首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyrotropin releasing hormone (TRH) causes phosphatidylinositol bisphosphate hydrolysis to form inositol trisphosphate and diacylglycerol. Since diacylglycerol activates protein kinase C (Ca2+/phospholipid-dependent enzyme), this enzyme may be involved in mediating the physiological response to TRH. Activation of protein kinase C leads to phosphorylation of receptors for epidermal growth factor (EGF) and decreased EGF affinity. The present study examined the effect of TRH on EGF binding to intact GH4C1 rat pituitary tumor cells to test whether TRH activates protein kinase C. Cells were incubated with TRH at 37 degrees C and specific 125I-EGF binding was then measured at 4 degrees C. 125I-EGF binding was decreased by a 10-min treatment with 0.1-100 nM TRH to 30-40% of control in a dose-dependent manner. 125I-EGF binding was not altered if cells were incubated at 4 degrees C, although TRH receptors were saturated or in a variant pituitary cell line without TRH receptors. TRH (10 min at 37 degrees C) decreased EGF receptor affinity but caused little change in receptor density, 125I-EGF internalization, or degradation. When cells were incubated continuously with TRH, there was a recovery of 125I-EGF binding after 24 h. Incubation with the protein kinase C activating phorbol ester TPA caused an immediate (less than 10 min) profound (greater than 85%) decrease in 125I-EGF binding followed by partial recovery at 24 h. Maximally effective doses of TRH and TPA decreased EGF receptor affinity with half-times of 3 min. EGF treatment (5 min) caused an increase in the tyrosine phosphate content of several proteins; prior incubation with TRH resulted in a small decline in the EGF response. GH4C1 cells were incubated with 500 nM TPA for 24 h in order to down-regulate protein kinase C. Protein kinase C depletion was confirmed by immunoblots and the effects of TRH and TPA on 125I-EGF binding were tested. TRH and TPA were both much less effective in cells pretreated with phorbol esters. TRH increased cytoplasmic pH measured with an intracellularly trapped pH sensitive dye after mild acidification with nigericin. This TRH response is presumed to be the result of protein kinase C-mediated activation of the amiloride-sensitive Na+/H+ exchanger and was blunted in protein kinase C-depleted cells. All of these results are consistent with the view that TRH acts rapidly in the intact cell to activate protein kinase C and that a consequence of this activation is EGF receptor phosphorylation and Na+/H+ exchanger activation.  相似文献   

2.
Physiological studies indicate that epidermal growth factor-urogastrone (EGF) acts on stomach epithelium as mitogen and modulator of acid secretion. Here, we studied the binding of 125I-EGF to gastric glands isolated from the guinea-pig fundus (acid-secreting part) and antrum. At 20 degrees C, the association of 125I-EGF to gastric glands was time-dependent (plateau at 90 min) and reversible (75-85% dissociation in 1 h). No degradation of the peptide was detected, but a time-dependent loss of binding capacity was observed. At apparent equilibrium (90 min, 20 degrees C) unlabelled EGF (80 pM to 80 nM) competed with 125I-EGF-binding in the same manner in antrum and fundus (50% inhibition, with 0.6 nM EGF). Whereas kinetics properties were similar in antrum and fundus, the binding capacity was 40-55% lower in fundus than in antrum in young animals (6-8 weeks). By contrast, in adult animals (20-30 weeks), binding was the same in both parts of stomach. Scatchard analysis showed that two orders of binding sites were present in all cases (Ki 0.34-0.47 nM, Ki 2.2-3.4 nM), and that the differences observed were only accounted for by number of binding sites. These results show that EGF possess high affinity binding sites on gastric epithelium. These sites, dependent upon the age of the animals, may be related to the modulations by EGF of gastric trophism and secretions.  相似文献   

3.
Experiments were undertaken to determine whether the method of iodination of epidermal growth factor (EGF) affects its binding to rat liver plasma membranes and its uptake, processing, and secretion into bile by intact rat hepatocytes. EGF was iodinated using one of three oxidative reagents: chloramine T (CT), lactoperoxidase (LP), or monochloride (MC). Quantitative receptor binding studies on plasma membranes isolated from male rat livers with either CT-, LP-or MC-125I-EGF indicated no significant difference in the apparent binding constants of the three preparations. To determine whether these three preparations were capable of forming a covalent-like complex with the EGF receptor, they were individually incubated with isolated plasma membranes and subjected to polyacrylamide gel electrophoresis under reducing conditions, followed by autoradiography. Each preparation formed a major radioactive protein band of approximately 180 kD, identified as the EGF receptor by immunoprecipitation with monoclonal anti-EGF receptor antibodies. Furthermore, even unlabeled EGF incubated with plasma membranes formed this same 180 kD band, as revealed on Western blots using anti-EGF antibody. The biliary secretion of CT-, LP-, and MC-125I-EGF was compared by injecting each one into rat portal veins and measuring the total and immunoprecipitable radioactivity in bile. The amount of immunologically intact CT-125I-EGF in bile was significantly greater than the others, whereas MC-125I-EGF transport was significantly reduced. We conclude that the method of iodination does not affect the covalent-like binding properties of EGF. Furthermore, since unlabeled EGF displayed these same binding properties, oxidative iodination procedures per se do not account for the covalent-like association between EGF and its receptor. However, the method of iodination used did affect the intracellular transport and processing of EGF by hepatocytes. The structural modification responsible for this alteration in transport properties has yet to be determined.  相似文献   

4.
We characterized binding and endocytosis of 125I-bovine lactoferrin by isolated rat hepatocytes. Iron-depleted (apo-Lf), approximately 30% saturated (Lf), and iron-saturated (holo-Lf) lactoferrin were used. At 4 degrees C, cells bound 125I-apo-Lf and 125I-holo-Lf with nearly identical apparent first order kinetics (t1/2 = approximately 42 min). Holo-Lf and apo-Lf competed with each other for binding. Hepatocytes bound lactoferrin optimally at pH greater than or equal to 7 but poorly at pH less than or equal to 6. Ca2+ (greater than or equal to 100 microM) enhanced Lf binding to cells, and holo-Lf remained monomeric with Ca2+ present as determined by gel filtration chromatography. With Ca2+, cells exhibited approximately 10(6) high affinity sites (Kd approximately 20 nM) and approximately 10(7) low affinity sites (Kd approximately 700 nM) for both apo- and holo-Lf. Without Ca2+, cells bound 125I-holo-Lf by the low affinity component only. EGTA and dextran sulfate together released greater than or equal to 90% 125I-Lf prebound at 4 degrees C, but individually removed separate populations of surface-bound 125I-Lf. Cells bound 125I-Lf in a Ca(2+)-dependent manner with dextran sulfate present. We conclude that the high affinity but not the low affinity sites require Ca2+; only the low affinity sites are dextran sulfate-sensitive. Neither transferrin nor asialo-orosomucoid blocked lactoferrin binding to hepatocytes. Some cationic proteins but not others inhibited lactoferrin binding. At 37 degrees C, hepatocytes endocytosed 125I-apo-Lf and 125I-holo-Lf similarly, and hyperosmolality (greater than 500 mmol/kg) blocked uptake by approximately 90%. These data support the proposal that hepatocytes regulate blood lactoferrin concentration by receptor-mediated endocytosis.  相似文献   

5.
Dimethyl sulfoxide (DMSO) stimulates tyrosine phosphorylation of the hepatic EGF receptor in isolated membrane preparations. To determine whether DMSO affects EGF binding, primary cultures of rat hepatocytes were incubated with 1-10% DMSO for 30 min prior to the addition of 125I-EGF. DMSO (1-2%) reduced specific 125I-EGF binding; the effect was maximal (a 40-60% reduction) at 5-7.5% DMSO and was reversed by removing the DMSO. Scatchard analysis showed that the reduction in binding was due to a change in receptor affinity. The decrease in binding was not seen when other, slightly less polar, solvents (eg, acetone and ethanol) were tested. DMSO also reduced 125I-EGF binding to purified rat liver plasma membranes. This reduction was seen in the absence of added ATP and in membranes that had been pretreated with TLCK, a tyrosine kinase inhibitor. Thus, completion of the receptor autophosphorylation reaction was not necessary to effect the change. The data are consistent with a DMSO-induced alteration of receptor conformation that reversibly reduces receptor affinity.  相似文献   

6.
GH4C1 cells, a clonal strain of rat pituitary tumor cells, have high-affinity, functional receptors for the inhibitory hypothalamic peptide somatostatin (SRIF) and for epidermal growth factor (EGF). In this study we have examined the events that follow the initial binding of SRIF to its specific plasma membrane receptors in GH4C1 cells and have compared the processing of receptor-bound SRIF with that of EGF. When cells were incubated with [125I-Tyr1]SRIF at temperatures ranging from 4 to 37 degrees C, greater than 80% of the specifically bound peptide was removed by extraction with 0.2 M acetic acid, 0.5 M NaCl, pH 2.5. In contrast, the subcellular distribution of receptor-bound 125I-EGF was temperature dependent. Whereas greater than 95% of specifically bound 125I-EGF was removed by acid treatment after a 4 degrees C binding incubation, less than 10% was removed when the binding reaction was performed at 22 or 37 degrees C. In pulse-chase experiments, receptor-bound 125I-EGF was transferred from an acid-sensitive to an acid-resistant compartment with a half-time of 2 min at 37 degrees C. In contrast, the small amount of [125I-Tyr1]SRIF that was resistant to acid treatment did not increase during a 2-h chase incubation at 37 degrees C. Chromatographic analysis of the radioactivity released from cells during dissociation incubations at 37 degrees C showed that greater than 90% of prebound 125I-EGF was released as 125I-tyrosine, whereas prebound [125I-Tyr1]SRIF was released as a mixture of intact peptide (55%) and 125I-tyrosine (45%). Neither chloroquine (0.1 mM), ammonium chloride (20 mM), nor leupeptin (0.1 mg/ml) increased the amount of [125I-Tyr1]SRIF bound to cells at 37 degrees C. Furthermore, chloroquine and leupeptin did not alter the rate of dissociation or degradation of prebound [125I-Tyr1]SRIF. In contrast, these inhibitors increased the amount of cell-associated 125I-EGF during 37 degrees C binding incubations and decreased the subsequent rate of release of 125I-tyrosine. The results presented indicate that, as in other cell types, EGF underwent rapid receptor-mediated endocytosis in GH4C1 cells and was subsequently degraded in lysosomes. In contrast, SRIF remained at the cell surface for several hours although it elicits its biological effects within minutes. Furthermore, a constant fraction of the receptor-bound [125I-Tyr1]SRIF was degraded at the cell surface before dissociation. Therefore, after initial binding of [125I-Tyr1]SRIF and 125I-EGF to their specific membrane receptors, these peptides are processed very differently in GH4C1 cells.  相似文献   

7.
The association of 125I-labelled epidermal growth factor (125I-EGF) with mouse pancreatic acinar cells was inhibited by secretagogues which increase intracellular free Ca2+ concentrations. These agents included cholecystokinin-octapeptide (CCK8) and the Ca2+ ionophore A23187. Inhibition by CCK8 was blocked by lowering the incubation temperature from 37 degrees C to 15 degrees C. Moreover, in contrast with studies of intact acini, the binding of 125I-EGF to isolated acinar membrane particles was not affected either by CCK8, or by varying the level of Ca2+ in the incubation medium. These results indicated, therefore, that the inhibition of 125I-EGF association with acinar cells required intact cells that are metabolically active. Since intact cells at 37 degrees C are known to internalize bound EGF rapidly, acid washing was used to distinguish membrane-associated hormone from internalized hormone. Under steady-state conditions 86% of the 125I-EGF associated with the acini was found to be internalized by this technique. When agents that increased intracellular Ca2+ were tested they all markedly reduced the amount of internalized hormone, whereas surface binding was only minimally affected. The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA), which is known to activate protein kinase C, a Ca2+-regulated enzyme, also inhibited the association of EGF with acini. This inhibition was similar to that induced by elevated intracellular Ca2+. To test whether these two inhibitory phenomena were related, the effects of TPA in combination with the Ca2+ ionophore A23187 were examined. At low concentrations the effects were synergistic, whereas at high concentrations the maximal level of inhibition was not changed. We suggest therefore that elevated intracellular Ca2+ and phorbol esters may inhibit EGF internalization by a mechanism involving activation of protein kinase C.  相似文献   

8.
Incubation of intact rat adipocytes with physiological concentrations of catecholamines inhibits the specific binding of 125I-insulin and 125I-epidermal growth factor (EGF) by 40 to 70%. Affinity labeling of the alpha subunit of the insulin receptor demonstrates that the inhibition of hormone binding is directly reflective of a specific decrease in the degree of receptor occupancy. The stereospecificity and dose dependency of the binding inhibitions are typical of a classic beta 1-adrenergic receptor response with half-maximal inhibition occurring at 10 nM R-(-)-isoproterenol. Specific alpha-adrenergic receptor agonists and beta-adrenergic receptor antagonists have no effect, while beta-adrenergic receptor antagonists block the inhibition of 125I-insulin and 125I-EGF binding to receptors induced by beta-adrenergic receptor agonists. Further, these effects are mimicked by incubation of adipocytes with dibutyryl cyclic AMP or with 3-isobutyl-1-methylxanthine. The beta-adrenergic inhibition of both 125I-insulin and 125I-EGF binding is very rapid, requiring only 10 min of isoproterenol pretreatment at 37 degrees C for a maximal effect. Removal of isoproterenol by washing the cells in the presence of alprenolol leads to complete reversal of these effects. The inhibition of 125I-EGF binding is temperature dependent whereas the inhibition of 125I-insulin binding is relatively insensitive to the temperature of isoproterenol pretreatment. Scatchard analysis of 125I-insulin and 125I-EGF binding demonstrated that the decrease of insulin receptor-binding activity may be due to a decrease in the apparent number of insulin receptors while the inhibition of EGF receptor binding can be accounted for by a decrease in apparent EGF receptor affinity. The decrease in the insulin receptor-binding activity is physiologically expressed as a dose-dependent decrease of insulin responsiveness in the adipocyte with respect to two known responses, stimulation of insulin-like growth factor II receptor binding and activation of the glucose-transport system. These results demonstrate a beta-adrenergic receptor-mediated cyclic AMP-dependent mechanism for the regulation of insulin and EGF receptors in the rat adipocyte.  相似文献   

9.
We have used isolated perfused rat livers to examine the intracellular processing of 125I-epidermal growth factor (EGF) and to determine where in the endocytic pathway the hydrolases which degrade EGF are acting. Following uptake of 125I-EGF at 37 or 16 degrees C, subcellular fractions enriched in endosomes and lysosomes were isolated, and their 125I-EGF content was examined by reverse-phase high performance liquid chromatography. Three forms of EGF processed at their carboxyl termini are generated in endosomes. At 37 degrees C, EGF is first processed in early endosomes by a carboxypeptidase B-like protease and is further processed in late endosomes by a trypsin-like protease and then a carboxypeptidase B-like protease. At 16 degrees C, entry of EGF into late endosomes is slowed, and only the first processed form is generated over 60 min. Longer perfusions (180 min) at 16 degrees C result in some processing (7%) by proteases found in late endosomes. EGF-horseradish peroxidase cytochemistry confirmed that the additional processing detected at 180 min correlated with movement of EGF from tubulovesicular to multivesicular endosomes. These results, combined with in vitro incubations of EGF in isolated endosomal and lysosomal fractions, suggest that different proteases are active at selective points in the endocytic pathway and that the full complement of proteases needed for complete degradation of EGF is active only in lysosomes.  相似文献   

10.
Preincubation of Swiss 3T3 cells or human fibroblasts with purified platelet-derived growth factor (PDGF) at 4 degrees C or 37 degrees C rapidly inhibits subsequent binding of 125I-epidermal growth factor (125I-EGF). The effect does not result from competition by PDGF for binding to the EGF receptor since (a) very low concentrations of PDGF are effective, (b) cells with EGF receptors but no PDGF receptors are not affected, and (c) the inhibition persists even if the bound PDGF is eluted before incubating the cells with 125I-EGF. PDGF does not affect 125I-insulin binding nor does EGF affect 125I-PDGF binding under these conditions. Endothelial cell-derived growth factor also competes for binding to PDGF receptors and inhibits 125I-EGF binding. The inhibition demonstrated by PDGF seems to result from an increase in the Kd for 125I-EGF binding with no change in the number of EGF receptors.  相似文献   

11.
It was previously demonstrated that freshly isolated rat hepatocytes can internalize severalfold more epidermal growth factor (EGF) molecules than the number of surface EGF receptors, suggesting extensive reutilization of receptors during endocytosis (Gladhaug, I. P. & Christoffersen, T. (1987) Eur. J. Biochem. 164, 267-275). The present report attempts to explore the pathways involved in the externalization of EGF receptors. Incubation of hepatocytes at 37 degrees C in the absence of ligand increased the surface receptor pool by 50-100% within 45 min. Pretreatment with monensin inhibited the turnover of the surface EGF receptor pool by 50-60% within 10 min and blocked the temperature-dependent externalization of receptors. Cycloheximide caused a slower attenuation of the surface receptor pool, whereas tunicamycin and chloroquine did not significantly affect the exchange of receptor pools. Monensin reduced the surface receptor pool and the endocytic uptake in corresponding proportions, without affecting the internalization of prebound EGF. Endocytic uptake was unaffected by chloroquine and slightly reduced by cycloheximide. The internalization of unoccupied receptors and the endocytosis of prebound EGF followed similar kinetics (t1/2 approximately 5 min), suggesting that unoccupied receptors are internalized at a rate comparable to that of occupied receptors. The results suggest that there is a rapid turnover of the surface pool of EGF receptors with constitutive internalization of unoccupied surface receptors and externalization of internal receptors. This is consistent with, but does not prove, a true recycling of the EGF receptors in the hepatocytes. The monensin-sensitive externalization pathway determines the capacity for continued endocytosis of EGF.  相似文献   

12.
Pre-colostrum and colostrum from goats cause a marked inhibition of the binding of 125I-labelled epidermal growth factor (125I-EGF) to Swiss 3T3 cells. The ability of these secretions to inhibit 125I-EGF binding is closely correlated with the ability to stimulate DNA synthesis in quiescent 3T3 cell cultures, suggesting that goat mammary secretions may contain an EGF-related mitogen. However, the material in colostrum which inhibits 125I-EGF binding to Swiss 3T3 cells is a basic protein with Mr greater than 20000 and is thus quite different from mouse and human EGF. Furthermore, the colostral-mediated inhibition of 125I-EGF binding, although rapid and apparently competitive, differs from the inhibition of binding induced by native, unlabelled EGF. Thus, the inhibitory effect of colostrum is markedly decreased when the assay temperature is shifted from 37 degrees C to 4 degrees C whereas unlabelled EGF is an effective competitive inhibitor at both 37 degrees C and 4 degrees C. Incubation of cells with EGF causes a reduction in cell surface EGF receptors whereas exposure to colostrum does not induce down-regulation of the EGF receptor. Our results suggest that the colostral factor does not bind directly to EGF receptors but inhibits 125I-EGF binding by an indirect mechanism which involves a temperature-sensitive step.  相似文献   

13.
A small portion of the 125I-EGF that binds specifically to intact cells or isolated membranes from a variety of sources becomes directly and irreversibly linked to EGF receptors. This provides a simple technique for affinity labeling the EGF receptor. Membranes isolated from the human epidermoid carcinoma cell line A431, which posesses extraordinarily high numbers of EGF receptors, gave rise to three major direct linkage complexes of MW = 160,000, 145,000, and 115,000. The time course for formation of each is similar, showing that 125I-EGF can form direct linkage complexes with several preexisting forms of the EGF receptor. The direct linkage of EGF to receptor is slow in comparison to 125I-EGF binding, but both processes have similar susceptibilities to competition by unlabeled EGF. EGF was modified chemically with the amino site-specific reagent, N-hydroxysuccinimidyl biotin. The biotinyl-EGF had a reduced capacity to engage in direct linkage complex formation with no concomitant reduction in its ability to bind to EGF receptors. Since native and biotinyl EGF have identical abilities to stimulate the uptake of 3H-thymidine into DNA when incubated with cultured murine 3T3 cells, the direct linkage of EGF to its receptor does not appear to play an important role in EGF-stimulated mitogenesis.  相似文献   

14.
We have devised a rapid and simple protocol for the purification of the plasma membrane from several lines of transformed cultured cells. A431 or KB plasmalemma was purified in 90 min with a two-step centrifugation cycle after selectively inducing microsomal aggregation by the addition of calcium to homogenized cells. Relative specific activity analysis using membrane marker enzymes on the various fractions indicated that the isolated plasmalemma was purified 8-12-fold over the starting homogenate and contained a high density of epidermal growth factor (EGF) receptors. Transmission electron microscopy showed the final membrane suspension consisted of unilamellar vesicles with an average diameter of approximately 100 A. The purified membrane vesicles avidly bound to 125I-EGF and reached equilibrium within 30 min. Microfiltration assays indicated more than 90% of the total binding can be displaced by excess unlabeled ligand. Equilibrium binding analysis showed a single class of high-affinity 125I-EGF binding site, with Kd = 0.14 nM and Bmax = 0.1 pmol/mg of protein for purified KB membrane and Kd = 1.2 nM and Bmax = 5.26 pmol/mg of protein for purified A431 membrane. Gel electrophoresis of 125I-EGF cross-linked to membrane EGF receptors showed a distinct autoradiographic band at 170 kilodaltons, which could be displaced with excessive amounts of unlabeled EGF. Finally, EGF-dependent autophosphorylation of the EGF receptor was clearly demonstrated with the purified membrane preparation. Membrane vesicles purified in this manner can be stored in liquid nitrogen for several months without losing their biological activity.  相似文献   

15.
125I-labelled epidermal growth factor (125I-EGF) and 125I-labelled insulin-like growth factor-I (125I-IGF-I) bound to trophoderm cells from pig blastocysts obtained on days 15-19 of pregnancy. Specific binding was detected on freshly isolated cell suspensions and on cells cultured for several days. The binding of 125I-EGF was inhibited by increasing concentrations of EGF, but not by various other growth factors and hormones. Chemical cross-linking of 125I-EGF to its receptors using disuccinimidyl suberate (DSS) revealed a radiolabelled band of relative molecular mass 160,000, similar to that identified as the EGF receptor in other cell types. The binding of 125I-IGF-I was inhibited by both IGF-I and insulin, indicating that the receptors were either type I IGF receptors or insulin receptors. Cross-linking of 125I-IGF-I to serum-free supernatants from trophoderm cultures showed that the cells secreted an IGF-binding protein, giving a complex of relative molecular mass about 45,000. The presence of receptors for EGF and IGF/insulin suggests that these factors could be involved in regulating the growth and development of the early blastocyst.  相似文献   

16.
We have investigated the stimulation of fluid phase endocytosis by epidermal growth factor (EGF) in normal human fibroblasts using 125I-labeled polyvinylpyrrolidone (125I-PVP) as a fluid phase marker. We found that EGF initially induced a thereefold increase in the rate of 125I-PVP uptake. This initial burst of fluid uptake terminated within 10 min. Thereafter, the rate of fluie uptake in EGF-treated cells was approximately 40% higher than in control cells. To identify the cellular site of EGF action in stimulating fluid phase endocytosis, we examined the kinetics of the induction of this response as well as the kinetics of cell surface binding and internalization of 125I-EGF. Although there was no detectable lag between binding of EGF to the cell surface and its internalization, the kinetics of the two processes were quite different. Significantly, the kinetics of induction of 125I-PVP uptake matched the kinetics of binding of 125I-EGF to its cell surface receptors, indicating that the signal for the increase in fluid phase endocytosis is generated at the cell surface. To determine if EGF-stimulated fluid phase endocytosis was related to EGF-stimulated endocytosis of its own receptor, we compared the EGF dose dependency and time course of the two processes. Although the stimulated endocytosis of the EGF receptor was not saturable with respect to the concentration of EGF used, the stimulation of fluid phase endocytosis was half maximal at an EGF concentration of 1 ng/ml and saturated at a concentration of 5 ng/ml. Also, the stimulation of fluid phase endocytosis was sevenfold greater initially after adding EGF than after a 30-min continuous incubation with the hormone, whereas the enhanced clearance of the EGF receptor did not change during this time period. We conclude that the EGF-stimulated increase in fluid phase endocytosis is not directly coupled to EGF-stimulated endocytosis of its own receptor but instead to a separate signal generated at the cell surface.  相似文献   

17.
The synthetic diacylglycerol 1-oleoyl-2-acetyl glycerol (OAG) and phorbol esters activate protein kinase C in intact cells. We report here that OAG inhibits the binding of 125I-labelled epidermal growth factor (125I-EGF) to Swiss 3T3 cells. The inhibition was detected as early as 1 min after treatment at 37 degrees C and persisted for at least 120 min. The effect of OAG was reversed upon removal of this diacylglycerol. Detailed Scatchard analysis of 125I-EGF binding to Swiss 3T3 cells at 4 degrees C after a 1 h incubation with a saturating dose of OAG at 37 degrees C, demonstrates that this OAG pretreatment does not change the apparent number of EGF receptors but causes a marked decrease in their apparent affinity for the ligand. Prolonged treatment (40 h) of the cells with phorbol dibutyrate (PBt2) which causes a marked decrease in the number of phorbol ester binding sites and in the activity of protein kinase C, prevented the inhibition of 125I-EGF binding by both PBt2 and OAG. The results support the possibility that protein kinase C plays a role in the transmodulation of the EGF receptor in intact cells.  相似文献   

18.
4 beta-Phorbol 12 beta-myristate 13 alpha-acetate (PMA) markedly inhibited the binding of low concentrations (less than 10(-9 m) of 125I-epidermal growth factor (EGF) to A431 human epidermoid carcinoma cells. However, very little change in the binding of 125-I-EGF at high concentrations (greater than 10(-8) M) was observed in response to PMA. Affinity labeling of the 170,000-dalton EGF receptor with 125I-EGF and disuccinimidyl suberate was also decreased by the tumor promoter at low, but not high, concentrations of 125I-EGF. In order to examine this action of PMA on the EGF receptor, the receptor phosphorylation state was evaluated in A431 cells that had been incubated with [32P]phosphate for 3 h prior to the addition of PMA. The 32P content of the EGF receptor purified with EGF-Sepharose was increased by 38% compared with the same amount of receptor isolated from control cells. The increase in EGF receptor phosphorylation was dose-dependent with a half-maximal effect between 0.1 and 1 nM PMA and was specific for tumor promoting analogues of phorbol diesters. Phosphoamino acid analysis indicated that the increase in the 32P content of the EGF receptor was mainly due to phosphoserine. These results demonstrate that the EGF receptor is a target for PMA action and suggest that the mechanism of PMA action on the response of cells to epidermal growth factor may be mediated in part by phosphorylation of the EGF receptor.  相似文献   

19.
We have used biochemical and morphological techniques to demonstrate that hepatocytes in the perfused liver bind, internalize, and degrade substantial amounts of murine epidermal growth factor (EGF) via a receptor-mediated process. Before ligand exposure, about 300,000 high-affinity receptors were detectable per cell, displayed no latency, and co-distributed with conventional plasma membrane markers. Cytochemical localization using EGF coupled to horseradish peroxidase (EGF-HRP) revealed that the receptors were distributed along the entire sinusoidal and lateral surfaces of hepatocytes. When saturating concentrations of EGF were perfused through a liver at 35 degrees C, ligand clearance was biphasic with a rapid primary phase of 20,000 molecules/min per cell that dramatically changed at 15-20 min to a slower secondary phase of 2,500 molecules/min per cell. During the primary phase of uptake, approximately 250,000 molecules of EGF and 80% of the total functional receptors were internalized into endocytic vesicles which could be separated from enzyme markers for plasma membranes and lysosomes on sucrose gradients. The ligand pathway was visualized cytochemically 2-25 min after EGF-HRP internalization and a rapid transport from endosomes at the periphery to those in the Golgi apparatus-lysosome region was observed (t 1/2 approximately equal to 7 min). However, no 125I-EGF degradation was detected for at least 20 min. Within 30 min after EGF addition, a steady state was reached which lasted up to 4 h such that (a) the rate of EGF clearance equaled the rate of ligand degradation (2,500 molecules/min per cell); (b) a constant pool of undegraded ligand was maintained in endosomes; and (c) the number of accessible (i.e., cell surface) receptors remained constant at 20% of initial values. By 4 h hepatocytes had internalized and degraded 3 and 2.3 times more EGF, respectively, than the initial number of available receptors, even in the presence of cycloheximide and without substantial loss of receptors. All of these results suggest that EGF receptors are internalized and that their rate of recycling to the surface from intracellular sites is governed by the rate of entry of ligand and/or receptor into lysosomes.  相似文献   

20.
Consumption of EGF by A431 cells: evidence for receptor recycling   总被引:4,自引:0,他引:4       下载免费PDF全文
We examined the extent of EGF consumption by EGFR in A431 cells. When 125I-EGF was added to A431 cell cultures at low or high density, at concentrations which corresponded to 10-fold excess of ligand over receptor on the cell surface, most of the 125I-EGF was consumed within 2 h. The amounts of 125I-EGF consumed were much greater than available EGFR on the A431 cells, by a factor of 6.5 in low-density cultures and 5.8 in high-density cultures. When the concentration of 125I-EGF was increased in low density cultures, further consumption of 125I-EGF by the A431 cells was greatly reduced, partially due to a rapid down regulation of EGFR. However, when higher concentrations of 125I-EGF were added to high density cultures, with reduced receptor down regulation, the cells continued to consume a large fraction of the EGF in the culture medium. The consumption of 125I-EGF by these cultures was in excellent agreement with the measured amount of ligand internalized into the cell. EGF consumption was far in excess of the number of EGFR down regulated or degraded. Only a minor portion of the EGFR could have been replaced during the assay period by synthesis of new EGFR or from the intracellular pool of EGFR, and the fluid-phase uptake of EGF is only temporarily increased by exposure to EGF. Our results demonstrate that EGFR in high density A431 cell cultures recycled many times. The apparent level of recycling was dependent upon the concentration of EGF and followed Michaelis-Menton kinetics for ligand concentrations as high as 215 nM. At this EGF concentration, high-density cultures consumed 45 EGF molecules per receptor over a period of 6 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号