首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
SAR studies on an azetidine-containing dipeptide prototype inhibitor of HCMV are described. Three series of structurally modified analogues, involving substitutions at the N- and C-terminus, and at the C-terminal side-chain were synthesized and evaluated for antiviral activity. Aliphatic or no substituents at the C-carboxamide group, an aliphatic C-terminal side-chain, as well as a benzyloxycarbonyl moiety at the N-terminus were absolute requirements for anti-HCMV activity. The conformational restriction induced by the 2-azetidine residue into the dipeptide derivatives, identified by (1)H NMR as a γ-type reverse turn, seems to have influence on the activity of these molecules.  相似文献   

2.
The enzymatic synthesis of the seven consecutive dipeptide fragments of the cholecysto kinin C-terminal octapeptide (CCK-8) in organic media is reported. The influence of the reaction medium composition, the protease, and the structure of N-α and C-α protecting groups of both carboxyl and amino components was evaluated. α-Chymotrypsin, papain and thermolysin adsorbed on Celite were used as catalysts, under thermodynamic and kinetic control. The carboxamidomethyl, methyl and allyl ester derivatives of acetyl, benzyloxycarbonyl, tert-butyloxycarbonyl and fluoren-9-ylmethoxycarbonyl amino acids, were assayed as carboxy components. Amino acid amide and ester derivatives were employed as nucleophiles with a preference for the latter, since the dipeptide product obtained could be used directly, without any further chemical modification, as acyl-donor in subsequent coupling steps. All dipeptides selected were successfully synthesized, using the optimal combination of protecting groups, reaction media and enzyme different for each coupling reaction. The information gained with this study should be instrumental in designing an optimal strategy for the total enzymatic synthesis of cholecystokinin C-terminal octapeptide (CCK-8).  相似文献   

3.
A new process for the simultaneous enzymic synthesis and purification of N-(benzyloxycarbonyl)- -aspartyl- -phenylalanine methyl ester (ZAPM), a precursor of aspartame, has been developed. The enzymic reaction between N-(benzyloxycarbonyl)- -aspartic acid (ZA) and -phenylalanine methyl ester (PM) was carried out in a biphasic hollow-fibre rector with an aqueous phase an a butyl acetate phase. The reaction took place in the aqueous phase and by maintaining the pH at 5, the product (ZAPM) was extracted into the organic phase. Product purity was greater than 90% and reasonable productivity could be achieved with this system.  相似文献   

4.
A short synthesis of chemoselective chitosan derivatives was achieved by copper-catalyzed Huisgen cycloaddition, which is an ideal reaction for click chemistry, by using N-(4-azidophthaloyl)-chitosan. N-(4-azidophthaloyl)-chitosan was prepared through chemoselective N-bromophthaloylation of chitosan in acidic water and subsequent azidation. The obtained N-(4-bromopthaloyl)-chitosan had higher solubility in common solvents than conventional phthaloyl chitosan. N-(4-azidophthaloyl)-chitosan was successfully converted with ethynyl derivatives having functional groups (hydroxymethyl, phenyl, and methyl ester) in the presence of copper(II) sulfate, sodium ascorbate and/or trimethylamine. FT-IR spectra, elemental analyses, and (1)H and (13)C NMR spectra supported that the desired chitosan derivatives were chemoselectively transferred by these groups with a 1,4-triazole linker.  相似文献   

5.
L-delta-(alpha-Aminoadipoyl)-L-cysteine-D-valine synthetase (ACVS) has been recently studied as a model enzyme for peptide synthetases. It was found that in the absence of alpha-aminoadipic acid but in the presence of several cysteine analogues it was incorporated into several analogue dipeptides upon incubation of the potential cysteine analogues with ACVS. [(14)C]Cysteine was incorporated into the[(14)C]cysteinyl-valine analogue dipeptides. Notably, [(14)C]valine incorporation in the presence of N-acylated cysteine analogues was observed. The alpha-aminoadipic acid activation site is influential, inhibitory or promotive, on the production of these putative dipeptide products. The production of dipeptide analogues, containing valine or analogues at the C-terminus, leads to the speculation that the biosynthetic direction of ACV could be from the C-terminus to the N-terminus.  相似文献   

6.
Catalytic hydrogenation of 2,3,4,6-tetra-O-benzyl-1-O-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-alpha-D-glucopyranose (1alpha) in acetic acid-2-methoxyethanol gave 1-O-(L-beta-aspartyl)alpha-D-glucopyranose (2alpha) contaminated with 2-O-(L-alpha-aspartyl)-D-glucopyranose (8). Evidence that 8 was formed from the 1-oyl isomer of 1alpha, namely 2,3,4,6-tetra-O-benzyl-1-O-[4-benzyl N-(benzyloxycarbonyl)-L-aspart-1-oyl]-alpha-D-glucopyranose (7alpha), via 1 leads to 2 acyl migration, was obtained by submitting the deprotected D-glucosyl ester to successive N-acetylation, esterification, and O-acetylation; the final product was identified as a approximately 4:1 mixture of 2,3,4,6-tetra-O-acetyl-1-O-[1-methyl N-(acetyl)-L-aspart-4-oyl]-alpha-D-glucopyranose (4alpha) and 1,3,4,6-tetra-O-acetyl-2-O-[4-methyl N-(acetyl)-L-aspart-1-oyl]-D-glucopyranose (6) which were also prepared by definitive methods. On the other hand, deprotection of 1beta gave isomerically pure 2beta which was converted into the peracetylated ester derivative 4beta; an explanation for the differences in aglycon isomeric purity of 2alpha and 2beta is given. Hydrogenolysis of 7beta under the above conditions led to intermolecular transesterification with scission of the C-1 ester bond to give 1-(2-methoxyethyl) L-aspartic acid and D-glucose. Catalytic hydrogenation of 7alpha and 7beta, performed in the presence of trifluoroacetic acid, afforded 1-O-(L-alpha-aspartyl)-alpha- and -beta-D-glucopyranoside trifluoroacetate salts (11alpha and 11beta), respectively. The structure of 11beta was established by successive conversion into 2,3,4,6-tetra-O-acetyl-1-O-[4-methyl N-(acetyl)-L-aspart-1-oyl]-beta-D-glucopyranose (5beta) which was also prepared by definitive methods. Analogous treatment of 11alpha gave the N-acetyl derivative 12 which underwent 1 leads to 2 acyl migration during esterification with diazomethane to give the N-acetyl methyl ester derivative 10; acetylation of 10 afforded 6.  相似文献   

7.
N-(benzyloxycarbonyl)-L-aspartic acid (Z-L-Asp) has generally been used as a carboxyl substrate for the enzymatic synthesis of a precursor of aspartame (synthetic sweetener); however, alternative inexpensive protection groups have been in demand for lowering the total cost of its industrial-scale production. A formyl group (F-) was found to be a more desirable protecting group for the N-terminus of amino acid derivatives due to its low cost of preparation, introduction, and removal. The yield of F-AspPheOMe (N-formyl-L-aspartyl-L-phe- nylalanine methylester), however, was found to be <10% in a conventional aqueous medium. We found that F-L-Asp and L-PheOMe were partitioned mainly to the aqueous phase in an aqueous/organic biphasic medium, whereas F-AspPheOMe partitioned to the organic phase, especially when some extracting agents were added. In this study, simultaneous operation of an enzymatic reaction and a product separation by liquid-liquid extraction was thus applied to the F-AspPheOMe synthesis. We succeeded in synthesizing F-AspPheOMe continuously in an aqueous/tributylphosphate (TBP) biphasic medium with >95% yield, which was about tenfold higher than that in an aqueous monophasic medium.  相似文献   

8.
Protected dipeptides containing 1-aminocyclopropane carboxylic acid (Ac3c) or alpha-aminoisobutyric acid (Aib) residues at the C-terminus and Phe, Val or Ala residues at the N-terminus displayed different proton NMR spectra for the pure enantiomers and the racemic mixtures in deuterochloroform (CDCl3) solution. An unequal mixture of enantiomers showed two sets of resonances (NMR nonequivalence), one corresponding to major and the other to minor enantiomer. The NMR nonequivalence was originated by the presence of the C-terminal Ac3c or Aib residues, which have been known for their unique spatial preferences in avoiding an extended (C5) conformation. When a C5 conformation favoring residue such as glycine was incorporated in place of Ac3c or Aib, negligible NMR nonequivalence was observed. The magnitude of the NMR nonequivalence depended on the side chain as well as on the protecting groups at N-terminus alpha-amino acid. For the same peptide, the magnitude of nonequivalence increased with increasing solution concentration and/or with decreasing the solution temperature. The NMR nonequivalence disappeared in polar solvent-like deuterated dimethylsulfoxide (DMSO-d6). A preference for hetero-chiral recognition leading to dimeric association under fast exchange conditions had been invoked to explain the observed phenomenon. The dipeptides thus prepared could well serve as 'model peptides' for the evaluation of any preparative methods.  相似文献   

9.
To gain insight into the origin of the difference in isoelectric point (pI) values for wild-type human interleukin-2 (IL-2) and IL-2 with an additional methionine residue at the N-terminus (Met-IL-2), conformational properties of the two molecular forms of IL-2 were compared by utilizing 1H NMR spectroscopy. Although overall conformations were conserved in the two forms, the presence of the additional methionine residue at the N-terminus induced chemical shift changes for residues Ala1 to Lys8 as well as for Thr133, which is located at the C-terminus. These observations indicate that the effect of the additional methionine residue is confined to the N- and C-terminal regions and unveil the existence of an interaction between the N- and C-terminal regions. The chemical shift change observed for Thr133 can be interpreted in terms of a change in pKa of the C-terminal carboxyl group, which interacts differently with the N-terminal amino group in the two forms of IL-2. It seems to be reasonable to conclude that the difference in pI values for the two forms of IL-2 is the consequence of the different interactions between the C- and N-terminal residues.  相似文献   

10.
Turnip yellow mosaic virus (TYMV) is a positive strand RNA virus. We have modified TYMV coat protein (CP) by inserting a c-Myc epitope peptide at the N- or C-terminus of the CP, and have examined its effect on assembly. We introduced the recombinant CP constructs into Nicotiana benthamiana leaves by agroinfiltration. Examination of the leaf extracts by agarose gel electrophoresis and Western blot analysis showed that the CP modified at the N-terminus produced a band co-migrating with wild-type virions. With C-terminal modification, however, the detected bands moved faster than the wild-type virions. To further examine the effect, TYMV constructs producing the modified CPs were prepared. With N-terminal modification, viral RNAs were protected from RNase A. In contrast, the viral RNAs were not protected with C-terminal modification. Overall, the results suggest that virion assembly and RNA packaging occur properly when the N-terminus of CP is modified, but not when the C-terminus is modified. [BMB Reports 2013; 46(10): 495-500]  相似文献   

11.
For the study of biological phenomena influenced by the R- and N-Ras proteins, characteristic peptides which embody the correct lipid modifications of their parent proteins (palmitoyl thioesters, geranylgeranyl thioethers, and farnesyl thioethers), as well as analogues thereof, may serve as efficient tools. For the construction of such acid- and base labile peptide conjugates the allyl ester was developed as C-terminal protecting group. Allyl esters are cleaved selectively and in high yields from lipidated peptides by Pd(0)-mediated allyl transfer to accepting N- or C-nucleophiles like morpholine and N,N'-dimethylbarbituric acid. This protecting group technique formed the key step in the synthesis of the characteristic S-palmitoylated and S-isoprenylated C-terminus of human R-Ras and human N-Ras proteins, as well as several analogues thereof. Deprotections are so mild that no undesired side reactions of the lipid conjugates are observed.  相似文献   

12.
A number of substrate analogous peptides containing a phosphoramidate, phosphonate ester, hydroxamate, carboxylate or sulfhydryl group are known to be inhibitors of thermolysin and other metalloproteinases. According to the specificity, most of the inhibitors mimic the prime site of the active center. Hitherto, peptidyl derivatives with a thiol group at the C-terminus have not been described. We have synthesized the protected cysteamides Ac-Ala-Ala-CA-SH and Z-Aa1-Aa2-CA-SH (Aa1: Ala, Pro; Aa2: Ala, Leu). The binding of these thiol peptide inhibitors to the metalloproteinases is characterized first by the coordination of the thiolate group of the inhibitor to the catalytic zinc ion and second by the subsite interaction of the peptide ligand in the active site of the enzyme. All peptide derivatives were competitive inhibitors of the zinc metalloproteinase thermolysin. The strongest inhibition was found with Z-Pro-Leu-CA-SH (Ki = 30 microM). Substitution of the N-protecting benzyloxycarbonyl residue towards the acetyl group in the peptide inhibitor, the inhibition constant decreased about 25 times.  相似文献   

13.
C Scalfi-Happ  E Happ  S Ghag  S Chládek 《Biochemistry》1987,26(15):4682-4688
Specific syntheses of 2'(3')-O-aminoacyl oligoribonucleotides C-C-A-Gly (12), C-C-A(AcGly) (7), U-C-C-A-Gly (17), and C-U-C-C-A-Gly (19), which are the 3'-terminal sequences of Escherichia coli Gly-tRNA (or AcGly-tRNA, respectively) are described. Compounds 12, 17, and 19 were synthesized by employing the benzotriazolyl phosphotriester approach with the following protection groups on the components: benzoyl for the heterocyclic amino groups, 2-chlorophenyl group for internucleotide phosphate protection, dimethoxytrityl and levulinoyl groups for blocking of the 5'-hydroxyl, methoxytetrahydropyranyl group for protection of the 2'-hydroxyl functions, and N-(benzyloxycarbonyl)orthoglycinate as the masked aminoacyl group simultaneously protecting the 2',3'-cis diol group of the 3'-terminal adenosine moiety. The fully protected tri-, tetra-, and pentanucleotides were obtained via 5'-extension of di- and trinucleotide blocks after prior selective removal of the 5'-O-levulinoyl group with hydrazine. The blocked derivatives 11, 16, and 18 were totally deprotected by reactions with NH4OH, H+, and H2/Pd to yield the target compounds 12, 17, and 19 in good yields. C-C-A(AcGly) (7) was synthesized according to a stepwise procedure via activation of preformed diesters with (mesitylenesulfonyl)tetrazole. C-C-A-Gly (12), U-C-C-A-Gly (17), and C-U-C-C-A-Gly (19) were all acceptor substrates in the peptidyltransferase reaction with the Ac-Phe-tRNA-70S ribosome-poly(U) system. All three models also promoted EF-Tu-70S ribosome GTP hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The intramolecular interaction of protected dipeptides and tripeptides containing the amino acid units Ala, Phe, and Val was studied by means of ir spectroscopy. The NH and CO regions of the compounds dissolved in carbon tetrachloride clearly show the existence of different intramolecular hydrogen bonds. Using solvents with higher polarity such as chloroform and methylene chloride, the association bands disappear. Investigating the substances with the same amino acid sequence but opposite chirality of the central C atom in the peptide chain, we observed different band shapes in the CO and NH regions. Large effects were found when the chirality of the Phe unit in the second position was changed. This is probably due to the steric hindrance originated by the rotation of the aromatic ring in the side chain. The protecting groups, Z (benzyloxycarbonyl) or Boc (tert-butyloxycarbonyl) residues at the N-terminal group and methyl- or tert-butyl esters at the C-terminal group, influence the solubility of the substances in nonpolar solvent, as well as the NH and CO association band profiles in the methylene chloride solutions. The consequences of changing the sequence of the amino acids are discussed for the tripeptide derivatives. Besides a qualitative discussion, some quantitative considerations concerning the intramolecular interaction are also given to illustrate the different stabilities of the associates. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The integration of a charged membrane into a perstraction system for high selective separation is reported. A mixture of N-(benzyloxycarbonyl)-L-aspartic acid (ZA), L-phenylalanine methyl ester (PM), and N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (ZAPM) was used as the model solution. The aqueous phase containing ZA, PM, and ZAPM was adjusted to pH 6 and was contacted with tert-amyl alcohol through a charged membrane. Seven different ion-exchange membranes and two different microfiltration membranes were tested for the separation system. Only ZAPM could permeate into the organic phase through SELEMION AMV and ASV. The separations between ZA and ZAPM and between PM and ZAPM were performed by biphasic extraction and electrostatic rejection, respectively. The permeabilities of ZAPM were higher than those of PM for all experiments using the ion-exchange membranes, although the molecular weight of ZAPM is larger than that of PM. The membrane that had a smaller pore size showed higher ZAPM selectivity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 162-167, 1997.  相似文献   

16.
N-(Benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-AspPheOMe), a precursor of the aspartame, and N-(benzyloxycarbonyl)-L-phenylalanyl-Lphenylalanine methyl ester (Z-PhePheOMe) were synthesized from the respective amino acid derivatives with an immobilized thermolysin (EC 3.4.24.4) in ethyl acetate. Various factors affecting the synthesis of these dipeptide precursors were clarified. The initial synthetic rate was the highest at the water content of 3.5% for both reactions. The substrate concentration dependencies of the initial synthetic rate of Z-AspkPheOMe and Z-PhePheOMe with the immobilized enzyme in ethyl acetate were different from those in an aqueous buffer solution saturated with ethyl acetate but similar to those in the aqueous/organic biphasic system using the free enzyme. Particularly, the initial synthetic rate of Z-AspPhOMe increased in order higher than first order with respect to the concentration of L-phenylalanine methyl ester (PheOMe), whereas it decreased sharply with the concentration of N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp). Such kinetic behavior could be explained by regarding the inside of the immobilized enzyme as being a biphasic mode composed from the organic phase and aqueous phase where the enzymatic reaction takes place. The reaction in the aqueous/organic biphasic system using the free enzyme could be simulated by taking into consideration the partition of the substrate and the initial rate of synthesis in the aqueous buffer saturated with ethyl acetate. Based on this analysis, the rate of reaction with the immobilized enzyme in ethyl acetate could also be predicted. Z-AsPheOMe and Z-PhePheOMe were synthesized by the fed-batch method where the acid component of the substrate was intermittently added during the course of reaction and by the batch method. In the synthesis of Z-AspPheOMe, the synthetic rate and maximum yield of reaction as well as the stability of the immobilized enzyme were higher in the fed-batch reaction than those in the batch reaction. In the synthesis of Z-PhePheOMe, the results obtained by both methods were similar. (c) 1994 John Wiley & Sons, Inc.  相似文献   

17.
In this study, we describe the rational synthesis and functional analysis of novel high affinity inhibitors for the mammalian peptide transporter PEPT2. Moreover, we demonstrate which structural properties convert a transported compound into a non-translocated inhibitor. Starting from Lys[Z(NO(2))]-Pro (where Z is benzyloxycarbonyl), which we recently identified as the first competitive high affinity inhibitor of the intestinal peptide transporter PEPT1, a series of different lysine-containing dipeptide derivatives was synthesized and studied for interaction with PEPT2 based on transport competition assays in Pichia pastoris yeast cells expressing PEPT2 heterologously and in renal SKPT cells expressing PEPT2. In addition, the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT2 was used to determine whether the compounds are transported electrogenically or block the uptake of dipeptides. Synthesis and functional analysis of Lys-Lys derivatives containing benzyloxycarbonyl or 4-nitrobenzyloxycarbonyl side chain protections provided a set of inhibitors that reversibly inhibited the uptake of dipeptides by PEPT2 with K(i) values as low as 10 +/- 1 nm. This is the highest affinity of a ligand of PEPT2 ever reported. Moreover, based on the structure-function relationship, we conclude that the spatial location of the side chain amino protecting group in a dipeptide containing a diaminocarbonic acid and its intramolecular distance from the Calpha atom are key factors for the transformation of a substrate into an inhibitor of PEPT2.  相似文献   

18.
N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester, a precursor of the synthetic sweetener, aspartame, was synthesized from N-(benzyloxycarbonyl)-L-aspartic acid and L-phenylalanine methyl ester with an immobilized thermolysin (EC 3.4.24.4) in the mixed organic solvent system of tert-amyl alcohol and ethyl acetate. A mixed solvent consisting of tert-amyl alcohol and ethyl acetate at a ratio of 33:67 (v/v) was found to be the most suitable with respect to synthetic rate and stability of the immobilized enzyme. The reaction continued to proceed quite successfully in a column reactor at 40 degrees C and at a space velocity of 3.6 h(-1) with a yield of 99%, using 40 mM Z-Asp and 200 mM PheOMe dissolved in the mixed solvent as the substrate. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
Summary N-Protected dipeptides containing L-3-thia-analogues of phenylalanine, p-nitro-phenylalanine, lysine and leucine respectively were prepared applying an enantioselective enzymatic reaction step. Racemic synthetic intermediates of the type acyl-NH-CH(R1)-CO-D,L-NH-CH(S-R2)-COOBzl were selectively deprotected at the C-terminus by enzymatic hydrolysis using thermitase or trypsin.Abbreviations Ac acetyl - AcOEt ethyl acetate - AcOH acetic acid - Boc tert.-butyloxycarbonyl - Bz benzoyl - Bzl benzyl - DMF dimethyl-formamide - EtOH ethanol - THF tetrahydrofuran - Z benzyloxycarbonyl Dedicated to Prof. D. Cavallini at the occasion of his 75th birthday.  相似文献   

20.
The erythrocytic stage development of malaria parasites occurs within the parasitophorous vacuole inside the infected-erythrocytes, and requires transport of several parasite-encoded proteins across the parasitophorous vacuole to several locations, including the cytosol and membrane of the infected cell. These proteins are called exported proteins; and a large number of such proteins have been predicted for Plasmodium falciparum based on the presence of an N-terminal motif known as the Plasmodium export element (PEXEL) or vacuolar transport signal (VTS), which has been shown to mediate export. The majority of exported proteins contain one or more transmembrane domains at the C-terminus and one of three types of N-terminus domain architectures. (1) The majority, including the knob-associated histidine rich protein (KAHRP), contain a signal/hydrophobic sequence preceding the PEXEL/VTS motif. (2) Other exported proteins, including the P. berghei variant antigen family bir and the P. falciparum skeleton binding protein-1, do not appear to contain a PEXEL/VTS motif. (3) The P. falciparum erythrocyte membrane protein-1 (PfEMP1) family lacks a signal/hydrophobic sequence before the motif. These different domain architectures suggest the presence of multiple export pathways in malaria parasites. To determine if export pathways are conserved in plasmodia and to develop an experimental system for studying these processes, we investigated export of GFP fused with N- and C-terminus putative export domains in the rodent malaria parasite P. berghei. Export was dependent on specific N- and C-terminal domains. Constructs with a KAHRP-like or bir N-terminus, but not the PfEMP1 N-terminus, exported GFP into the erythrocyte. The C-terminus of a P. falciparum variant antigen rifin prevented GFP export by the KAHRP-like N-terminus. In contrast, GFP chimeras containing KAHRP-like N-termini and the PfEMP1 C-terminus were exported to the surface of erythrocytes. Taken together, these results suggest that proteins with KAHRP-like architecture follow a common export pathway, but that PfEMP1s utilize an alternative pathway. Functional validation of common putative export domains of malaria parasites in P. berghei provides an alternative and simpler system to investigate export mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号