首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium/calmodulin (CaM)-dependent protein kinase II (CaM-kinase II) contained within the postsynaptic density (PSD) was shown to become partially Ca2+-independent following initial activation by Ca2+/CaM. Generation of this Ca2+-independent species was dependent upon autophosphorylation of both subunits of the enzyme in the presence of Mg2+/ATP/Ca2+/CaM and attained a maximal value of 74 +/- 5% of the total activity within 1-2 min. Subsequent to the generation of this partially Ca2+-independent form of PSD CaM-kinase II, addition of EGTA to the autophosphorylation reaction resulted in further stimulation of 32PO4 incorporation into both kinase subunits and a loss of stimulation of the kinase by Ca2+/CaM. Examination of the sites of Ca2+-dependent autophosphorylation by phosphoamino acid analysis and peptide mapping of both kinase subunits suggested that phosphorylation of Thr286/287 of the alpha- and beta-subunits, respectively, may be responsible for the transition of PSD CaM-kinase II to the Ca2+-independent species. A synthetic peptide 281-309 corresponding to a portion of the regulatory domain (residues 281-314) of the soluble kinase inhibited syntide-2 phosphorylation by the Ca2+-independent form of PSD CaM-kinase II (IC50 = 3.6 +/- 0.8 microM). Binding of Ca2+/CaM to peptide 281-309 abolished its inhibitory property. Phosphorylation of Thr286 in peptide 281-309 also decreased its inhibitory potency. These data suggest that CaM-kinase II in the PSD possesses regulatory properties and mechanisms of activation similar to the cytosolic form of CaM-kinase II.  相似文献   

2.
Two synthetic peptides containing the previously identified calmodulin (CaM)-binding domain of Ca2+/CaM-dependent protein kinase II (CaM-kinase II) (residues 296-309, Payne, M. E., Fong, Y.-L., Ono, T., Colbran, R. J., Kemp, B. E., Soderling, T. R., and Means, A. R. (1988) J. Biol. Chem. 263, 7190-7195) were phosphorylated by Ca2+/CaM-independent forms of the kinase. In the presence of EGTA, CaMK-(290-309) was phosphorylated exclusively on threonine residues (Km = 13 microM; Vmax = 211 nmol/min/mg). When the phosphorylated product was analyzed by reversed-phase high performance liquid chromatography (HPLC) two radioactive peaks were resolved. The first peak contained CaMK-(290-309) phosphorylated on Thr306, whereas the second peak contained CaMK-(290-309) phosphorylated on Thr305. However, under the same conditions CaMK-(294-319) was phosphorylated predominantly (approximately 70%) on serine residues (Km = 23 microM; Vmax = 99 nmol/min/mg) and HPLC analysis revealed a single major radioactive peak predominantly (more than 90%) phosphorylated at Ser314. Phosphorylation of both peptides was completely blocked in the presence of Ca2+ and a stoichiometric amount of CaM. Samples of each phosphorylated peptide were tested for CaM-binding ability by two procedures and compared to the nonphosphorylated peptides. Phosphorylation of either Thr305 or Thr306 greatly reduced the interaction between CaMK-(290-309) and CaM, whereas phosphorylation of Ser314 did not affect the ability of CaMK-(294-319) to bind CaM. These results indicate that Thr305 and/or Thr306 may be the Ca2+/CaM-independent autophosphorylation site(s) responsible for the loss of ability of CaM-kinase II to bind and be activated by Ca2+/CaM (Hashimoto, Y., Schworer, C. M., Colbran, R. J., and Soderling, T. R., J. Biol. Chem. 262, 8051-8055).  相似文献   

3.
Two peptide analogs of Ca2+/calmodulin-dependent protein kinase II (CaMK-(peptides)) were synthesized and used to probe interactions of the various regulatory domains of the kinase. CaMK-(281-289) contained only Thr286, the major Ca2+-dependent autophosphorylation site of the kinase (Schworer, C. M., Colbran, R. J., Keefer, J. R. & Soderling, T. R. (1988) J. Biol. Chem. 263, 13486-13489), whereas CaMK-(281-309) contained Thr286 together with the previously identified calmodulin binding and inhibitory domains (Payne, M. E., Fong, Y.-L., Ono, T., Colbran, R. J., Kemp, B. E., Soderling, T. R. & Means, A. R. (1988) J. Biol. Chem. 263, 7190-7195). CaMK-(281-309), but not CaMK-(281-289), bound calmodulin and was a potent inhibitor (IC50 = 0.88 +/- 0.7 microM using 20 microM syntide-2) of exogenous substrate (syntide-2 or glycogen synthase) phosphorylation by a completely Ca2+/calmodulin-independent form of the kinase generated by limited proteolysis with chymotrypsin. This inhibition was completely relieved by the inclusion of Ca2+/calmodulin in excess of CaMK-(281-309) in the assays. CaMK-(281-289) was a good substrate (Km = 11 microM; Vmax = 3.15 mumol/min/mg) for the proteolyzed kinase whereas phosphorylation of CaMK-(281-309) showed nonlinear Michaelis-Menton kinetics, with maximal phosphorylation (0.1 mumol/min/mg) at 20 microM and decreased phosphorylation at higher concentrations. The addition of Ca2+/calmodulin to assays stimulated the phosphorylation of CaMK-(281-309) by the proteolyzed kinase approximately 10-fold but did not affect the phosphorylation of CaMK-(281-289). A model for the regulation of Ca2+/calmodulin-dependent protein kinase II is proposed based on the above observations and results from other laboratories.  相似文献   

4.
Purified rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is stimulated by brain gangliosides to a level of about 30% the activity obtained in the presence of Ca2+/calmodulin (CaM). Of the various gangliosides tested, GT1b was the most potent, giving half-maximal activation at 25 microM. Gangliosides GD1a and GM1 also gave activation, but asialo-GM1 was without effect. Activation was rapid and did not require calcium. The same gangliosides also stimulated the autophosphorylation of CaM-kinase II on serine residues, but did not produce the Ca2+-independent form of the kinase. Ganglioside stimulation of CaM-kinase II was also present in rat brain synaptic membrane fractions. Higher concentrations (125-250 microM) of GT1b, GD1a, and GM1 also inhibited CaM-kinase II activity. This inhibition appears to be substrate-directed, as the extent of inhibition is very dependent on the substrate used. The molecular mechanism of the stimulatory effect of gangliosides was further investigated using a synthetic peptide (CaMK 281-309), which contains the CaM-binding, inhibitory, and autophosphorylation domains of CaM-kinase II. Using purified brain CaM-kinase II in which these regulatory domains were removed by limited proteolysis. CaMK 281-309 strongly inhibited kinase activity (IC50 = 0.2 microM). GT1b completely reversed this inhibition, but did not stimulate phosphorylation of the peptide on threonine-286. These results demonstrate that GT1b can partially mimic the effects of Ca2+/CaM on native CaM-kinase II and on peptide CaMK 281-309.  相似文献   

5.
A cDNA clone for the alpha subunit of mouse brain Ca2+/CaM-dependent protein kinase II (CaM-kinase II) was transcribed in vitro and translated in a rabbit reticulocyte lysate system. Inclusion of [35S]methionine in the translation system yielded a single 35S-polypeptide of about 50 kDa. When the translation system was assayed for CaM-kinase II activity, there was a 5-10-fold enrichment of kinase activity which was totally dependent on Ca2+/calmodulin (CaM). Both the 50-kDa 35S-polypeptide and the Ca2+/CaM-dependent protein kinase activity were quantitatively immunoprecipitated by rat brain CaM-kinase II antibody. When the translated wild-type kinase was subjected to autophosphorylation conditions in the presence of Ca2+, CaM, Mg2+, and ATP, the Ca2+-independent activity (assayed in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid) increased from 5.8 +/- 0.7 to 26.5 +/- 2.1% of total activity (assayed in the presence of Ca2+/CaM). These properties confirm the identity of the kinase translated in vitro as CaM-kinase II. The role of Thr-286 autophosphorylation in formation of the Ca2+-independent activity was investigated by site-directed mutation of Thr-286 to Ala (Ala-286 kinase) and to Asp (Asp-286 kinase). The Ala-286 kinase was completely dependent on Ca2+/CaM for activity prior and subsequent to autophosphorylation. The Asp-286 kinase exhibited 21.9 +/- 0.8% Ca2+-independent activity, and this was not increased by autophosphorylation. These results establish that introduction of negative charge(s) at residue 286, either by autophosphorylation of Thr or by mutation to Asp, is sufficient and necessary to generate the partially Ca2+-independent form of CaM-kinase II.  相似文献   

6.
The mechanism for the generation of the Ca2+/calmodulin (CaM)-independent activity of calmodulin-dependent protein kinase II (CaM-kinase II) by autophosphorylation was studied by characterizing the autothiophosphorylated enzyme, which is resistant to hydrolysis. When CaM-kinase II was incubated with adenosine 5'-O-(thiotriphosphate) at 5 degrees C, the incorporation of thiophosphate into the enzyme occurred rapidly, reaching a maximum level within a few minutes, in parallel with increase in Ca2+/CaM-independent activity. The maximum level was 1 mol of thiophosphate per mol of subunit of the enzyme, and the thiophosphorylation occurred exclusively at Thr286 in the alpha subunit and Thr287 in the other subunits of the enzyme. These results, taken together, indicate that the autothiophosphorylation of Thr286/Thr287 of each subunit is involved in the generation of the Ca2+/CaM-independent activity. The activity of the autothiophosphorylated enzyme, when assayed in the presence of Ca2+/CaM, showed the same kinetic properties as did the Ca2+/CaM-dependent activity of the original non-phosphorylated enzyme, but when assayed in the absence of Ca2+/CaM, it showed the same Vmax as the Ca2+/CaM-dependent activity but higher Km values for protein substrates. Thus, the phosphorylation of Thr286/Thr287 of the subunit of the enzyme by autophosphorylation appears to not only enhance the affinity of its substrate-binding site for the protein substrate, although it is lower than that of the enzyme activated by the binding of CaM, but also convert the active site to the fully active state.  相似文献   

7.
Abstract: Purified rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is stimulated by brain gangliosides to a level of about 30% the activity obtained in the presence of Ca2+/calmodulin (CaM). Of the various gangliosides tested, GT1b was the most potent, giving half-maximal activation at 25 μ M . Gangliosides GD1a and GM1 also gave activation, but asialo-GM1 was without effect. Activation was rapid and did not require calcium. The same gangliosides also stimulated the autophosphorylation of CaM-kinase II on serine residues, but did not produce the Ca2+-independent form of the kinase. Ganglioside stimulation of CaM-kinase II was also present in rat brain synaptic membrane fractions. Higher concentrations (125-250 μ M ) of GT1b, GD1a, and GM1 also inhibited CaM-kinase II activity. This inhibition appears to be substrate-directed, as the extent of inhibition is very dependent on the substrate used. The molecular mechanism of the stimulatory effect of gangliosides was further investigated using a synthetic peptide (CaMK 281-309), which contains the CaM-binding, inhibitory, and autophosphorylation domains of CaM-kinase II. Using purified brain CaM-kinase II in which these regulatory domains were removed by limited proteolysis, CaMK 281-309 strongly inhibited kinase activity (IC50=0.2 μ M ). GT1b completely reversed this inhibition, but did not stimulate phosphorylation of the peptide on threonine-286. These results demonstrate that GT1b can partially mimic the effects of Ca2+/CaM on native CaM-kinase II and on peptide CaMK 281-309.  相似文献   

8.
The regulatory role of Arg283 in the autoinhibitory domain of Ca2+/calmodulin-dependent protein kinase II was investigated using substituted inhibitory synthetic peptides and site-directed mutation of the expressed kinase. In the synthetic peptide corresponding to the autoinhibitory domain (residues 281-309) of Ca2+/calmodulin-dependent protein kinase II, substitution of Arg283 by other residues increased the IC50 values of the peptides in the following order: Arg much less than Lys much less than Gln much less than Glu. Site-directed mutations of Arg283 to glutamic acid and glutamine in the kinase alpha subunit cDNA were transcribed and translated in vitro. The expressed enzymes had the same total kinase activities, determined in the presence of Ca2+/CaM, but the Glu283 mutant had a slightly higher Ca2(+)-independent kinase activity (5.46 +/- 0.88%) compared to the wild-type Arg283 (1.86 +/- 0.71%) and the Gln283 mutant (2.15 +/- 0.60%). When the expressed kinases were subjected to limited autophosphorylation on ice to monitor generation of the Ca2(+)-independent activity, the Arg283 kinase attained maximal Ca2(+)-independent activity (about 20%) within 30 s, whereas the Gln283 and Glu283 mutants attained maximal Ca2(+)-independence only after about 40 min of autophosphorylation. The results indicate that Arg283 is a very important determinant for the regulatory autophosphorylation of Thr286 that generates the Ca2(+)-independent activity but is not essential for the other multiple autophosphorylations within Ca2+/calmodulin-dependent protein kinase II, and that Arg283 is only one of several important residues for the inhibitory potency of the autoinhibitory domain.  相似文献   

9.
The site in calcineurin, the Ca2+/calmodulin (CaM)-dependent protein phosphatase, which is phosphorylated by Ca2+/CaM-dependent protein kinase II (CaM-kinase II) has been identified. Analyses of 32P release from tryptic and cyanogen bromide peptides derived from [32P]calcineurin plus direct sequence determination established the site as -Arg-Val-Phe-Ser(PO4)-Val-Leu-Arg-, which conformed to the consensus phosphorylation sequence for CaM-kinase II (Arg-X-X-Ser/Thr-). This phosphorylation site is located at the C-terminal boundary of the putative CaM-binding domain in calcinerin (Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8983-8987), thereby accounting for the observed inhibition of this phosphorylation when Ca2+/CaM is bound to calcineurin. Since the phosphorylation site sequence also contains elements of the specificity determinants for Ca2+/phospholipid-dependent protein kinase (protein kinase C) (basic residues both N-terminal and C-terminal to Ser/Thr), we tested calcineurin as a substrate for protein kinase C. Protein kinase C catalyzed rapid stoichiometric phosphorylation, and the characteristics of the reaction were the same as with CaM-kinase II: 1) the phosphorylation was blocked by binding of Ca2+/CaM to calcineurin; 2) phosphorylation partially inactivated calcineurin by increasing the Km (from 9.9 +/- 1.1 to 17.5 +/- 1.1 microM 32P-labeled myosin light chain); and 3) [32P]calcineurin exhibited very slow autodephosphorylation but was rapidly dephosphorylated by protein phosphatase IIA. Tryptic and thermolytic 32P-peptide mapping and sequential phosphoamino acid sequence analysis confirmed that protein kinase C and CaM-kinase II phosphorylated the same site.  相似文献   

10.
The kinetic reaction mechanism of calmodulin (CaM)-dependent protein kinase II (CaM-kinase II), including the regulatory mechanism by CaM, was studied by using microtubule-associated protein 2 (MAP2) as substrate under steady-state conditions. The detailed kinetic analyses of the phosphorylation of MAP2 and its inhibitions by the reaction products and by an ATP analogue, 5'-adenylylimidodiphosphate, revealed the rapid-equilibrium random mechanism. In the absence of Ca2+, CaM-kinase II was inactivated by incubation with ATP. The inactivation rate was dependent on the concentrations of ATP and MAP2, suggesting that these substrates can bind to the enzyme even in the absence of Ca2+/CaM. The activation of the enzyme by CaM reached the maximum when about 10 mol of CaM bound to 1 mol of CaM-kinase II, indicating the stoichiometry of the binding of one CaM to one subunit of the enzyme. The enzyme activity as a function of the concentration of CaM showed a sigmoidal curve. The concentration of CaM required for the half-maximal activation was dependent on the concentration of ATP at a fixed concentration of MAP2, although the Hill coefficient was unaffected by the concentration of ATP. A possible reaction mechanism of CaM-kinase II, including the phosphorylation of MAP2 by the enzyme and the binding of CaM to the enzyme, is discussed.  相似文献   

11.
Important determinants in the autoinhibitory domain of calcium/calmodulin-dependent protein kinase II (CaMK-II), corresponding to residues 281-302 of the kinase alpha-subunit sequence, were identified. Replacement of Thr286 with Ala (CaMK-(281-302 Ala286)) had no effect on either the potency (IC50 = 2 MicroM) or inhibitory mechanism (competitive with ATP) using the catalytic fragment of CaMK-II. Single replacement of charged residues in CaMK-(281-302, Ala286) identified His282, Arg283, Lys291, Arg297, and Lys298 as important determinants (greater than 10-fold increase in IC50) for potent inhibition of CaMK-II. Glu285, Asp288, Lys291, Arg296, and Lys300 were not as essential (less than 4-fold change in IC50) for potent CaMK-II inhibition. Replacement of either Arg283, Lys291, or Arg297, and Lys298 with Ala did not alter the ATP-competitive mechanism of inhibition although the Ki values increased 16-530-fold. However, replacement of His282 with Ala decreased the IC50 by 20-fold and altered the mechanism of inhibition to noncompetitive with respect to ATP. The non-protonated form of His282 was functionally active since decreasing the pH from 7.5 to 5.5 increased the IC50 of CaMK-(281-302, Ala286) almost 20-fold. Histidine protonation also appeared to disrupt the autoinhibitory domain of intact forms of CaMK-II since preincubation of non-proteolyzed rat brain CaMK-II with calcium/calmodulin (in the absence of ATP) at pH 5.5 generated up to 16% calcium-independent activity when assayed at pH 5.5. Similarly, the level of calcium-independent activity of a baculovirus-expressed Asp286 mutant CaMK-II ((D286)mCaMK alpha) increased to almost 80% calcium independence when assayed at pH 5.5 compared to only 20% when assayed at pH 7.5. The levels of calcium-independent activity of both the (D286)mCaMK alpha (at pH 5.5 and 7.5) and the rat brain CaMK-II (at pH 5.5) were sensitive to the concentrations of both ATP and peptide substrate (syntide-2) in the assays. These data suggest that the basic residues Arg283, Lys291, Arg297, and Lys298 are important for potent inhibition of CaMK-II and that the non-protonated form of His282 may play a unique role in the ATP-directed mechanism of inhibition by the CaMK-II autoinhibitory domain.  相似文献   

12.
Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) autophosphorylated under limiting conditions (7 microM [gamma-32P]ATP, 500 microM magnesium acetate, 4 degrees C) was analyzed by CNBr cleavage and peptide mapping to determine the site of autophosphorylation that brings about transition of the kinase to the Ca2+-independent form. Reverse phase high performance liquid chromatography (HPLC) (C3) revealed one major CN-Br 32P-peptide (CB1) that eluted at about 6% propanol. This peptide contained [32P]threonine, but almost no [32P]serine, and migrated as a single band (Mr = 3000-3500) in polyacrylamide gels run in the presence of urea and sodium dodecyl sulfate. The properties of CB1 were compared to the properties of a 26-residue synthetic peptide containing the CaM-binding and inhibitory domains as well as a consensus phosphorylation sequence (-Arg-Gln-Glu-Thr-) of rat brain CaM-kinase II (residues 282-307 and 283-308 of the alpha and beta subunits, respectively). CB1 and the synthetic peptide comigrated in urea/sodium dodecyl sulfate gels, co-eluted from reverse phase HPLC (C3 and C18) and from Sephadex G-50, and exhibited Ca2+-dependent calmodulin-binding properties. When the two peptides were subjected to automated Edman sequence analysis, both exhibited a burst of 32P release at cycle 5, which is consistent with the expected amino-terminal sequence of the two peptides, i.e. His-Arg-Gln-Glu-Thr(PO4)-. These findings indicate that autophosphorylation of Thr286 (alpha subunit) and Thr287 (beta subunit) is responsible for transition of CaM-kinase II to the Ca2+-independent form.  相似文献   

13.
Ca2+/calmodulin-dependent protein kinases (CaM-kinases) II, IV, and I play important roles as Ca2+ responsive multifunctional protein kinases in controlling a variety of cellular functions in response to an increase in intracellular Ca2+, and hence regulation of their activities is very important. CaM-kinase II is activated through autophosphorylation of threonine-286 (in the case of alpha isoform), and CaM-kinases IV and I are activated through phosphorylation of threonine-196 and 177, respectively, by CaM-kinase kinase. After activation, CaM-kinases II and IV lose their Ca2+/calmodulin-dependent activity upon autophosphorylation of threonine-305 and serine-332, respectively, in the absence of Ca2+, becoming Ca2+/calmodulin-independent forms. The activated CaM-kinases II, IV, and I are deactivated upon dephosphorylation of phosphothreonine-286, 196, and 177, respectively, by CaM-kinase phosphatase or other multifunctional protein phosphatases and restored to the original ground states. Thus, the activities of the three multifunctional CaM-kinases are regulated by phosphorylation and dephosphorylation.  相似文献   

14.
Smooth muscle myosin light chain kinase (MLC-kinase) was rapidly phosphorylated in vitro by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) to a molar stoichiometry of 2.77 +/- 0.15 associated with a threefold increase in the concentration of calmodulin (CaM) required for half-maximal activation of MLC-kinase. Binding of CaM to MLC-kinase markedly reduced the phosphorylation stoichiometry to 0.21 +/- 0.05 and almost completely inhibited phosphorylation of sites in two peptides (32P-peptides P1 and P2) with reduced phosphorylation of peptide P3. By analogy, cAMP-dependent protein kinase phosphorylated MLC-kinase to a stoichiometry of 3.0 or greater in the absence of CaM with about a threefold decrease in the apparent affinity of MLC-kinase for CaM. Binding of CaM to MLC-kinase inhibited the phosphorylation to 0.84 +/- 0.13. Complete tryptic digests contained two major 32P-peptides as reported previously. One of the peptides, whose phosphorylation was inhibited in the presence of excess calmodulin, appeared to be the same as P2. Automated Edman sequence analysis suggested that both CaM-kinase II and cAMP-dependent protein kinase phosphorylated this peptide at the second of the two adjacent serine residues located at the C-terminal boundary of the CaM-binding domain. However, the other peptide phosphorylated by cAMP-dependent protein kinase, regardless of whether CaM was bound, was different from P1 and P3. Thus, MLC-kinase has a regulatory phosphorylation site(s) that is phosphorylated by the autophosphorylated form of CaM-kinase II and is blocked by Ca2+/CaM-binding.  相似文献   

15.
Calmodulin-dependent protein kinase IV (CaM-kinase IV) phosphorylated calmodulin (CaM), which is its own activator, in a poly-L-Lys [poly(Lys)]-dependent manner. Although CaM-kinase II weakly phosphorylated CaM under the same conditions, CaM-kinase I, CaM-kinase kinase alpha, and cAMP-dependent protein kinase did not phosphorylate CaM. Polycations such as poly(Lys) were required for the phosphorylation. The optimum concentration of poly(Lys) for the phosphorylation of 1 microM CaM was about 10 microg/ml, but poly(Lys) strongly inhibited CaM-kinase IV activity toward syntide-2 at this concentration, suggesting that the phosphorylation of CaM is not due to simple activation of the catalytic activity. Poly-L-Arg could partially substitute for poly(Lys), but protamine, spermine, and poly-L-Glu/Lys/Tyr (6/3/1) could not. When phosphorylation was carried out in the presence of poly(Lys) having various molecular weights, poly(Lys) with a higher molecular weight resulted in a higher degree of phosphorylation. Binding experiments using fluorescence polarization suggested that poly(Lys) mediates interaction between the CaM-kinase IV/CaM complex and another CaM. The 32P-labeled CaM was digested with BrCN and Achromobacter protease I, and the resulting peptides were purified by reversed-phase HPLC. Automated Edman sequence analysis of the peptides, together with phosphoamino acid analysis, indicated that the major phosphorylation site was Thr44. Activation of CaM-kinase II by the phosphorylated CaM was significantly lower than that by the nonphosphorylated CaM. Thus, CaM-kinase IV activated by binding Ca2+/CaM can bind and phosphorylate another CaM with the aid of poly(Lys), leading to a decrease in the activity of CaM.  相似文献   

16.
Autophosphorylation of CaM-kinase II produces a form of the enzyme not requiring Ca(2+)/calmodulin for sustained activity. We report that autophosphorylated CaM-kinase II dephosphorylates itself in the presence of ADP (termed autodephosphorylation). The dephosphorylation was unaffected by phosphatase inhibitors and was nucleotide specific, occurring with ADP but not with AMP, GTP, or GDP. (32)P-ATP was produced when ADP was added to (32)P-labeled CaM-kinase II, indicating that the enzyme was undergoing dephosphorylation through a reversal of the autophosphorylation reaction. ATP addition also produced loss of (32)P from the autophosphorylated enzyme while maintaining the kinase in a phosphorylated state. This indicates that the enzyme was undergoing cycles of autophosphorylation and dephosphorylation in the activated state. Autothiophosphorylated CaM-kinase II was resistant to autodephosphorylation. Site-directed mutants were used to show that Thr(286) was the predominant site dephosphorylated. Additionally, CaM-kinase II composed of beta subunits exhibited autodephosphorylation. Ca(2+)/CaM-independent activity expressed by the autophosphorylated alpha and beta holoenzymes was reversed following autodephosphorylation.  相似文献   

17.
Myosin-V, an unconventional myosin, has two notable structural features: (i) a regulatory neck domain having six IQ motifs that bind calmodulin and light chains, and (ii) a structurally distinct tail domain likely responsible for its specific intracellular interactions. Myosin-V copurifies with synaptic vesicles via its tail domain, which also is a substrate for calmodulin-dependent protein kinase II. We demonstrate here that myosin-V coimmunoprecipitates with CaM-kinase II from a Triton X-100-solubilized fraction of isolated nerve terminals. The purified proteins also coimmunoprecipitate from dilute solutions and bind in overlay experiments on Western blots. The binding region on myosin-V was mapped to its proximal and medial tail domains. Autophosphorylated CaM-kinase II binds to the tail domain of myosin-V with an apparent Kd of 7.7 nM. Surprisingly, myosin-V activates CaM-kinase II activity in a Ca2+-dependent manner, without the need for additional CaM. The apparent activation constants for the autophosphorylation of CaM-kinase II were 10 and 26 nM, respectively, for myosin-V versus CaM. The maximum incorporation of 32P into CaM-kinase II activated by myosin-V was twice that for CaM, suggesting that myosin-V binding to CaM-kinase II entails alterations in kinetic and/or phosphorylation site parameters. These data suggest that myosin-V, a calmodulin-carrying myosin, binds to and delivers CaM to CaM-kinase II, a calmodulin-dependent enzyme.  相似文献   

18.
Autophosphorylation of calmodulin (CaM)-dependent protein kinase II (CaM-kinase II) under limiting conditions (2 microM ATP) decreased progressively with increasing concentrations of a substrate, Pro-Leu-Ala-Arg-Thr-Leu-Ser-Val-Ala-Gly-Leu-Pro-Gly-Lys-Lys (syntide-2), suggesting a competition between the substrate and the autophosphorylation site(s) of the enzyme. The rate and extent of the generation of Ca2+/CaM-independent activity of the enzyme by autophosphorylation were also decreased by the presence of syntide-2. The syntide-2 phosphorylation in the presence of Ca2+/CaM under the limiting conditions reached a steady state, after a lag, when the Ca2+/CaM-independent activity reached a plateau. A linear relationship was observed between the activities in the presence and absence of Ca2+/CaM of the enzyme which had undergone various degrees of autophosphorylation, and the extrapolation of activity in the absence of Ca2+/CaM to zero gave 15-20% of the maximum activity. The steady-state rate of syntide-2 phosphorylation in the presence of Ca2+/CaM by the enzyme that had not undergone prior autophosphorylation was decreased by high concentrations of syntide-2 which suppressed autophosphorylation as well as the generation of Ca2+/CaM-independent activity. These results suggest that although the nonautophosphorylated enzyme possesses a basal low level of Ca2+/CaM-dependent activity, autophosphorylation is required for full activation.  相似文献   

19.
Initial autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) occurs at Thr286 (the "autonomy" site) and converts the kinase from a Ca(2+)-dependent to a partially Ca(2+)-independent or autonomous enzyme. After removal of Ca2+/calmodulin, the autonomous kinase undergoes a "burst" of inhibitory autophosphorylation at sites distinct from the autonomy site which may be masked in the presence of bound calmodulin. This burst of Ca(2+)-independent autophosphorylation blocks the ability of calmodulin to activate the kinase. We have used site-directed mutagenesis to replace putative inhibitory autophosphorylation sites within the calmodulin binding domain of recombinant alpha-CaM kinase with nonphosphorylatable alanines and examined the effects on autophosphorylation, kinase activity, and calmodulin binding. Although prominent Ca(2+)-independent autophosphorylation occurs within the calmodulin binding domain at Thr305, Thr306, and Ser314 in wild-type alpha-CaM kinase, the inhibitory effect on kinase activity and calmodulin binding is retained in mutants lacking any one of these three sites. However, when both Thr305 and Thr306 are converted to alanines the kinase does not display inhibition of either activity or calmodulin binding. Autophosphorylation at either Thr305 or Thr306 is therefore sufficient to block both binding and activation of the kinase by Ca2+/calmodulin. Thr306 is also slowly autophosphorylated in a basal reaction in the continuous absence of Ca2+/calmodulin. Autophosphorylation of Thr306 by the kinase in either its basal or autonomous state suggests that in the absence of bound calmodulin, the region of the autoregulatory domain surrounding Thr306, rather than the region near the autonomy site, lies nearest the peptide substrate binding site of the kinase.  相似文献   

20.
Phospholamban, the putative regulatory proteolipid of the Ca2+/Mg2+ ATPase in cardiac sarcoplasmic reticulum, was selectively phosphorylated by a Ca2+/calmodulin (CaM)-dependent protein kinase associated with a cardiac membrane preparation. This kinase also catalyzed the phosphorylation of two exogenous proteins known to be phosphorylated by the multifunctional Ca2+/CaM-dependent protein kinase II (Ca2+/CaM-kinase II), i.e., smooth muscle myosin light chains and glycogen synthase a. The latter protein was phosphorylated at sites previously shown to be phosphorylated by the purified multifunctional Ca2+/CaM-kinase II from liver and brain. The membrane-bound kinase did not phosphorylate phosphorylase b or cardiac myosin light chains, although these proteins were phosphorylated by appropriate, specific calmodulin-dependent protein kinases added exogenously. In addition to phospholamban, several other membrane-associated proteins were phosphorylated in a calmodulin-dependent manner. The principal one exhibited a Mr of approximately 56,000, a value similar to that of the major protein (57,000) in a partially purified preparation of Ca2+/CaM-kinase II from the soluble fraction of canine heart that was autophosphorylated in a calmodulin-dependent manner. These data indicate that the membrane-bound, calmodulin-dependent protein kinase that phosphorylates phospholamban in cardiac membranes is not a specific calmodulin-dependent kinase, but resembles the multifunctional Ca2+/CaM-kinase II. Our data indicate that this kinase may be present in both the particulate and soluble fractions of canine heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号