首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary Immunohistochemical properties of the terminal nerve network in the rat heart were assessed by use of the elution-restaining method. The colocalization of the enzymes involved in catecholamine synthesis (tyrosine hydroxylase — TH, dopamine--hydroxylase — DBH) as well as the respective distributions of the neuropeptides associated with the adrenergic nervous system (neuropeptide tyrosine — NPY, C-terminal flanking peptide of neuropeptide Y — C-PON) were studied in series of serial sections throughout the interatrial septum and the atrioventricular junction. Our data suggest that ganglion cells of sulcus terminalis as well as the epicardial ganglia enclosed between the superior vena cava and ascending aorta are VIP- and TH-negative, but neuropeptide Y- and DBH-immunoreactive. They give rise to three intraseptal nerves directed towards the specialised structures of the atrioventricular junction. These nerve fascicles contain abundant, thick TH-immunoreactive nerve fibres and scarce, thin NPY- and DBH-immunoreactive fibres. The cell bodies of the intramural ganglion cells localized between the right and left branches of the bundle of His (Moravec and Moravec 1984) are strongly TH- and DBH-immunoreactive. They are innervated by thick nerve fibres having the same immunohistochemical properties (NPY- and DBH-immunoreactivities) as those of a subpopulation of the epicardial ganglion cells and seem to supply some of the TH-immunoreactive nerve fibres directed via the intraseptal nerves to the epicardial ganglia. The existence of a multicomponent nerve network, characterized by a reciprocal innervation of the sinus node and atrioventricular node areas, is suggested by our immunohistochemical data.  相似文献   

2.
Nitric oxide synthase (NOS) has previously been reported in a small population of postganglionic sympathetic neurons in the guinea pig. The present study of paravertebral ganglia and the inferior mesenteric ganglion aimed to classify these neurons according to their content of neuropeptides (calcitonin gene-related peptide, neuropeptide Y, vasoactive intestinal peptide) and the rate-limiting enzyme of catecholamine synthesis, tyrosine hydroxylase, by means of immunohistochemical and histochemical double-labelling techniques. NOS-containing neurons belonged to the non-catecholaminergic population of postganglionic neurons, and partial coexistence was found with neuropeptide Y and vasoactive intestinal peptide immunoreactivities but not with calcitonin gene-related peptide. However, most of the NOS-containing neurons contained none of the neuropeptides, thus representing a hitherto unrecognized population of postganglionic neurons. The findings show that NOS is localized to small but neurochemically highly specific populations of postganglionic neurons, which most likely reflects an association with target- and function-specific pathways.  相似文献   

3.
Summary Retrograde transport studies using Fast Blue dye demonstrated that the ductus deferens, seminal vesicle, prostate and rectum, but not the urinary bladder of the male guinea pig are at least in part innervated by the anterior major pelvic ganglion. In the ductus deferens, seminal vesicle and prostate innervation is derived from ipsilateral and contralateral ganglia. In addition to retrograde studies, dye-filled neurons were analysed immunohistochemically for neuronal markers and associations with specifically identified neuronal projections. Neurons of the ganglion projecting to the ductus deferens either contained tyrosine hydroxylase alone, tyrosine hydroxylase and neuropeptide Y, neuropeptide Y alone, neuropeptide Y and vasoactive intestinal peptide, or vasoactive intestinal peptide alone. These neurons were associated with three classes of neuronal projections, substance P-, leucine-enkephalin-, and methionine-enkephalin-immunoreactive. Neurons projecting to the seminal vesicles were similar to the neurons supplying the ductus deferens, except none of the seminal vesicle-specific neurons exhibited vasoactive intestinal peptide immunoreactivity. Neurons supplying the prostate were immunoreactive for either tyrosine hydroxylase or neuropeptide Y; these neurons were infrequently associated with the three classes of varicose neuronal projections. Neurons projecting to the rectum contained neuropeptide Y and were only associated with methionine-enkephalin immunoreactive neuronal projections in one animal.  相似文献   

4.
Summary The relationships of immunoreactive neuropeptide Y, enkephalin and tyrosine hydroxylase, on the one hand, and acetylcholinesterase histochemical activity, on the other, were studied in human lumbar sympathetic ganglia. Two thirds of the ganglion cells contained immunoreactive neuropeptide Y. Electron microscopically the immunoreaction was localized in the Golgi apparatus and in large dense-cored vesicles in the nerve endings. Most of the neuropeptide-containing neurons and nerve fibres were also reactive for tyrosine hydroxylase. Nerve fibres reactive for neuropeptide Y were found around ganglion cells regardless of their transmitter contents, whereas enkephalin-reactive nerve terminals surrounded only acetylcholinesterase-containing neurons. The results demonstrate that neuropeptide Y is colocalized with noradrenaline in most of the human sympathetic neurons and that the nerve fibres may innervate selectively the noradrenergic and cholinergic subpopulations of ganglion cells depending on the transmitters of the nerves.  相似文献   

5.
Summary The uterine cervix, urinary bladder and rectum of guinea pigs were injected with Fast Blue dye for retrograde transport studies. Dye-laden neuronal perikarya were detected for each viscus in the paracervical ganglion. These same perikarya also exhibited immunoreactivities for tyrosine hydroxylase, aromatic amino acid decarboxylase, dopamine -hydroxylase, neuropeptide Y, or vasoactive intestinal peptide, though the perikarya projecting to the urinary bladder did not exhibit immunoreactivity for aromatic amino acid decarboxylase. The results of this study indicate that the guinea-pig paracervical ganglion projects to viscera in addition to the uterus, and that the ganglion contains a range of immunoreactivities related to adrenergic and non-adrenergic neurotransmitters.  相似文献   

6.
The goal of this study was to determine the immunohistochemical characteristics of peripheral adrenergic OBR-immunoreactive (OBR-IR) neurons innervating adipose tissue in a pig. The retrograde tracer, Fast Blue (FB), was injected into either the subcutaneous, perirenal, or mesentery fat tissue depots of three male and three female pigs each with approximately 50 kg body weight. Sections containing FB(+) neurons were stained for OBR, tyrosine hydroxylase (TH) or neuropeptide Y (NPY) using a double labeling immunofluorescence method. OBR, TH, and NPY immunoreactivities were present in the thoracic (T) and lumbar (L) ganglia of the sympathetic chain, as well as in the coeliac superior mesenteric ganglion (CSMG), inferior mesenteric ganglion (IMG), intermesenteric ganglia (adrenal-ADG, aorticorenal-ARG, and ovarian-OG or testicular-TG ganglion). These results indicate that, in addition to neuroendocrine functions, leptin may affect peripheral tissues by acting on receptors located in sympathetic ganglion neurons.  相似文献   

7.
8.
R J?rvi 《Histochemistry》1989,92(3):231-236
The localization of bombesin- (BOMB) and enkephalin- (ENK) immunoreactive (IR) nerves was studied in rat coeliac-superior mesenteric ganglion complex in relation to neuropeptide Y (NPY)- and tyrosine hydroxylase (TH)-immunoreactive neurons with an immunofluorescence double-staining method. Very dense networks of BOMB-IR nerve terminals surrounded the majority of the principal ganglion cells, whether or not they were TH-IR. BOMB-IR nerves were specifically related to the non-NPY-IR neurons. Moderately dense networks of ENK-IR fibers were unevenly distributed among the ganglion cells. Majority of these neurons exhibited TH-IR and some of them also contained NPY-IR. In sections double stained with antibodies to ENK and BOMB some nerve fibers contained both peptides. The findings suggest that BOMB-IR nerves, which have been previously demonstrated to originate from gut, control the function of non-NPY-IR ganglion cells. ENK-IR nerves apparently control the adrenergic neurons which project to gut and also some NPY-IR vasomotoric neurons. The finding that ENK- and BOMB-IR coexist in some nerves suggests that some ENK-IR nerves may originate from gut, although the major part probably represents preganglionic fibers originating from spinal cord.  相似文献   

9.
Summary The localization and distribution of neuropeptide Y-like immunoreactivity in the guinea-pig heart were studied by use of immunohistochemical methods. A widespread distribution of immunoreactive processes was observed in all regions of the heart. They occur either singly or together with several other immunoreactive processes and are most often aligned parallel to the myocardial bundles. A dense network of processes is present in the region of both the sinuatrial and atrioventricular nodes and single fibers are occasionally observed to be closely associated with nodal ganglion cells. Positive cell bodies were not seen within the heart. All small, medium and large coronary vessels are surrounded by a dense network of immunoreactive processes. A rich innervation at the media-adventitia junction of the aorta, pulmonary trunk, superior and inferior vena cava was also observed. Comparison of adjacent sections stained with antisera directed to avian pancreatic polypeptide, carboxyl-terminal hexapeptide of pancreatic polypeptide or neuropeptide Y demonstrated a very similar immunoreactive pattern, suggesting that these antisera are reacting with the same or a closely related substance. Likewise, the same immunoreactive patterns were observed in adjacent sections incubated in antiserum to neuropeptide Y or tyrosine hydroxylase, and analysis of elution-restained sections demonstrated that the same processes contain both neuropeptide Y- and tyrosine hydroxylase-like immunoreactivity. Neuropeptide Y- and tyrosine hydroxylase-like immunoreactivity was reduced by the same magnitude after treatment with the sympathetic neurotoxin 6-hydroxydopamine, but it was not affected by the primary sensory neurotoxin capsaicin. Furthermore, the pattern of neuropeptide Y- and tyrosine hydroxylase-like immunoreactivity did not match the staining patterns observed with antisera to vasoactive intestinal polypeptide or substance P or with the acetylcholinesterase staining pattern. In conclusion, neuropeptide Y-like immunoreactivity in the heart and great vessels coexists with that for catecholamines and is likely to originate from sympathetic ganglia.  相似文献   

10.
Colocalization of vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, substance P, and tyrosine hydroxylase, respectively, with NADPH-diaphorase staining in rat adrenal gland was investigated using the double labelling technique. All vasoactive intestinal peptide- and some neuropeptide Y-immunoreactive intrinsic neuronal cell bodies seen in the gland were double stained with NADPH-diaphorase. Double labelling also occurred in some nerve fibres immunoreactive to vasoactive intestinal peptide and neuropeptide Y in the medulla and cortex. No colocalization of calcitonin gene-related peptide, substance P or tyrosine hydroxylase immunoreactivity with NADPH-diaphorase staining was observed. However, nerve fibres with varicosities immunoreactive for all the neuropeptides examined were closely associated with some of the NADPH-diaphorase-stained neuronal cell bodies. Thus, in rat adrenal gland, nitric oxide is synthesized in all ganglion cells containing vasoactive intestinal peptide and in some containing neuropeptide Y, but not in those containing calcitonin gene-related peptide, substance P or tyrosine hydroxylase.  相似文献   

11.
Summary The localization of bombesin- (BOMB) and enkephalin-(ENK) immunoreactive (IR) nerves was studied in rat coeliac-superior mesenteric ganglion complex in relation to neuropeptide Y (NPY)- and tyrosine hydroxylase (TH)-immunoreactive neurons with an immunofluorescence double-staining method. Very dense networks of BOMB-IR nerve terminals surrounded the majority of the principal ganglion cells, wheter or not they were TH-IR. BOMB-IR nerves were specifically related to the non-NPY-IR neurons. Moderately dense networks of ENK-IR fibers were unevenly distributed among the ganglion cells. Majority of these neurons exhibited TH-IR and some of them also contained NPY-IR. In sections double stained with antibodies to ENK and BOMB some nerve fibers contained both peptides. The findings suggest that BOMB-IR nerves, which have been previously demonstrated to originate from gut, control the function of non-NPY-IR ganglion cells. ENK-IR nerves apparently control the adrenergic neurons which project to gut and also some NPY-IR vasomotoric neurons. The finding that ENK- and BOMB-IR coexist in some nerves suggests that some ENK-IR nerves may originate from gut, although the major part probably represents preganglionic fibers originating from spinal cord.  相似文献   

12.
Neuropeptide tyrosine (NPY) is one of the most abundant and widespread peptides in the mammalian nervous system. Recent isolation and sequencing of the DNA encoding NPY has predicted the existence of a 97 amino acid precursor peptide. Proteolytic processing of this precursor could yield three separate peptide products, an N-terminal signal peptide, neuropeptide tyrosine and a 30 amino acid C-terminal flanking peptide (C-PON). Here, we present evidence that the predicted C-flanking peptide of NPY is widely distributed in both the central and peripheral nervous systems of several mammalian species including man, and has an identical distribution to NPY. It was also demonstrated, using correlative light microscopic immunostaining on serial sections and double electron microscopic immunocytochemistry, that C-PON and NPY immunoreactivities are co-localized in neuronal cell bodies of the brain cortex, sympathetic ganglion cells, norepinephrine-containing granules of the adrenal medulla and in human pheochromocytoma tumor cells.  相似文献   

13.
Immunohistochemistry has been used to demonstrate tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactivities, and acetylcholinesterase (AChE) activity was demonstrated in rat adrenal glands. The TH, DBH, NPY and VIP immunoreactivities and AChE activity were observed in both the large ganglion cells and the small chromaffin cells whereas PNMT immunoreactivity was found only in chromaffin cells, and not in ganglion cells. Most intraadrenal ganglion cells showed NPY immunoreactivity and a few were VIP immunoreactive. Numerous NPY-immunoreactive ganglion cells were also immunoreactive for TH and DBH; these cells were localized as single cells or groups of several cells in the adrenal cortex and medulla. Use of serial sections, or double and triple staining techniques, showed that all TH- and DBH-immunoreactive ganglion cells also showed NPY immunoreactivity, whereas some NPY-immunoreactive ganglion cells were TH and DBH immunonegative. NPY-immunoreactive ganglion cells showed no VIP immunoreactivity. AChE activity was seen in VIP-immunopositive and VIP-immunonegative ganglion cells. These results suggest that ganglion cells containing noradrenaline and NPY, or NPY only, or VIP and acetylcholine occur in the rat adrenal gland; they may project within the adrenal gland or to other target organs. TH, DBH, NPY, and VIP were colocalized in numerous immunoreactive nerve fibres, which were distributed in the superficial adrenal cortex, while TH-, DBH- and NPY-immunoreactive ganglion cells and nerve fibres were different from VIP-immunoreactive ganglion cells and nerve fibres in the medulla. This suggests that the immunoreactive nerve fibres in the superficial cortex may be mainly extrinsic in origin and may be different from those in the medulla.  相似文献   

14.
Summary To visualize the localization and potential colocalization of noradrenaline and the putative pancreatic sympathetic neurotransmitters, galanin and neuropeptide Y (NPY), immunofluorescent staining for galanin, NPY and tyrosine hydroxylase (TH) was performed on sections of canine pancreas and celiac ganglion. In the pancreas, galanin-immuno-fluorescent nerve fibers were confirmed as densely and preferentially innervating the islets, whereas numerous NPY-positive nerve fibers were found in the exocrine parenchyma, the surrounding of the blood vessels and within the islets. Double-staining for the peptides and TH indicated that most galaninpositive nerve fibers were adrenergic, most NPY-positive nerve fibers were adrenergic, and many islet nerves contained both galanin and NPY, although some galaninpositive nerve fibers appeared to lack NPY. In the celiac ganglion, virtually all cell bodies were positive for both galanin and TH; a large subpopulation of these cells were also positive for NPY. Radioimmunoassay (RIA) of galanin in extracts of dog celiac ganglion revealed a very high content (256±33 pmol/g wet weight) of galanin-like immunoreactivity (GLIR), consistent with the dense staining observed. This GLIR behaved in a similar manner to synthetic porcine galanin in the RIA. In addition, the majority of the GLIR in ganglion extracts coeluted with the synthetic peptide upon gel filtration, although a minor peak of a larger apparent molecular weight was also observed, observations consistent with the presence of a precursor peptide. These findings suggest that galanin is a sympathetic post-ganglionic neurotransmitter in the canine endocrine pancreas and that NPY might serve a similar function.  相似文献   

15.
Retrograde neuronal tracing and immunohistochemical methods were used to define the neurochemical content of sympathetic neurons projecting to the sow retractor clitoridis muscle (RCM). Differently from the other smooth muscles of genital organs, the RCM is an isolated muscle that is tonically contracted in the rest phase and relaxed in the active phase. This peculiarity makes it an interesting experimental model. The fluorescent tracer fast blue was injected into the RCM of three 50 kg subjects. After a one-week survival period, the ipsilateral paravertebral ganglion S1, that in a preliminary study showed the greatest number of cells projecting to the muscle, was collected from each animal. The co-existence of tyrosine hydroxylase with choline acetyltransferase, neuronal nitric oxide synthase, calcitonin gene-related peptide, leu-enkephalin, neuropeptide Y, substance P and vasoactive intestinal polypeptide was studied under a fluorescent microscope on cryostat sections. Tyrosine hydroxylase was present in about 58% of the neurons projecting to the muscle and was found to be co-localized with each of the other tested substances. Within fast blue-labelled cells negative to the adrenergic marker, small populations of neurons singularly containing each of the other enzymatic markers or peptides were also observed. The present study documents the complexity of the neurochemical interactions that regulate the activity of the smooth myocytes of the RCM and their vascular components.  相似文献   

16.
Peptidyl-glycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is an enzyme that catalyzes conversion of glycine-extended peptides to alpha-amidated bioactive peptides. Two peptides that are processed at their carboxyl-termini by this enzyme are neuropeptide Y and anglerfish peptide Y, both of which possess a C-terminal glycine that is used as a substrate for amidation. Results from previous reports have demonstrated that neuropeptide Y-like and anglerfish peptide Y-like immunoreactivities are present in the brain of anglerfish (Lophius americanus). Furthermore, neuropeptide Y-like peptides, namely anglerfish peptide Y and anglerfish peptide YG (the homologues of pancreatic polypeptide) are present in the islet organ of this species. Neuropeptide Y has also been localized in the anterior, intermediated and posterior lobes of the pituitary gland in a variety of species. In order to learn more about the distribution of the enzyme responsible for alpha amidation of these peptides in the brain and pituitary and to specifically investigate the relationship of this enzyme to peptide synthesizing endocrine cells of the anglerfish islet, we performed an immunohistochemical study using several antisera generated against different peptide sequences of the enzyme. PAM antisera labeled cells in the islet organ, pituitary and brain, and fibers in the brain and pituitary gland. The PAM staining pattern in the brain was remarkably similar to the distribution of neuropeptide Y immunoreactivity reported previously. Clusters of cells adjacent to vessels in the anterior pituitary displayed punctate PAM immunoreactivity while varicose fibers were observed in the pituitary stalk and neurohypophysis. Endocrine cells of the islet organ were differentially labeled with different PAM antisera. Comparison of the staining patterns of insulin, glucagon, and anglerfish peptide Y in the islet organ to PAM immunoreactivity suggests a distribution of forms of PAM enzyme in insulin and anglerfish peptide Y-containing cells, but no overlap with glucagon-producing cells. The results also indicate that PAM immunoreactivity is widely distributed in the brain, pituitary and islet organ of anglerfish in cells that contain peptides that require presence of a C-terminal glycine for amidation.  相似文献   

17.
Uridine was administered in the drinking water (0.5 mg/ml) in adult 6 month-old rats for 6 months. The mean daily dose of uridine was 12.5 mg/rat. The effects of this treatment on tyrosine hydroxylase, galanin, somatostatin, neuropeptide Y and cholecystokinin-like immunoreactivities were studied by means of semiquantitative immunocytochemistry using the peroxidase-antiperoxidase procedure in combination with image analysis. A decrease of somatostatin, cholecystokinin and galanin-like immunoreactivities in nerve terminals was observed in various brain areas of 12 month-old animals compared with 3 month-old animals, while the levels of tyrosine hydroxylase-like immunoreactivity were unchanged. Uridine-treated animals showed a decrease of galanin, neuropeptide Y and cholecystokinin-like immunoreactivities in nerve terminals of some diencephalic areas and an increase of cholecystokinin-like immunoreactivity in nerve terminals of most of the telencephalic brain areas in comparison with vehicle treated animals of the same age. It is suggested that the pyrimidine nucleoside uridine can affect the synthesis and/or degradation of mRNAs involved in the synthesis of neuropeptides via direct nuclear actions and/or indirect actions involving effects on receptor activated phosphoinositide metabolism. Uridine offers a new way to modulate central peptide synapses.  相似文献   

18.
T he N ormal biochemical maturation of postsynaptic adrenergic neurons in mouse and rat superior cervical ganglion depends upon an intact preganglionic innervation (B lack , H endry and I versen , 1971a, 1972; T hoenen , S aner and K eitler , 1972). In recent studies tyrosine hydroxylase, the rate-limiting enzyme in norepinephrine biosynthesis (L evitt , S pector , S joerdsma and U denfriend , 1965), with localization to adrenergic neurons in the ganglion (B lack , H endry and I versen , 1971b), was used to monitor maturation of these cells. The developmental increase in tyrosine hydroxylase activity occurred simultaneously with the appearance of ganglionic synapses and was prevented by transection of the preganglionic nerve trunk (B lack , H endry and I versen , 1971a). These observations suggest that presynaptic cholinergic nerve terminals regulate the biochemical development of postsynaptic neurons in the superior cervical ganglion. The mechanism(s) by which presynaptic cholinergic terminals regulate postsynaptic development has not been elucidated. Such trans-synaptic regulation may be dependent on normal impulse transmission and/or may involve other unidentified, trophic factors. The results presented in the present communication suggest that normal development of ganglionic tyrosine hydroxylase activity is dependent on depolarization of postsynaptic adrenergic neurons.  相似文献   

19.
The plasticity of neural crest cells for the expression of adrenergic and cholinergic transmitter phenotypes has been well studied. The object of this study was to determine if cells of a sensory ganglion are capable of neuropeptide transmitter plasticity. We studied whether cells of the trigeminal ganglion, which do not express the neuropeptide vasoactive intestinal peptide (VIP) in vivo, would express this peptide when grown with a tissue the gut, that contains large numbers of VIP neurons. Embryonic aneural chick rectum was explanted with the embryonic quail trigeminal ganglion on the chorioallantoic membrane of chick hosts for 7-8 days. The explants were fixed, sectioned, and stained for VIP immunoreactivity (IR), for neurofilament protein immunoreactivity, and for the quail nucleolar marker. In sections of the explants we observed two populations of quail neurons: small (10-13 microns) VIP-IR cells and large (25-32 microns) cells lacking VIP-IR and resembling native trigeminal neurons. Trigeminal ganglia explanted with embryonic heart or trigeminal ganglia explanted alone lacked small VIP-IR cells but contained large VIP-negative neurons. These results show that cells of the trigeminal ganglion grown with the gut can express a neuropeptide they do not express in the absence of the gut or in vivo. Thus the embryonic trigeminal ganglion contains cells that are plastic with respect to neuropeptide expression.  相似文献   

20.
Summary Immunohistochemistry has been used to demonstrate that neuropeptide Y, dopamine--hydroxylase, calcitonin gene-related peptide or substance P are colocalized with vasoactive intestinal polypeptide and choline acetyltransferase in subpopulations of neurons in cranial parasympathetic ganglia of rat. These comprise the ciliary, sphenopalatine, otic, glossopharyngeal-vagal and internal carotid ganglia. In the ciliary and glossopharyngeal-vagal ganglia tyrosine hydroxylase is also found in such neurons. The findings emphasize that the combined localization of dopamine--hydroxylase and neuropeptide Y or the presence of tyrosine hydroxylase is not exclusively a marker for peripheral adrenergic neurons. Further, the co-localization of calcitonin gene-related peptide and substance P is not a decisive indication that a neuron is sensory in nature. It is discussed whether the presence of the enzymes and peptides other than vasoactive intestinal polypeptide is a remnant of a different expresion during ontogenesis or indicates target-specific functions in the adult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号