首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Y‐chromosomal variation in the water buffalo was analysed by sequencing of DBY, ZFY and SRY gene segments. A clear separation of the paternal lineages of the river and swamp types parallels the differences between their maternal lineages and nuclear DNA. Sequence divergence was found to be comparable to the divergence of taurine cattle and zebu, and this divergence predated domestication, confirming that river and swamp buffalo originated from different wild populations. Within a sample of 23 Thai swamp buffaloes, we identified four haplotypes with different geographical distributions, two of which were shared by Thai wild buffaloes.  相似文献   

2.
The domestic Asian water buffalo (Bubalus bubalis) is found on all five continents, with a global population of some 202 million. The livelihoods of more people depend on this species than on any other domestic animal. The two distinct types (river and swamp) descended from different wild Asian water buffalo (Bubalus arnee) populations that diverged some 900 kyr BP and then evolved in separate geographical regions. After domestication in the western region of the Indian subcontinent (ca. 6300 years BP), the river buffalo spread west as far as Egypt, the Balkans and Italy. Conversely, after domestication in the China/Indochina border region ca. 3000–7000 years BP, swamp buffaloes dispersed through south-east Asia and China as far as the Yangtze River valley. Molecular and morphological evidence indicates that swamp buffalo populations have strong geographic genetic differentiation and a lack of gene flow, but strong phenotypic uniformity. In contrast, river buffalo populations show a weaker phylogeographic structure, but higher phenotypic diversity (i.e. many breeds). The recent availability of a high-quality reference genome and of a medium-density marker panel for genotyping has triggered a number of genome-wide investigations on diversity, evolutionary history, production traits and functional elements. The growing molecular knowledge combined with breeding programmes should pave the way to improvements in production, environmental adaptation and disease resistance in water buffalo populations worldwide.  相似文献   

3.
Independent maternal origin of Chinese swamp buffalo (Bubalus bubalis)   总被引:11,自引:0,他引:11  
Lei CZ  Zhang W  Chen H  Lu F  Liu RY  Yang XY  Zhang HC  Liu ZG  Yao LB  Lu ZF  Zhao ZL 《Animal genetics》2007,38(2):97-102
To obtain more knowledge on the origin and genetic diversity of the swamp buffalo (Bubalus bubalis) in China, the complete mitochondrial D-loop sequences of 119 samples representing seven native types were compared. Two mitochondrial DNA (mtDNA) lineages (lineages A and B) were determined for the Chinese swamp buffalo. Examination of the diversity patterns suggest that lineage A has undergone a population expansion event. Divergence of lineages A and B was estimated at 18,000 years ago. Combined analyses of mtDNA sequences from Chinese, Indian, Brazilian/Italian and Southeast Asian/Australian buffalo samples showed independent domestication events in the swamp buffalo from China and the river buffalo from the India subcontinent. The spread of swamp and river buffalo from China and India respectively to mainland Southeast Asia suggests that Southeast Asia is a hybrid zone for buffalo. Our data support the hypothesis of the evolution of domesticated swamp and river buffalo from ancestral swamp-like animals. These ancestral animals were extensively distributed across mainland Asia and most likely are represented today by the wild Asian buffalo (Bubalus arnee).  相似文献   

4.
The swamp buffalo (Bubalus carabanensis) is mainly bred for meat, transport and rice cultivation in China and Southeast Asian countries. In the current study, we investigated the genetic diversity, maternal origin and phylogenetic relationship of swamp buffalo by analyzing 1,786 mitochondrial cytochrome b (cytb) sequences from China, Vietnam, Laos, Thailand, India and Bangladesh. Our results indicated that the swamp buffalo can be divided into two major lineages (SA and SB with the sublineages) and three rare lineages (SC, SD and SE), which showed strong geographic differentiation. The SA1 lineage represented a major domestication event, which involved population expansion. Regions III and V showed higher haplotype diversity than the other regions, indicating that the regions of Southwest China and IndoChina are potential domestication centers for the swamp buffalo. In addition, the swamp buffalo showed a closer phylogenetic relationship to tamaraw. In conclusion, our findings revealed a high level of genetic diversity and the phylogenetic pattern of the swamp buffalo.  相似文献   

5.
To further probe into whether swamp buffaloes were domesticated once or multiple times in China, this survey examined the mitochondrial DNA (mtDNA) Control Region (D-loop) diversity of 471 individuals representing 22 populations of 455 Chinese swamp buffaloes and 16 river buffaloes. Phylogenetic analysis revealed that Chinese swamp buffaloes could be divided into two distinct lineages, A and B, which were defined previously. Of the two lineages, lineage A was predominant across all populations. For predominant lineage A, Southwestern buffalo populations possess the highest genetic diversity among the three hypothesized domestication centers (Southeastern, Central, and Southwestern China), suggesting Southwestern China as the most likely location for the domestication of lineage A. However, a complex pattern of diversity is detected for the lineage B, preventing the unambiguous pinpointing of the exact place of domestication center and suggesting the presence of a long-term, strong gene flow among swamp buffalo populations caused by extensive migrations of buffaloes and frequent human movements along the Yangtze River throughout history. Our current study suggests that Southwestern China is the most likely domestication center for lineage A, and may have been a primary center of swamp buffalo domestication. More archaeological and genetic evidence is needed to show the process of domestication.  相似文献   

6.
Swamp and river buffalo mitochondrial DNA (mtDNA) was sequenced for 303 bp of the cytochrome b gene for 54 animals from 14 populations, and for 158 bp of the D-loop region for 80 animals from 11 populations. Only one cytochrome b haplotype was found in river buffalo. Of the four haplotypes identified in swamp buffalo, one found in all populations is apparently ancestral both to the other swamp haplotypes and to the river haplotype. The phylogenetic relationships among the 33 D-loop haplotypes, with a cluster of 11 found in swamp buffalo only, also support the evolution of domesticated swamp and river buffalo from an ancestral swamp-like animal, most likely represented today by the wild Asian buffalo ( Bubalus arnee ). The time of divergence of the swamp and river types, estimated from the D-loop data, is 28 000 to 87 000 years ago. We hypothesise that the species originated in mainland south-east Asia, and that it spread north to China and west to the Indian subcontinent, where the rive type evolved and was domesticated. Following domestication in China, the domesticated swamp buffalo spread through two separate routes, through Taiwan and the Philippines to the eastern islands of Borneo and Sulawesi, and south through mainland southeast Asia and then to the western islands of Indonesia.  相似文献   

7.
Data from three published studies of genetic variation at 18 microsatellite loci in water buffalo populations in China (18 swamp type, two river type), Nepal (one wild, one domestic river, one hybrid) and south-east Asia (eight swamp, three river) were combined so as to gain a broader understanding of genetic relationships among the populations and their demographic history. Mean numbers of alleles and expected heterozygosities were significantly different among populations. Estimates of θ (a measure of population differentiation) were significant among the swamp populations for all loci and among the river populations for most loci. Differentiation among the Chinese swamp populations (which was due primarily to just one population) was much less than among the south-east Asian. The Nepal wild animals, phenotypically swamp type but genetically like river type, are significantly different from all the domestic river populations and presumably represent the ancestral Bubalus arnee (possibly with some river-type introgression). Relationships among the swamp populations (D(A) genetic distances, principal component analysis and structure analyses) show the south-east Asian populations separated into two groups by the Chinese populations. Given these relationships and the patterns of genetic variability, we postulate that the swamp buffalo was domesticated in the region of the far south of China, northern Thailand and Indochina. Following domestication, it spread south through peninsular Malaysia to Sumatra, Java and Sulawesi, and north through China, and then to Taiwan, the Philippines and Borneo.  相似文献   

8.
The phylogeny of water buffaloes (Bubalus bubalis) is still a matter of discussion, especially if the two types of domestic water buffalo (swamp and river) derived from different domestication events or if they are products of human selection. To obtain more insight, we analyzed the entire mitochondrial D-loop region of 80 water buffaloes of four different breeds, i.e., 19 swamp buffaloes (Carabao) and 61 river buffaloes (Murrah, Jafarabadi, and Mediterranean), sampled in Brazil and Italy. We detected 36 mitochondrial haplotypes with 128 polymorphic sites. Pooled with published data of South-East Asian and Australian water buffaloes and based on comprehensive median-joining network and population demography analyses we show evidence that both river and swamp buffaloes decent from one domestication event, probably in the Indian subcontinent. However, the today swamp buffaloes have an unravelled mitochondrial history, which can be explained by introgression of wild water buffalo mtDNA into domestic stocks. We are also discussing indications for an independent domestication of buffaloes in China.  相似文献   

9.
Phylogeography and domestication of Indian river buffalo   总被引:1,自引:0,他引:1  

Background  

The water buffalo- Bu balus bubalis holds tremendous potential in livestock sector in many Asian countries, particularly India. The origin, domestication and genetic structure of the Indian river buffalo are poorly understood. Therefore, to understand the relationship among the maternal lineages of Indian river buffalo breeds and their domestication process, we analysed mitochondrial D-loop region of 217 animals representing eight breeds from eight different locations in India along with published sequences of Mediterranean buffalo.  相似文献   

10.
In this study, mitochondrial D-loop sequence data on riverine, swamp and hybrid buffaloes from India have been generated and compared with other reported Indian riverine, Chinese and Bangladeshi swamp buffalo populations. Sequence analysis revealed the presence of 132 haplotypes, with a haplotype diversity of 0.9611 ± 0.0045 and a nucleotide diversity of 0.04801 ± 0.00126. For the first time, the existence of riverine–swamp hybrids among the Indian Chilika buffalo population has been recorded, having 49 chromosomes, which was also confirmed by mitochondrial haplotype sharing between Chilika and Indian swamp as well as Chinese swamp buffalo populations in the network analysis. Phylogenetic analysis documents the sharing of reported pre-domestication haplogroups ‘SA1’, ‘SA2’, ‘SA3’ and ‘SB1’ between the Chilika and swamp buffalo populations of India, China and Bangladesh, an indication of the migration of swamp buffaloes towards Bangladesh and adjoining lower parts of India and north towards Chinese domestication sites. The results have also been supplemented by multidimension scaling, grouping Indian and Chinese swamp buffaloes more closely together with Bangladeshi buffaloes, but into a separate quadrant, whereas Chilika grouped away from other riverine as well as swamp buffaloes. These findings thus confirm the previous reports that the northeast region of India, close to the Indo-China border, is the point of evolution of swamp buffaloes with multiple sites of domestication.  相似文献   

11.
The Indian subcontinent is considered to be the likely centre of river buffalo domestication, based on population dynamics, archaeological evidence and genetic diversity. Recent studies on mitochondrial DNA diversity have drawn useful conclusions about the domestication history of Bubalus bubalis. The conclusions of these studies are, however, incomplete, unless samples can also be analysed from Pakistan, which contains the second largest buffalo population of the world. Here, we report the results of the first study on mitochondrial D-loop sequence diversity in five breeds of Pakistani buffalo. Analysis of sequence variations in 503-bp of the D-loop region of 123 animals revealed 52 haplotypes, including 40 singletons. Multidimensional display of breed pairwise F(ST) values revealed no strong clustering of breeds. Bayesian, maximum parsimony, neighbour joining and UPGMA trees revealed a topology consistent with domestication as well as subsequent introgression of multiple maternal lineages from the wild stocks. Reduced median network analysis provided evidence of population expansion from more than one set of haplotypes. The study also confirmed that Pakistani buffalo are of the river type. The observed mitochondrial D-loop sequence diversity suggests that Pakistani areas bordering India might have contributed to the initiation of domestication of the present-day river buffalo.  相似文献   

12.
The origins of the domestic water buffalo remain contentious. To better understand the origins of Chinese water buffalo, we sequenced the complete mitochondrial cytochrome b (MT-CYB) gene from 270 individuals representing 13 Chinese domestic swamp buffalo populations. We found genetic evidence of introgression of river buffalo into Chinese swamp buffalo herds. Swamp buffalo haplotypes can be divided into two highly divergent lineages (A and B), suggesting that Chinese native swamp buffalo have two maternal origins. We found that the A→G transition in the buffalo MT-CYB gene stop codon resulted in buffalo haplotypes being terminated by one of two stop codons: AGA or AGG. AGA is common to river buffalo and lineage A of swamp buffalo, while AGG is specific to lineage B of swamp buffalo. Lineage A appears to have been domesticated in China. Further genetic evidence is required to clarify the origins of lineage B.  相似文献   

13.
There are two major groups of domestic water buffaloes in East and Southeast Asia: swamp buffaloes and river buffaloes. Genetic diversity among swamp and river buffaloes was studied by DNA sequence analysis of the mitochondrial gene for cytochrome b. The results showed that each of the two groups has mitochondrial DNA (mtDNA) with a specific cytochrome b haplotype. The pairwise nucleotide sequence divergence was calculated to be 2·67% between swamp and river buffaloes, suggesting that they might have diverged from the ancestral populations of Asiatic domestic water buffaloes, approximately 1 million years ago. In addition, the sequences of the same gene from three subspecies of anoa (lowland, mountain and quarles anoa) were determined and compared with that of a domestic water buffalo. The sequence divergence was 1·2% for mountain anoa vs quarles anoa, 3·6% for mountain anoa vs lowland anoa and 3·3% for quarles anoa vs lowland anoa. Moreover, the sequence divergence between water buffaloes and anoas was found to be approximately 3·33%. Our results provide molecular evidence to support the taxonomic classification, namely, that Asiatic buffaloes may be classified into four lineages, swamp buffalo, river buffalo, lowland anoa and mountain plus quarles anoa. However, the sequence divergence values among these four groups were lower than the sequence divergence values found in the genus and subgenus levels within the subfamily Bovinae. In particular, in contrast to some proposed taxonomic classifications, our results indicated that mtDNA in the water buffaloes and anoas did not diverge at the genus level.  相似文献   

14.
Water buffalo (Bubalus bubalis) is broadly classified into river and swamp categories, but it remains disputed whether these two types were independently domesticated, or if they are the result of a single domestication event. In this study, we sequenced the mitochondrial D-loop region and cytochrome b gene of 217 and 80 buffalo respectively from eight breeds/locations in northern, north-western, central and southern India and compared our results with published Mediterranean and swamp buffalo sequences. Using these data, river and swamp buffalo were distinguished into two distinct clades. Based upon the existing knowledge of cytogenetic, ecological and phenotypic parameters, molecular data and present-day distribution of the river and swamp buffalo, we suggest that these two types were domesticated independently, and that classification of the river and swamp buffalo as two related subspecies is more appropriate.  相似文献   

15.
Oryza rufipogon Griff. is a perennial species of wild rice widely distributed along the channels and rivers of the Mekong Delta, Vietnam. This study attempted to find centers of diversity among wild rice populations in this area and their inter‐relationships. The highest genetic diversity was found in the Dong Thap population and the lowest in the Can Tho population. Maternal diversity evaluated using chloroplast INDELs detected ten plastid types, five of which were novel relative to other Asian countries. The mitochondrial genome suggested two unique deletions. One 699‐bp deletion via short tandem repeats was accompanied by another deletion including orf153. All accessions carrying the mitochondrial type were found in a particular plastid type. This unique maternal lineage was confined to specific channels where it showed vigorous vegetative growth in comparison to upstream areas where various maternal lineages and maximum genetic diversity occurred. This area along the Mekong Delta is a center of not only nuclear but also maternal diversity.  相似文献   

16.
Domestication of the Bovini species (taurine cattle, zebu, yak, river buffalo and swamp buffalo) since the early Holocene (ca. 10 000 BCE) has contributed significantly to the development of human civilization. In this study, we review recent literature on the origin and phylogeny, domestication and dispersal of the three major Bos species – taurine cattle, zebu and yak – and their genetic interactions. The global dispersion of taurine and zebu cattle was accompanied by population bottlenecks, which resulted in a marked phylogeographic differentiation of the mitochondrial and Y-chromosomal DNA. The high diversity of European breeds has been shaped through isolation-by-distance, different production objectives, breed formation and the expansion of popular breeds. The overlapping and broad ranges of taurine and zebu cattle led to hybridization with each other and with other bovine species. For instance, Chinese gayal carries zebu mitochondrial DNA; several Indonesian zebu descend from zebu bull × banteng cow crossings; Tibetan cattle and yak have exchanged gene variants; and about 5% of the American bison contain taurine mtDNA. Analysis at the genomic level indicates that introgression may have played a role in environmental adaptation.  相似文献   

17.
Origin of mitochondrial DNA diversity of domestic yaks   总被引:4,自引:0,他引:4  

Background  

The domestication of plants and animals was extremely important anthropologically. Previous studies have revealed a general tendency for populations of livestock species to include deeply divergent maternal lineages, indicating that they were domesticated in multiple, independent events from genetically discrete wild populations. However, in water buffalo, there are suggestions that a similar deep maternal bifurcation may have originated from a single population. These hypotheses have rarely been rigorously tested because of a lack of sufficient wild samples. To investigate the origin of the domestic yak (Poephagus grunnies), we analyzed 637 bp of maternal inherited mtDNA from 13 wild yaks (including eight wild yaks from a small population in west Qinghai) and 250 domesticated yaks from major herding regions.  相似文献   

18.
Complete mitochondrial DNA D‐loop sequences of 1105 individuals were used to assess the diversity of maternal lineages of cattle populations in China. In total, 250 taurine and 88 zebu haplotypes were identified. Five main haplogroups—T1a, T2, T3, T4 and T5—were identified in Bos taurus, whereas Bos indicus harbored two haplogroups—I1 and I2. Our results suggest that the distribution of T1a in Asia was concentrated mainly in the northeast region (northeast China, Korea and Japan); haplogroups T2, T3 and T4 were predominant in Chinese cattle; and T5 was sporadically detected in Mongolian and Pingwu cattle. In contrast to the widespread presence of I1, I2 was distributed only in southwestern China (Yunnan‐Guizhou Plateau and the Tibet Autonomous Region) and Xinjiang Uygur Autonomous Region. This is the first time that all five taurine haplogroups and two zebu haplogroups have been found in Mongolian cattle. In addition, eight individuals in Tibetan cattle carried the Bos grunniens mtDNA type. The high mtDNA diversity (= 0.904 ± 0.008) and the weak genetic structure among the 57 Chinese cattle breeds/populations are consistent with their complex historical background, migration route and ecological environment.  相似文献   

19.
With its vast territory and complex natural environment, China boasts rich cattle genetic resources. To gain the further insight into the genetic diversity and paternal origins of Chinese cattle, we analyzed the polymorphism of Y‐SNPs (UTY19 and ZFY10) and Y‐STRs (INRA189 and BM861) in 34 Chinese cattle breeds/populations, including 606 males representative of 24 cattle breeds/populations collected in this study as well as previously published data for 302 bulls. Combined genotypic data identified 14 Y‐chromosome haplotypes that represented three haplogroups. Y2‐104‐158 and Y2‐102‐158 were the most common taurine haplotypes detected mainly in northern and central China, whereas the indicine haplotype Y3‐88‐156 predominates in southern China. Haplotypes Y2‐108‐158, Y2‐110‐158, Y2‐112‐158 and Y3‐92‐156 were private to Chinese cattle. The population structure revealed by multidimensional scaling analysis differentiated Tibetan cattle from the other three groups of cattle. Analysis of molecular variance showed that the majority of the genetic variation was explained by the genetic differences among groups. Overall, our study indicates that Chinese cattle retain high paternal diversity (= 0.607 ± 0.016) and probably much of the original lineages that derived from the domestication center in the Near East without strong admixture from commercial cattle carrying Y1 haplotypes.  相似文献   

20.
To investigate the mtDNA variation and origin of maternal lineages in South American donkeys and to reassess the domestication of donkeys in northeast Africa, we analyzed sequences (489 bp of the D‐loop) from 323 domestic donkeys sampled from Peru, Brazil, Ethiopia and Egypt. Altogether, the 323 sequences displayed 53 different haplotypes (45 in Ethiopia, 14 in Egypt, eight in Peru and six in Brazil). Among the four populations, Egyptian donkeys possessed the highest haplotype diversity (0.910 ± 0.032), followed by Brazilian donkeys (0.879 ± 0.060). The Clade I haplotypes dominated in Peruvian donkeys (65%), whereas Clade II haplotypes dominated in Brazilian donkeys (67%). Estimates of FST values showed a high genetic differentiation between Peruvian and Brazilian donkey populations (FST = 0.4066), which could be explained by the complex introduction history of South American donkeys. Phylogeographic analysis indicates that northeast Africa could be the most probable domestication center for Clade I donkeys. Analysis of molecular variance confirmed a weak genetic structure in domestic donkey populations among four continents (Europe, Asia, Africa and South America).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号