 下载免费PDF全文
Janet L. Lowther‐Thieleking Frederick I. Archer Aimee R. Lang David W. Weller 《Marine Mammal Science》2015,31(1):1-20
Common bottlenose dolphins (Tursiops truncatus) are found worldwide in temperate and tropical regions, often occurring as distinct coastal and offshore ecotypes. Along the west coast of the United States, two stocks are recognized for management based on morphological and photo‐identification studies: a California coastal stock, estimated at 450–500 individuals, and a California/Oregon/Washington offshore stock of about 1,000 animals. This study is the first to analyze genetic differentiation between these stocks. We examined both the hypervariable portion of the mitochondrial DNA (mtDNA) control region and fifteen microsatellite markers for coastal (n = 64) and offshore (n = 69) dolphins. Significant genetic differentiation was found between the two stocks for mtDNA (ΦST = 0.30, P < 0.001; FST = 0.14, P < 0.001) and microsatellite loci (FST = 0.19, P < 0.001). Coastal dolphins had less genetic diversity than offshore dolphins. Further substructuring within the offshore stock was not detected. The level of genetic differentiation between the coastal and offshore dolphins is consistent with long‐term separation and reinforces recognizing them as separate stocks. These findings are particularly important for management of the smaller, less genetically diverse, coastal stock that is vulnerable to a variety of anthropogenic threats. 相似文献
2.
The conditioning of dolphins to human‐interaction behaviors has been documented in several areas worldwide. However, the metrics used to report human‐interaction behaviors vary among studies, making comparison across study areas difficult. The purpose of this study was to develop standard metrics for reporting human‐interaction behaviors and utilize these metrics to quantify the prevalence of human‐interaction behaviors by common bottlenose dolphins (Tursiops truncatus) near Savannah, Georgia. The four metrics used were percentage of days with human‐interaction behaviors, percentage of sightings with human‐interaction behaviors, percentage of the catalog that interacted with humans, and spatial extent of human‐interaction behaviors. Human‐interaction behaviors were observed on 69.6% of days and 23.5% of sightings near Savannah. In addition, 20.1% of the animals in the catalog were observed interacting with humans. These rates are much higher than those found in other areas with known issues with human‐interaction behaviors. These behaviors were observed across an area of 272.6 km2, which is larger than other reported areas. The four metrics used in this study proved to be a valuable way to report human‐interaction behaviors, and their use is recommended for future studies to allow for comparison among areas. 相似文献
3.
Jacalyn L. Toth Aleta A. Hohn Kenneth W. Able Antoinette M. Gorgone 《Marine Mammal Science》2012,28(3):461-478
The population structure of bottlenose dolphins, Tursiops truncatus, along the U.S. Atlantic coast has recently been redefined from one homogenous population into five coastal stocks. Local studies indicate even finer structure, primarily based on isolation of dolphins inhabiting estuaries. We identified population structuring of non‐estuarine coastal bottlenose dolphins during a study in New Jersey, the northern range along the Atlantic Coast. Using photo‐identification and distribution survey results, an analysis identified two major clusters of individuals significantly separated by five variables (distance from shoreline, group size, occurrence of the barnacle Xenobalanus globicipitis, avoidance behavior, and individual coloration). Sightings assigned to cluster 1 occurred in nearshore shallow waters (0–1.9 km, x?= 3.5 m), and those assigned to cluster 2 occurred further offshore in deeper waters (1.9–6 km, x?= 9.5 m). Only eight of 194 individuals (4%) were identified in both regions. Collectively, this suggests an occurrence of two stocks that are spatially, physically, and behaviorally distinguishable over a small distance. These results indicate that complexity in Tursiops population structure is not limited to latitudinal gradients or barriers created by estuarine habitats, but also by partitioning of habitat as a function of distance from shore and depth over small distances. 相似文献
4.
Nichols C Herman J Gaggiotti OE Dobney KM Parsons K Hoelzel AR 《Proceedings. Biological sciences / The Royal Society》2007,274(1618):1611-1616
A number of dolphin species, though highly mobile, show genetic structure among parapatric and sometimes sympatric populations. However, little is known about the temporal patterns of population structure for these species. Here, we apply Bayesian inference and data from ancient DNA to assess the structure and dynamics of bottlenose dolphin (Tursiops truncatus) populations in the coastal waters of the UK. We show that regional population structure in UK waters is consistent with earlier studies suggesting local habitat dependence for this species in the Mediterranean Sea and North Atlantic. One genetically differentiated UK population went extinct at least 100 years ago and has not been replaced. The data indicate that this was a local extinction, and not a case of historical range shift or contraction. One possible interpretation is a declining metapopulation and conservation need for this species in the UK. 相似文献
5.
Phylogenetic identification and population differentiation of bottlenose dolphins (Tursiops spp.) in Melanesia,as revealed by mitochondrial DNA 下载免费PDF全文
Marc Oremus Claire Garrigue Gabriela Tezanos‐Pinto C. Scott Baker 《Marine Mammal Science》2015,31(3):1035-1056
The taxonomic status of many dolphin populations remains uncertain in poorly studied regions of the world's ocean. Here we attempt to clarify the phylogenetic identity of two distinct forms of bottlenose dolphins (Tursiops spp.) described in the Melanesian region of the Pacific Ocean. Mitochondrial DNA control region sequences from samples collected in New Caledonia (n = 88) and the Solomon Islands (n = 19) were compared to previously published sequences of Tursiops spp., representing four phylogenetic units currently recognized within the genus. Phylogenetic reconstructions confirm that the smaller coastal form in Melanesia belongs to the same phylogenetic unit as T. aduncus populations in the Pacific, but differs from T. aduncus in Africa, and that the larger more oceanic form belongs to the species T. truncatus. Analyses of population diversity reveal high levels of regional population structuring among the two forms, with contrasting levels of diversity. From a conservation perspective, genetic isolation of T. aduncus in the Solomon Islands raises further concern about recent impacts of the commercial, live‐capture export industry. Furthermore, the low level of mtDNA diversity in T. aduncus of New Caledonia suggests a recent population bottleneck or founder effect and isolation. This raises concerns for the conservation status of these local populations. 相似文献
6.
Site fidelity,residency, and abundance of bottlenose dolphins (Tursiops sp.) in Adelaide's coastal waters,South Australia 下载免费PDF全文
Little is known about the ecology and behavior of southern Australian bottlenose dolphins (Tursiops sp.). This hinders assessment of their conservation status and informed decision‐making concerning their management. We used boat‐based surveys and photo‐identification data to investigate site fidelity, residency patterns, and the abundance of southern Australian bottlenose dolphins in Adelaide's coastal waters. Sighting rates and site fidelity varied amongst individuals, and agglomerative hierarchical cluster analysis led to the categorization of individuals into one of three groups: occasional visitors, seasonal residents, or year‐round residents. Lagged identification rates indicated that these dolphins used the study area regularly from year to year following a model of emigration and reimmigration. Abundance estimates obtained from multisample closed capture‐recapture models ranged from 95 individuals (SE ± 45.20) in winter 2013 to 239 (SE ± 54.91) in summer 2014. The varying levels of site fidelity and residency, and the relatively high number of dolphins found throughout the study area highlights the Adelaide metropolitan coast as an important habitat for bottlenose dolphins. As these dolphins also appear to spend considerable time outside the study area, future research, conservation, and management efforts on this population must take into account anthropogenic activities within Adelaide's coastal waters and their adjacencies. 相似文献
7.
J. L. HORREO G. MACHADO‐SCHIAFFINO F. AYLLON A. M. GRIFFITHS D. BRIGHT J. R. STEVENS E. GARCIA‐VAZQUEZ 《Global Change Biology》2011,17(5):1778-1787
This study focuses on temporal changes in Atlantic salmon (Salmo salar) populations from the vulnerable periphery of the species range (northern Spain). Using microsatellite markers to assess population structuring and introgression of exogenous genes in four different temporal samples collected across 20 years, we have determined the relative weights of climate and stocking practices in shaping contemporary regional population genetic patterns. Climate, represented by the North Atlantic Oscillation Index, was identified as the main factor for determining the level of population genetic differentiation. Populations within the region have become homogenized through gene flow enhanced by straying of adult salmon from natal rivers and subsequent interchange of genes among rivers due to warmer temperatures. At the same time, and in line with documented changes in stock transfer strategies, evidence of genetic introgression from past stock transfers has decreased throughout the study period, becoming a secondary factor in erasing population structuring. The ability to disentangle the effects of climatic changes and anthropogenic factors (fisheries management practices) is essential for effective long‐term conservation of this iconic species. We emphasize the importance of evaluating all factors which may be linked to stocking practices in vulnerable species, particularly those sensitive to climate change. 相似文献
8.
Genetic divergence at the synaptophysin (Syp I) locus among Norwegian coastal and north-east Arctic populations of Atlantic cod 总被引:3,自引:0,他引:3
Several nuclear RFLP loci have been discovered recently that exhibit extensive allele frequency variation among Norwegian coastal and north-east Arctic populations of Atlantic cod Gadus morhua. One of these polymorphisms was detected by hybridizing an anonymous cDNA clone (GM798) against genomic DNA digested with the restriction enzyme DraI. This cDNA clone has now been sequenced and identified as synaptophysin (Syp I), an integral synaptic vesicle membrane protein. Primers were constructed that amplify an intron of the Syp I gene that is polymorphic for the DraI site, thus making it possible to use a PCR-based assay to score the polymorphism. A total of 965 individuals sampled from the Barents Sea, coastal areas and fjords in northern Norway have been analysed for this polymorphism. The results confirm that highly significant differences exist between NE Arctic and coastal cod at the Syp I locus. A cluster analysis revealed a deep split between coastal and Arctic populations and hierarchical F-statistics indicated that about 40% of the total variation was attributable to differences between Arctic and coastal groups. The temporal stability of allele frequencies was assessed by comparing Syp I allele frequencies among samples of juveniles (0 group) captured at specific locations in fjords in consecutive years and among samples of adults and juveniles collected from the same fjord. Samples of juveniles collected in 1994 and 1995 in Malangen were genetically indistinguishable whereas juveniles sampled from Dønnesfjord and Ullsfjorden over the same 2-year period exhibited significant differences. Adults and 0-group individuals collected from the same fjord were found to be genetically indistinguishable in Malangen, but not in Balsfjorden. In addition to detecting large differences among Arctic and coastal groups, the Syp I locus suggests that genetic heterogeneity exists among resident populations of cod in different fjords and that gene flow among populations throughout northern Norway may be considerably lower than previously believed. 相似文献
9.
Holly B. Ernest Walter M. Boyce Vernon C. Bleich Bernie May San J. Stiver Steven G. Torres 《Conservation Genetics》2003,4(3):353-366
Analysis of 12 microsatellite loci from431 mountain lions (Puma concolor)revealed distinct genetic subdivision that wasassociated with geographic barriers andisolation by distance in California. Levels ofgenetic variation differed among geographicregions, and mountain lions that inhabitedcoastal areas exhibited less heterozygositythan those sampled inland. The San FranciscoBay and Sacramento-San Joaquin River Delta, theCentral Valley, and the Los Angeles Basinappeared to be substantial barriers to geneflow, and allele frequencies of populationsseparated by those features differedsubstantially. A partial barrier to gene flowappeared to exist along the crest of the SierraNevada. Estimated gene flow was high amongmountain lions inhabiting the Modoc Plateau,the western Sierra Nevada, and northern sectionof the eastern Sierra Nevada. SouthernCalifornia mountain lion populations mayfunction as a metapopulation; however, humandevelopments threaten to eliminate habitat andmovement corridors. While north-south geneflow along the western Sierra Nevada wasestimated to be very high, projected loss andfragmentation of foothill habitat may reducegene flow and subdivide populations. Preservation of existing movement corridorsamong regions could prevent population declinesand loss of genetic variation. This studyshows that mountain lion management andconservation efforts should be individualizedaccording to region and incorporatelandscape-level considerations to protecthabitat connectivity. 相似文献
10.
Oliver Manlik Delphine Chabanne Claire Daniel Lars Bejder Simon J. Allen William B. Sherwin 《Marine Mammal Science》2019,35(3):732-759
The forecast for the viability of populations depends upon metapopulation dynamics: the combination of reproduction and mortality within populations, as well as dispersal between populations. This study focuses on an Indo‐Pacific bottlenose dolphin (Tursiops aduncus) population in coastal waters near Bunbury, Western Australia. Demographic modeling of this population suggested that recent reproductive output was not sufficient to offset mortality. Migrants from adjacent populations might make up this deficit, so that Bunbury would act as a “sink,” or net recipient population. We investigated historical dispersal in and out of Bunbury, using microsatellites and mitochondrial DNA of 193 dolphins across five study locations along the southwestern Australian coastline. Our results indicated limited gene flow between Bunbury and adjacent populations. The data also revealed a net‐dispersal from Bunbury to neighboring populations, with microsatellites showing that more than twice as many individuals per generation dispersed out of Bunbury than into Bunbury. Therefore, in historic times, Bunbury appears to have acted as a source population, supporting nearby populations. In combination with the prior finding that Bunbury is currently not producing surplus offspring to support adjacent populations, this potential reversal of source‐sink dynamics may have serious conservation implications for Bunbury and other populations nearby. 相似文献
11.
Genetic variation in 13 populations of the Alpine newt, Triturus alpestris, was assessed at the northeastern margin of its range (southern Poland). Variation at six microsatellite loci was scored in 354 newts, and two mitochondrial DNA fragments (c. 2000 bp) were sequenced in a subset of 27 individuals. Significant differences in allele frequencies and the presence of private alleles determined genetic units corresponding to three separate mountain ranges, i.e. the Carpathian, Sudetes and Holy Cross Mountains. F(ST)'s were three times greater in among than in within mountain range pairwise comparisons. An assignment test and pairwise F(ST)'s suggested relatively high levels of gene flow at the local level, although the Sudetes populations revealed some subtle structuring. Genetic variation was lower in the Carpathians and Holy Cross Mountains. The geographic pattern of mitochondrial DNA variation indicated that these newt populations originated from a single glacial refugium/founder population, and that the colonization of southern Poland took place in an easterly direction. The data show that substantial neutral variation and between group divergence has accumulated relatively quickly in these low-vagility organisms. The Alpine newt case exemplifies species history as a factor determining patterns of genetic diversity in marginal populations. 相似文献
12.
Tess Gridley Victor G. Cockcroft Elizabeth R. Hawkins Michelle Lemon Blewitt Tadamichi Morisaka Vincent M. Janik 《Marine Mammal Science》2014,30(2):512-527
Common bottlenose dolphins (Tursiops truncatus) use individually distinctive signature whistles which are highly stereotyped and function as contact calls. Here we investigate whether Indo‐Pacific bottlenose dolphins (T. aduncus) use signature whistles. The frequency trace of whistle contours recorded from three genetically distinct free‐ranging populations was extracted and sorted into whistle types of similar shape using automated categorization. A signature whistle identification method based on the temporal patterns in signature whistle sequences of T. truncatus was used to identify signature whistle types (SWTs). We then compared the degree of variability in SWTs for several whistle parameters to determine which parameters are likely to encode identity information. Additional recordings from two temporarily isolated T. aduncus made during natural entrapment events in 2008 and 2009 were analyzed for the occurrence of SWTs. All populations were found to produce SWTs; 34 SWTs were identified from recordings of free‐ranging T. aduncus and one SWT was prevalent in each recording of the two temporarily isolated individuals. Of the parameters considered, mean frequency and maximum frequency were the least variable and therefore most likely to reflect identity information encoded in frequency modulation patterns. Our results suggest that signature whistles are commonly used by T. aduncus. 相似文献
13.
William F. Perrin Janet L. Thieleking William A. Walker Frederick I. Archer Kelly M. Robertson 《Marine Mammal Science》2011,27(4):769-792
Coastal and offshore bottlenose dolphins in California waters are currently assessed and managed as separate stocks. Recent molecular studies (of mtDNA haplotypes and microsatellites) have shown the two populations to be genetically differentiated. This study investigated cranial osteological differentiation of the forms. The sample analyzed included 139 skulls from live captures, direct takes, fishery bycatch, and strandings; the skulls were assigned to form based on collection locality or mtDNA haplotype. The coastal form differs from the offshore form mainly in features associated with feeding: larger and fewer teeth, more robust rostrum, larger mandibular condyle, and larger temporal fossa. This suggests that it may feed on larger and tougher prey than the offshore form. Differences between the forms in other features of the skull may reflect differences in diving behavior and sound production. Approximately 86% of the stranded specimens were estimated to be of coastal origin; based on relative estimated sizes of the two populations and assuming similar mortality rates, this suggests that a coastal carcass is about 50 times more likely to beach than an offshore one. The morphological differences between the two ecotypes indicate evolutionary adaptation to different environments and emphasize the importance of conserving the relatively small coastal population and its habitat. 相似文献
14.
15.
Rachel D. Neuenhoff Daniel F. Cowan Heidi Whitehead Christopher D. Marshall 《Marine Mammal Science》2011,27(1):195-216
Compilation of marine mammal demographic data is central to management efforts. However, marine mammal length‐at‐age growth curves demonstrate limitations. Physiological growth parameters of terrestrial mammals are typically estimated using curvilinear models fit to size‐at‐age data along a time series from conception to senescence. The difficulty of collecting and aging prenatal cetaceans is addressed here, and growth parameters of common bottlenose dolphins (Tursiops truncatus) along coastal Texas were estimated using length‐at‐age information from a broader scope of age classes, including late‐term fetuses. A Gompertz growth curve fit to pre‐ and postnatal data underestimated size parameters, but demonstrated similar growth rate constants (k) to an exclusively postnatal model. However, when growth parameters were broken out, the absolute growth rate (G) and rate of growth decay (g) decreased (0.44 from 0.27 and 0.55 from 0.39, respectively), which underscores the importance of reporting k in its expanded form (G/g). Although the Gompertz fits most age classes well, it cannot explain growth in all age classes. We argue that a novel sigmoidal model would be more useful for inference. 相似文献
16.
Anna Särnblad Magnus Danbolt Love Dalén Omar A. Amir Per Berggren 《Marine Mammal Science》2011,27(2):431-448
Phylogenetic placement of bottlenose dolphins from Zanzibar, East Africa and putative population differentiation between animals found off southern and northern Zanzibar were examined using variation in mtDNA control region sequences. Samples (n= 45) from animals bycaught in fishing gear and skin biopsies collected during boat surveys were compared to published sequences (n= 173) of Indo‐Pacific bottlenose dolphin, Tursiops aduncus, from southeast Australian waters, Chinese/Indonesian waters, and South African waters (which recently was proposed as a new species) and to published sequences of common bottlenose dolphin, Tursiops truncatus. Bayesian and maximum parsimony analyses indicated a close relationship between Zanzibar and South African haplotypes, which are differentiated from both Chinese/Indonesian and Australian T. aduncus haplotypes. Our results suggest that the dolphins found off Zanzibar should be classified as T. aduncus alongside the South African animals. Further, analyses of genetic differentiation showed significant separation between the T. aduncus found off northern and southern Zanzibar despite the relatively short distance (approximately 80 km) between these areas. Much less differentiation was found between southern Zanzibar and South Africa, suggesting a more recent common evolutionary history for these populations than for the northern and southern Zanzibar populations. 相似文献
17.
18.
Marie Louis Amélia Viricel Tamara Lucas Hélène Peltier Eric Alfonsi Simon Berrow Andrew Brownlow Pablo Covelo Willy Dabin Rob Deaville Renaud de Stephanis François Gally Pauline Gauffier Rod Penrose Monica A. Silva Christophe Guinet Benoit Simon‐Bouhet 《Molecular ecology》2014,23(4):857-874
Despite no obvious barrier to gene flow, historical environmental processes and ecological specializations can lead to genetic differentiation in highly mobile animals. Ecotypes emerged in several large mammal species as a result of niche specializations and/or social organization. In the North‐West Atlantic, two distinct bottlenose dolphin (Tursiops truncatus) ecotypes (i.e. ‘coastal’ and ‘pelagic’) have been identified. Here, we investigated the genetic population structure of North‐East Atlantic (NEA) bottlenose dolphins on a large scale through the analysis of 381 biopsy‐sampled or stranded animals using 25 microsatellites and a 682‐bp portion of the mitochondrial control region. We shed light on the likely origin of stranded animals using a carcass drift prediction model. We showed, for the first time, that coastal and pelagic bottlenose dolphins were highly differentiated in the NEA. Finer‐scale population structure was found within the two groups. We suggest that distinct founding events followed by parallel adaptation may have occurred independently from a large Atlantic pelagic population in the two sides of the basin. Divergence could be maintained by philopatry possibly as a result of foraging specializations and social organization. As coastal environments are under increasing anthropogenic pressures, small and isolated populations might be at risk and require appropriate conservation policies to preserve their habitats. While genetics can be a powerful first step to delineate ecotypes in protected and difficult to access taxa, ecotype distinction should be further documented through diet studies and the examination of cranial skull features associated with feeding. 相似文献
19.
Although single nucleotide polymorphisms (SNPs) are commonly used in human genetics, they have only recently been incorporated into genetic studies of non‐model organisms, including cetaceans. SNPs have several advantages over other molecular markers for studies of population genetics: they are quicker and more straightforward to score, cross‐laboratory comparisons of data are less complicated, and they can be used successfully with low‐quality DNA. We screened portions of the genome of one of the most abundant cetaceans in U.S. waters, the common bottlenose dolphin (Tursiops truncatus), and identified 153 SNPs resulting in an overall average of one SNP every 463 base pairs. Custom TaqMan® Assays were designed for 53 of these SNPs, and their performance was tested by genotyping a set of bottlenose dolphin samples, including some with low‐quality DNA. We found that in 19% of the loci examined, the minor allele frequency (MAF) estimated during initial SNP ascertainment using a DNA pool of 10 individuals differed significantly from the final MAF after genotyping over 100 individuals, suggesting caution when making inferences about MAF values based on small data sets. For two assays, we also characterized the basis for unusual clustering patterns to determine whether their data could still be utilized for further genetic studies. Overall results support the use of these SNPs for accurate analysis of both poor and good‐quality DNA. We report the first SNP markers and genotyping assays for use in population and conservation genetic studies of bottlenose dolphins. 相似文献
20.
Temporal–spatial distribution of an island‐based offshore population of common bottlenose dolphins (Tursiops truncatus) in the equatorial Atlantic 下载免费PDF全文
Lucas C. Milmann Daniel Danilewicz Julio Baumgarten Paulo H. Ott 《Marine Mammal Science》2017,33(2):496-519
A little‐studied common bottlenose dolphin (Tursiops truncatus) population inhabits the offshore waters surrounding Saint Paul's Rocks, a Brazilian marine protected area in the equatorial Atlantic Ocean. Five field expeditions (May 2011–May 2013) were conducted to characterize the habitat use, population size, and site fidelity of this population. Three different survey methods were employed: line‐transect surveys, land‐based surveys, and photo‐identification surveys. A population size of 23 individuals (19–28, CI 95%), which were present on most sampling days (>90% of surveys), was estimated. The maximum resighting interval of photo‐identified animals was 9 yr and 3 mo for five distinct individuals, based on data from nonsystematic efforts that have been ongoing since 2004. The dolphins exhibited strong site fidelity, as the minimum convex polygon (MCP, 95%) method revealed that they restricted their movements to a 0.5 km2 area across seasons and a 0.99 km2 area across years (95% kernel). The dolphins preferred shallow waters close to the archipelago (<1.2 km from the islands), especially on the eastern and southeastern sides, where oceanographic models have revealed persistent upwelling that may result from underwater currents and where food may be more predictably available. 相似文献