首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一株可溶性有机磷去除菌的分离及其生物学特性   总被引:1,自引:1,他引:0  
以甘油磷酸钠(Sodium Glycerophosphate,以下简称NaGly)作为外源可溶性有机磷,从富营养化的养殖池污泥中分离到5株可溶性有机磷去除菌株,通过除磷率比较,筛选出一株最为高效的菌株D2,其对初始浓度为5mg/L甘油磷酸盐磷(Phosphorus Glycerophosphate,以下简称GP-P)的去除率可达99.0%。此外,对其进行了16SrRNA基因序列测定,并进一步研究了其生长特性与除磷特性。试验结果表明,菌株D2为肠球菌(Enterococcus sp.),与屎肠球菌(Enterococcus faecium)菌株KT4S13(登录号:AB481104)和CICC6078(登录号:DQ672262)的16SrRNA基因序列相似性近100%;其生长周期为:0-4h为生长迟缓期,4-8h为对数生长期,8-28h为稳定期,28h以后为衰亡期;且在15°C-40°C、pH4.0-9.0以及5-40mg/LGP-P条件下均能够生长,其中菌株D2最适生长的温度范围和pH范围分别为30°C-35°C、6.0-7.0,而且20-30mg/LGP-P能显著促进菌株D2生长。此外,菌株D2在进入衰亡期之前随着作用时间的延长,对20mg/LGP-P的除磷率逐渐升高,在进入衰亡期后的28-32h内对20mg/LGP-P的除磷效果趋于稳定,其在15°C-40°C、pH4.0-9.0以及5-40mg/LGP-P条件下均具有除磷作用,其最适除磷温度范围、pH范围和GP-P浓度范围分别为25°C-35°C、6.0-7.0和5-10mg/L。  相似文献   

2.
Anaerobic fermentation of organic solid waste can provide a significant source of fuel gas (methane). Application of this process requires a better understanding of the kinetics of the biological system. The literature is replete with kinetic studies of this process as applied to waste solids from water pollution control systems. Much of this work has been conducted in the mesophilic temperature range. Increased temperatures yield higher reaction rates that will improve the economics of the process. The rate limiting step in the fermentation of refuse is the hydrolysis of the complex organic solids, in particular cellulose. Cellulose is a major component of the refuse. A laboratory study employing domestic refuse has shown the effect of temperature on the rate of methane fermentation. The optimum mesophilic temperature was found to be 42°C, while the optimum thermophilic temperature was at least 60°C. No data was obtained beyond the 60°C temperature. Reaction rate constants are presented for anaerobic fermentation of domestic refuse. Because of the characteristics of the substrate it?was not possible to obtain the necessary measurements for evaluation of constants in the Monod model. An overall system constant was developed.  相似文献   

3.
The cultural conditions for the production of thermostable lipase by a thermophilic fungus Humicola lanuginosa S-38 were investigated. The optimal cultural conditions to obtain the maximum yield of thermostable lipase with a 600-liter stainless steel fermentor were as follows: optimal medium- 2.0% soluble starch, 5.0% corn steep liquor, 0.2% K2HPO4, 0.1% MgSO4·7H2O, 0.5% CaCO3, 0.5% soybean oil, 0.005% deforming agent (Adecanol LG-109); optimal fermentation conditions- temperature 45°C; rate of agitation 300 rpm; initial pH 7.0; rate of aeration 1/1 volume per volume of medium per minute. The optimal pH of the crude lipase preparation for the hydrolysis of the polyvinyl alcohol-emulsified olive oil was 8.0 and the optimal temperature was 60°C. It retained 100% of activity with the heat treatment at 60°C for 2 hr, but at 70°C for 20 min only 35% activity retained.  相似文献   

4.
以羟基乙腈为唯一氮源, 从土壤中筛选到一株腈水解酶产生菌CCZU-12, 经形态观察生理生化实验和16S rDNA序列分析, 鉴定该菌为假单胞菌属(Pseudomonas sp.)。对菌株CCZU-12产腈水解酶的培养条件及催化反应条件进行优化, 最适产酶培养条件为: 碳源为10 g/L乙酸钠, 氮源为5 g/L酵母粉, 金属离子为1.0 mmol/L Mg2+, 培养温度30 °C, pH值7.0, 接种量4%, 装液量50 mL/250 mL; 最适催化反应温度35 °C, pH值7.0, 反应120 h, 羟基乙腈转化率达到98.9%。  相似文献   

5.
Lin YH  Juan ML  Hsien HJ 《Biodegradation》2011,22(3):551-563
This study attempted to determine the optimal temperature and initial cultivation pH by conducting a series of batch tests in stirred-tank bioreactor using fructose-producing wastewater as an organic substrate. The bioreactor temperature was controlled at 35–55°C with an initial pH of 4–8. Hydrogen production efficiency was assessed using specific hydrogen production potential (SHPP) and the maximum specific hydrogen production rate (SHPRm). Experimental results indicated that temperature and initial pH markedly affected SHPP and SHPRm, volatile fatty acids distribution as well as the ratio of butyrate/acetate (BHu/HAc). Two-fold higher SHPP and SHPRm were obtained at thermophilic condition (55°C) than those at mesophilic condition (35°C). The optimal initial pH was 6 for hydrogen production with peak values of SHPP of 166.8 ml-H2/g-COD and SHPRm of 26.7 ml-H2/g-VSS-h for fructose-processing wastewater. Molasses-processing wastewater had a higher SHPP (187.0 ml-H2/g-COD) and SHPRm (42.7 ml-H2/gVSS-h) than fructose-processing wastewater at pH 6. The DGGE profiles indicated that molasses-processing wastewater is a better substrate than fructose-processing wastewater for growth of hydrogen-producing bacteria due to the high staining intensity of bands.  相似文献   

6.
Incubation at pH 4.0 or blanching at ∼65°C facilitates the purification of biopharmaceutical proteins from plants by precipitating most of the host cell proteins (HCPs) before chromatography. However, both methods are compatible only with pH or thermostable target proteins whereas many target proteins may irreversibly denature, e.g., at pH < 4.0. Here, we developed a combined pH/temperature treatment for clarified tobacco extracts and intact leaves. The latter were subjected to a blanching procedure, i.e., the submersion into a hot buffer. Using a design of experiments approach we identified conditions that remove ∼70% of HCPs at ∼55°C, using the thermosensitive antibody 2G12 and the pH-sensitive DsRed as model proteins. We found that pH and temperature exerted a combined effect during the precipitation of HCPs in the pH range 5.0–7.0 at 35°C–60°C. For clarified extracts, the temperature required to achieve a DsRed purity threshold of 20% total soluble protein (TSP) increased from 54°C to 63°C when the pH was increased from 6.4 to 7.3. The pH-stable antibody 2G12 was less responsive to the combined treatment, but the purity of 1% TSP was achieved at 35°C instead of 44°C when the pH was reduced from 6.3 to 5.8. When blanching intact leaves, product losses were not exacerbated at pH 4.0. Indeed, the highest DsRed purity (58% TSP) was achieved at this pH, combined with a temperature of 60°C and an incubation time of 30 min. In contrast, the highest 2G12 purity (0.7% TSP) was achieved at pH 5.1 and 40°C with an incubation time of 20 min. Our data suggest that a combined pH/temperature regime can avoid extreme values of either parameter; therefore, broadening the applicability of these simple purification techniques to other recombinant proteins.  相似文献   

7.
Isolation of thermophilic hydrogen bacteria was performed at 50°C using enrichment culture method. One of the four strains isolated, strain TH-1 grew most rapidly. Culture conditions of strain TH-1 were investigated. Optimum temperature and pH for growth proved to be 52°C and 7.0, respectively. There existed a positive correlation between the specific growth rate and the partial pressure of carbon dioxide in the gas phase. Ammonium and nitrate are the good nitrogen sources in that order. Effect of concentrations of nitrogen source, magnesium, ferrous and phosphate ions on the cell growth was also investigated. The maximum specific growth rate (μmax) of strain TH-1 was determined as 0.68 hr?1 by the cultivation at 52°C in a jar fermentor containing the optimal medium at pH 7.0.  相似文献   

8.
Equilibrium conditions in the adsorption of a basic dye on Chitosan were studied. The Factorial Design methods and Analysis of Variance have been applied in the experimental determination of adsorption equilibrium constants. Factorial design with three levels of temperature (30v°C, 45v°C, 60v°C), pH (6.7, 8.1, 9.5), particle size (0.177 mm, 0.914 mm, 1.651 mm) was used in identification of significant effects and interactions in the calculation of the equilibrium constants. The dye adsorption capacity of chitosan was found to increase by decreasing the particle size and increasing temperature and pH. The methodology identifies the principal experimental variables, which have the greatest effect on the adsorption process.  相似文献   

9.
The phenomena limiting the anaerobic digestion of vegetable refuses are studied through batch tests carried out using anaerobic sludge previously selected under either mesophilic (37v°C) or thermophilic (55v°C) conditions. The compositions of the hydrolysed cellulosic and hemicellulosic fractions of these materials are simulated by starch and hemicellulose hydrolysates, respectively. Non-hydrolysed mixtures of vegetable waste with sewage sludge are used to ascertain whether the hydrolysis of these polymeric materials is the limiting step of the digestion process or not. The experimental data of methane production are then worked out by a first-order equation derived from the Monod's model to estimate the kinetic rate constant and methane production yield for each material. Comparison of these results shows that passing from mesophilic to thermophilic conditions is responsible for a slight deceleration of methane production but remarkably enhances both methanation yield and methane content of biogas. The final part of the study deals with the fed-batch digestion of the same residues in static digester. Working under thermophilic conditions at a loading rate threshold of 6.0 gCOD/l · d, the hemicellulose hydrolysate ensures the highest methane productivity (60 mmolCH4/l · d) and methane content of biogas (60%), while unbalance towards the acidogenic phase takes place under the same conditions for the starch hydrolysate. The intermediate behaviour of the non-hydrolysed mixture of vegetable waste with sewage sludge demonstrates that hemicellulose hydrolysis is the limiting step of digestion and suggests the occurrence of ligninic by products inhibition on methane productivity.  相似文献   

10.
Biodegradation of phenol by Pseudomonas putida (NICM 2174), a potential biodegradent of phenol has been investigated for its degrading potential under different conditions. Pseudomonas putida (NICM 2174) cells immobilized in chitosan were used to degrade phenol. Adsorption of phenol by the chitosan immobilized matrix played an important role in reducing the toxicity of phenol. In the present work, results of the batch equilibrium adsorption of phenol on chitosan from its aqueous solution at different particle sizes (0.177 mm, 0.384 mm, 1.651 mm) and initial concentration of phenol (20, 40, 60, 80, 100, 120, 140, 160, 180, 200 mg/l) have been reported. The adsorption isotherms are described by Langmuir, Freundlich and Redlich-Peterson types of equations. These indicate favourable adsorption with chitosan. From the adsorption isotherms, the adsorption capacity, energy of adsorption, number of layers and the rate constants were evaluated. In batch kinetic studies the factors affecting the rate of biodegradation of phenol, were initial phenol concentration (0.100 g/l, 0.200 g/l, 0.300 g/l), temperature (30v°C, 34v°C, 38v°C) and pH (7.0, 8.0, 9.0). Biodegradation kinetic data indicated the applicability of Lagergren equation. The process followed first order rate kinetics. The biodegradation data generally fit the Lagergren equation and the intraparticle diffusion rate equation from which adsorption rate constants, diffusion rate constants and diffusion coefficients were determined. Intraparticle diffusion was found to be the rate-limiting step. Cell growth contributed significantly to phenol removal rates especially when the degradation medium was supplemented with a utilizable carbon source.  相似文献   

11.
Apple juice prepared from 'Annurca' apple puree was treated with a HPCD batch system. The pH, °Brix, color parameters and microbial load of the treated apple juice were compared with those of thermally processed juice. Thermal processes were carried out at 35, 50, 65, 85°C and treatment times ranging between 10 and 140 minutes. Microbial inactivation kinetics indicated that 5-log reduction of natural flora in apple juice was achieved at 85°C and 60 minutes of treatment time for conventional thermal process and at 16.0 MPa, 60°C and 40 minutes for HPCD process. Results suggested that temperature played a fundamental role on HPCD treatment efficiency, with inactivation significantly enhanced when it increased from 35 to 60°C. Less significant was the role of the pressure at the tested levels of 7.0, 13.0 and 16.0 MPa. Also, 5-log reduction of natural flora in apple juice was obtained at lower temperatures by cyclic treatments of six compression and decompression steps. There were no significant differences between treated and untreated samples in °Brix (α = 0.05). Significant differences were detected in pH values between the untreated and HPCD treated samples (α = 0.05). There was a significant decrease in 'L*' and 'b*' values and also differences were detected in 'a*' values between the untreated and the HPCD treated samples (α = 0.05). Statistical analysis for °Brix, pH and color data showed no differences between the untreated and HPCD treated samples in the first 2 weeks of storage at 4°C. These results emphasize the potential use of HPCD in industrial applications.  相似文献   

12.
《Biomass》1986,9(3):173-185
Thermophilic (55°C) and mesophilic (35°C and 22°C) anaerobic digestions in laboratory scale (4 litre) fixed-film reactors fed with screened dairy manure were successfully operated over a range of hydraulic retention times, from 1 to 20 days. Maximum methane production rates of 1·82, 1·68 and 1·28 litres CH4 litre−1 day−1 occurred at 1, 1·5 and 1 days HRT for the respective 55°C, 35°C and 22°C reactors. Both thermophilic and mesophilic digestions achieved maximum biodegradation efficiency at 10 days HRT. The thermophilic fixed-film reactor performed better than completely-mixed reactors in terms of methane production at HRTs shorter than 2 days. From the results, mesophilic fixed-film reactor operated at 35°C provided optimum methane production and net energy output between 1 and 5 days HRT.  相似文献   

13.
Anaerobic digestion is a promising alternative to disposal organic waste and co-digestion of mixed organic wastes has recently attracted more interest. This study investigated the effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure (DM), chicken manure (CM) and rice straw (RS). We found that increased temperature improved the methane potential, but the rate was reduced from mesophilic (30∼40°C) to thermophilic conditions (50∼60°C), due to the accumulation of ammonium nitrogen and free ammonia and the occurrence of ammonia inhibition. Significant ammonia inhibition was observed with a C/N ratio of 15 at 35°C and at a C/N ratio of 20 at 55°C. The increase of C/N ratios reduced the negative effects of ammonia and maximum methane potentials were achieved with C/N ratios of 25 and 30 at 35°C and 55°C, respectively. When temperature increased, an increase was required in the feed C/N ratio, in order to reduce the risk of ammonia inhibition. Our results revealed an interactive effect between temperature and C/N on digestion performance.  相似文献   

14.
【目的】动物双歧杆菌RH产生的胞外多糖(exopolysaccharides, EPS)经阴离子交换柱层析可获得EPSa和EPSb两个组分。得到可提高EPS的总产量, 尤其是EPSb产量的最佳培养基和培养条件。【方法】对培养基类型、氮源、碳源、碳源浓度、培养基初始pH值、培养温度和时间对双歧杆菌EPSa和EPSb产量的影响进行分析。【结果】在初始pH值调整为7.0的含5%蔗糖的PTYG培养基上, 在35 °C温度下厌氧培养60 h时动物双歧杆菌RH的EPSa和EPSb产量分别为0.982±0.003 g/L和0.312±0.001 g/L。【结论】在上述条件下EPS总产量高且可获得较多的EPSb。  相似文献   

15.
Although CH 4 production is sensitive to temperature, it is not clear how temperature controls CH 4 production directly versus the production of organic substrates that methanogens convert into CH 4 . Therefore, this study was done to better understand how CH 4 production in rice paddy soil responded to temperature when the process was not limited by the availability of substrates. In a laboratory-incubation study using three Indian rice soils under flooded conditions, the effect of temperature on CH 4 production was examined. CH 4 production in acid sulphate, laterite, and alluvial soil samples under flooded conditions distinctly increased with increase in temperature from 15°C to 35°C. Laterite and acid sulphate soils produced distinctly less CH 4 than alluvial soils. CO 2 production increased with increase in temperature in all the soils. The readily mineralizable carbon C and Fe 2+ contents in soils were least at 15°C and highest at 35°C, irrespective of soil type. Likewise, a significant correlation existed between microbial population (methanogens and sulphate reducers) and CH 4 production. Comparing the temperature coefficients ( Q 10 ) for methane production within each soil type at low (15°C-25°C) and medium (25°C-35°C) temperature intervals revealed that these values were not uniform for both alluvial and laterite soils. But acid sulphate soil had Q 10 values that were near 2 at both temperature intervals. When these soil samples were amended with substrates (acetate, H 2 -CO 2 , and rice straw), there were stimulatory effects on methane production rates and consequently on the Q 10 values. The pattern of temperature coefficients was characteristic of the soil type and the nature of substrates used for amendment.  相似文献   

16.

Objectives

To assess the effect of one-step temperature increase, from 35 to 55 °C, on the methane production of a mesophilic granular sludge (MGS) treating wine vinasses and the effluent of a hydrogenogenic upflow anaerobic sludge blanket (UASB) reactor.

Results

One-step temperature increase from mesophilic to thermophilic conditions improved methane production regardless of the substrate tested. The biomethane potentials obtained under thermophilic conditions were 1.8–2.9 times higher than those obtained under mesophilic conditions. The MGS also performed better than an acclimated thermophilic digestate, producing 2.2–2.5 times more methane than the digestate under thermophilic conditions. Increasing the temperature from 35 to 55 °C also improved the methane production rate of the MGS (up to 9.4 times faster) and reduced the lag time (up to 1.9 times). Although the temperature increase mediated a decrease in the size of the sludge granules, no negative effects on the performance of the MGS was observed under thermophilic conditions.

Conclusions

More methane is obtained from real agroindustrial effluents at thermophilic conditions than under mesophilic conditions. One-step temperature increase (instead of progressive sequential increases) can be used to implement the thermophilic anaerobic digestion processes with MGS.
  相似文献   

17.
A thermophilic soil isolate—Bacillus sp. RS-12, grew optimally at 50°C and not below 40°C. Production of an extracellular lipase by this organism was substantially enhanced when the type and concentration of carbon and nitrogen sources and initial pH of the culture medium were consecutively optimized. The lipase production was found to be growth-associated with maximum secretion in the late exponential growth phase,i.e. 15h of incubation. The enzyme activity as high as 0.98 nkat/mL was obtained under optimum conditions. Tween 80 (0.5%) and yeast extract (0.5%) were found to be the best carbon and nitrogen sources inducing maximum enzyme yield with initial pH 8.0 at 50°C. The kinetic characteristics of the crude lipase indicated the highest activity at 50–55°C and pH 8.0. It had a half life of 60, 18 and 15 min at 65, 70 and 75°C, respectively.  相似文献   

18.
Three strains of anaerobic thermophilic bacteria capable of growing on agarose as a source of energy and carbon were isolated from hot springs near Lake Baikal (Barguzin National Park) and the caldera Uzon (Kamchatka). Cells of all the three strains were spore bacilli with peritrichous flagellation. These isolates grew at a temperature of 55–60°C and pH 6.5–7.0 and fermented a wide range of organic substrates. Analysis of the 16S rRNA sequences allowed us to ascribe the strains B5 and K14 to the genus Thermoanaerobacter and the strain K67 to the genus Caldoanaerobacter. According to the results of DNA-DNA hybridization, B5 was determined as belonging to the species Thermoanaerobacter wiegelii. Agarase was isolated by preparative PAGE and subsequent gel chromatography from the culture liquid of strain B5 grown on the medium containing 0.5% agarose and 0.3% galactose. The molecular weight of this enzyme amounted to 67 kDa and pI, to 4.2. The T. wiegelii B5 agarase was active in the pH range of 3.5 to 7.0 (optimum, 5.2) and temperature range of 50 to 80°C (optimum, 70°C). The preincubation of this enzyme at 90° C for 60 min did not reduce the agarase activity. This activity increased in the presence of metal ions; the maximal effect was observed in the presence of 5 mM Mg2+ and 25 mM Co2+.  相似文献   

19.
The effect of temperature on production of ammonia during dry anaerobic fermentation of chicken manure (CM), inoculated with thermophilic methanogenic sludge, was investigated in a batch condition for 8 days. Incubation temperature did not have a significant effect on the production of ammonia. Almost complete inhibition of production of methane occurred at 55 and 65°C while quite low yields of 8.45 and 6.34 ml g−1 VS (volatile solids) were observed at 35 and 45°C due to a higher accumulation of ammonia. In order to improve the production of methane during dry anaerobic digestion of CM, stripping of ammonia was performed firstly on the CM previously fermented at 65°C for 8 days: the stripping for 1 day at 85°C and pH 10 removed 85.5% of ammonia. The first-batch fermentation of methane for 75 days was conducted next, using the ammonia-stripped CM inoculated with methanogenic sludge at different ratios, (CM: thermophilic sludge) of 1:2, 1:1, and 2:1 on volume per volume basis at both 35 and 55°C. Production of methane improved and was higher than that of the control (without stripping of ammonia) but the yield of 20.4 ml g−1 VS was still low, so second stripping of ammonia was conducted, which resulted in 74.7% removal of ammonia. A great improvement in the production of methane of 103.5 ml g−1 VS was achieved during the second batch for 55 days.  相似文献   

20.
The application of sludge digestion systems to remove pathogens has been employed to generate biosolids suitable for reuse in agriculture. Traditionally, temperature is considered the principal agent responsible for pathogen reduction in anaerobic digestion. However, other substances such as volatile fatty acids may also have an antimicrobial effect. The objective of this study was to assess the impact of fatty acid mixtures on the inactivation of C. perfringens over a range of digestion temperatures. An equimolar mixture of acetic acid, propionic acid and butyric acid was applied to digester effluent for a period of 24 h at temperatures of 35 °C, 42 °C, 49 °C and 55 °C. C. perfringens inactivation in digester effluents, when dosed with volatile organic acids, was found to depend on pH, acid concentration and temperature. Temperatures above 55 °C appeared to increase the inhibitory effects of the organic acids at higher concentrations. An interaction between temperature and pH on survival of C. perfringens was observed. The results suggest that high concentrations of organic acids at a pH value of 4.5–5.5 during thermophilic digestion substantially reduce concentrations of C. perfringens in municipal sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号