首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

2.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m–2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 7–11 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 7–25 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 3–13C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.47–0.77 at 3–7 C, 092–154at 11–17 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 11–25 –C (095–110 mmol N plant–1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m–3at 3 C to 290 mol m–3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture  相似文献   

3.
The effect of high light and root chilling on gas exchange,chlorophyll fluorescence, and bulk shoot water potential (shoot)was examined for Pinus sylvestris seedlings. Transferring plantsfrom low light (200 µmol m–2s–1, PAR) anda soil temperature of 15 °C to high light (850 µmolm–2 s–1) and 1 °C caused >90% decrease innet photosynthesis and leaf conductance measured at 350 mm3dm-3 CO2, and a decrease in the ratio of variable to maximumfluorescence (Fv/Fm) from 0.83 to 0.63. The decrease in Fv/Fmwas, however, only marginally greater than when seedlings weretransferred from low to high light but kept at a soil temperatureof 15 °C. Thus, photoinhibition was a minor component ofthe substantial decrease observed for net photosynthesis at1 °C soil temperature. The decrease in net photosynthesisand shoot at 1 °C was associated with an increase in calculatedintracellular CO2 concentration, suggesting that non-stomatalfactors related to water stress were involved in inhibitingcarbon assimilation. Measurements at saturating external CO2concentration, however, indicate that stomatal closure was thedominant factor limiting net photosynthesis at low soil temperature.This interpretation was confirmed with additional experimentsusing Pinus taeda and Picea engelmannii seedlings. Decreasesin gas-exchange variables at 5 °C soil temperature werenot associated with changes in shoot Thus, hormonal factors,localized decreases in needles or changes in xylem flux maymediate the response to moderate root chilling.  相似文献   

4.
Macduff, J. H., Hopper, M. J. and Wild, A. 1987. The effectof root temperature on growth and uptake of ammonium and nitrateby Brassica napus L. in flowing solution culture. I. Growth.—J.exp. Bot. 38: 42–52 Oilseed rape (Brassica napus L. cv. Bien venu) was grown for49 d in flowing nutrient solution at pH 6?0 with root temperaturedecrementally reduced from 20?C to 5?C; and then exposed todifferent root temperatures (3, 5, 7, 9, 11, 13,17 or 25?C)held constant for 14 d. The air temperature was 20/15?C day/nightand nitrogen was supplied automatically to maintain 10 mmolm–3 NH4NO3 in solution. Total dry matter production wasexponential with time and similar at all root temperatures givinga specific growth rate of 0?0784 g g–1 d–1. Partitioningof dry matter was influenced by root temperature; shoot: rootratios increased during treatment at 17?C and 25?C but decreasedafter 5 d at 3?C and 5?C. The ratio of shoot specific growthrate: root specific growth rate increased with the ratio ofwater soluble carbohydrates (shoot: root). Concentrations ofwater soluble carbohydrates in shoot and root were inverselyrelated to root temperature; at 3, 5 and 7?C they increasedin stem + petioles throughout treatment, coinciding with a decreasein the weight of tissue water per unit dry matter. These resultssuggest that the accumulation of soluble carbohydrates at lowtemperature is the result of metabolic imbalance and of osmoticadjustment to water stress. Key words: Brassica napus, oilseed rape, root temperature, specific growth rate  相似文献   

5.
Aster kantoensis Kitam., an endangered plant species of thefamily Compositae, is a local endemic to the gravelly floodplainsof a few rivers in central Japan. The successful growth of A.kantoensis is mainly restricted to sparsely vegetated siteswhere, due to lack of continuous vegetation, high radiant energyinput results in stressful conditions with excessive light andheat. To reveal the ecophysiological characteristics which enablethe species to cope with such environmental stresses, we measuredleaf temperature, shoot architecture and photosynthetic andtranspirational responses together with the microclimate ofthe natural habitat. Even under sunny summer conditions, theleaf temperature of A. kantoensis was much lower (35–39°C)than the soil surface temperature (max. 60°C). The relationshipbetween leaf position (height from the ground) and leaf temperatureshowed that the caulescent rosette form of A. kantoensis helpsavoid leaf overheating. Moreover, in situ gas exchange measurementsrevealed that the high transpirational capacity (as high as10 mmol H2O m-2s-1) was effective in controlling leaf temperature,as long as the soil water supply was not severely limited. Sinceit has effective mechanisms to avoid the multiple stresses indigenousto its gravelly floodplain habitat, A. kantoensis can maintaina high photosynthetic rate (up to 30 µmol CO2m-2s-1) withoutany midday depression under sunny summer conditions. Copyright2000 Annals of Botany Company Aster kantoensis Kitam., gravelly floodplain, high light stress, leaf temperature, photosynthesis, shoot architecture, transpiration  相似文献   

6.
Barley plants (Hordewn vulgare L. cv. Atem) were grown fromseed for 28 d in flowing solution culture, during which timeroot temperature was lowered decrementally to 5?C. Plants werethen subjected to root temperatures of 3, 5, 7, 9, 11, 13, 17or 25 ?C, with common air temperature of 25/15 ?C (day/night).Changes in growth, plant total N, and NO3 levels, andnet uptake of NH4+ and NO3 from a maintained concentrationof 10 mmol m–3 NH4NO3 were measured over 14 d. Dry matterproduction increased 6-fold with increasing root temperaturebetween 3–25 ?C. The growth response was biphasic followingan increase in root temperature. Phase I, lasting about 5 d,was characterized by high root specific growth rates relativeto those of the shoot, particularly on a fresh weight basis.During Phase I the shoot dry weight specific growth rates wereinversely related to root temperature between 3–13 ?C.Phase 2, from 5–14 d, was characterized by the approachtowards, and/or attainment of, balanced exponential growth betweenshoots and roots. Concentrations of total N in plant dry matterincreased with root temperature between 3–25 ?C, moreso in the shoots than roots and most acutely in the youngestfully expanded leaf (2?l–6?9% N). When N contents wereexpressed on a tissue fresh weight basis the variation withtemperature lessened and the highest concentration in the shootwas at 11 ?C. Uptake of N increased with root temperature, andat all temperatures uptake of NH4+, exceeded that of NO3,irrespective of time. The proportions of total N uptake over14 d absorbed in the form of NH4+ were (%): 86, 91, 75, 77,76, 73, 77, and 80, respectively, at 3, 5, 7, 9, Il, 13, 17,and 25 ?C. At all temperatures the preference for NH4+ overNO3 uptake increased with time. An inverse relationshipbetween root temperature (3–11 ?C) and the uptake of NH4+as a proportion of total N uptake was apparent during PhaseI. The possible mechanisms by which root temperature limitsgrowth and influences N uptake are discussed. Key words: Hordeum vulgare, root temperature, ammonium, nitrate, ion uptake, growth rate  相似文献   

7.
Single, clonal plants of white clover were grown without inorganicnitrogen in four contrasting day/night temperature regimes,with a 12 h photoperiod, in controlled environments. Root andnodule respiration and acetylene reduction activity were measuredin a flow-through system during both day and night for plantsacclimated to day/night regimes of 23/18, 15/10 and 10/5 ?C.Similar measurements were made on plants acclimated to 20/15?C and stepwise at temperatures from 4 to 33 ?C. Peak rate of ethylene production, nitrogenase-linked respirationand basal root + nodule respiration increased approximatelylinearly from 5 to 23 ?C both in temperature-acclimated plantsand in plants exposed to varying measurement temperatures. Themeasured attributes did not vary significantly between day andnight. Temperatures above 23–25 ?C did not further enhancethe rate of ethylene production, which remained essentiallythe same up to the maximum measured temperature of 33 ?C. The measurements of nitrogenase-linked respiration between 5and 23 ?C, during both day and night, demonstrated a constant‘energetic cost’ of acetylene reduction of 2.9 µmolCO2 µmol C2H4–1,. Over the same temperature range,the approximate activation energy of acetylene reduction was60 kJ mol–1. The integrated day plus night nitrogenase-linkedrespiration accounted for 13.4–16% of the plant‘snet shoot photosynthesis in a single diurnal period: there wasno significant effect of temperature between 5 and 23 ?C. Key words: Trifolium repens, white clover, temperature, N2 fixation, respiration  相似文献   

8.
Young tomato plants were grown from germination in water cultureat light-flux densities from 6 to 110 W m-2 (400–700 nm),daylengths from 8 to 24 h and CO2 concentrations from 0.4 to2.2 g CO2 m-3 in controlled environment cabinets. The growth rates and net assimilation rates of 14–17-day-oldplants at the highest light integrals were appreciably greaterthan most values previously recorded for tomato, and diminishedwith time. Plants in the lowest light conditions had leaf arearatios five times larger than those in the highest light, attributablemainly to a difference in leaf dry weight/area. Such flexibilityin leaf area ratio has not previously been associated with ‘sun’plants such as the tomato. Relatively normal growth was obtained in continuous light, incontrast to most other reports. This may have been due to theuse of conditions which would minimise water stress. The efficiency of the conversion of incident light energy tochemical energy by the whole plant ranged from 15 per cent inseedlings in low continuous light to about 6 per cent, tendingto be higher in young plants in long days under CO2 enrichment.The higher values are probably overestimates because of theexclusion of reflected light from the energy receipt values.  相似文献   

9.
Carbon dioxide and water vapour exchanges of the second leafof Zea mays in controlled environment cuvettes were measuredin an open gas-exchange system, during and following subjectionto low temperature stress. Photosynthetic CO2 assimilation (Fc)decreased markedly with decrease in leaf temperature so thatFc at 5 °C was c. 7% of Fc at 20 °C. Fc continued todecline if leaf temperature was maintained at 5 °C, andwhen returned to 20 °C the leaf could not regain its previousFc. This chill-induced reduction in the capacity of the leafto assimilate CO2 was proportional to the duration of the chilland increased with water vapour pressure deficit and photonflux density (In). Six hours at 5 °C decreased Fc on returnto 20 °C, relative to Fc prior to treatment, by c. 10% indarkness and by c. 50% in a photon flux density approachingfull-sunlight (Ip = 1.5 mmol m–2 s–1). The degreeof reduction in Fc following chill treatment showed an almostlinear dependence on both the length and temperature of thechill. Chill treatments resulted in a decrease in both stomataland mesophyll conductances. Examination of the responses ofFc to light and CO2 concentration suggested that chill damageto the capacity for CO2 assimilation resulted from effects onboth the light and CO2 limited processes within photosynthesis. Key words: Chilling, Photosynthesis, Zea mays, Light-temperature interaction  相似文献   

10.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

11.
The effects of SO2 on some growth and quality characteristicsof lucerne (Medicago sativa L.) were investigated by exposingplants to mean SO2 concentrations of 215, 78 or 2.8 µgm–3 in open-top chambers for 166 d. Plants exposed to215 µg m–3 had significantly lower shoot and rootweights compared with plants exposed to 78 µg m–3,but not compared with control plants. Exposure to 215 or 78µg m –3 increased the plant shoot: root ratio, buthad no effect on leaf area. During the middle of the fumigationperiod, relative growth rate and net assimilation rate werehighest in plants exposed to 215 fig m, but these later fellbelow control values, and plants exposed to 78 µg m–3had the highest relative growth rate and net assimilation rate.As the duration of exposure increased, an initial SO2-inducedstimulation of growth may have developed to toxicity at thehighest SO2 exposure. Exposure to SO2 depressed L-ascorbic acid concentrations inleaves, had no effect on foliar protein or starch concentrations,and increased the specific energy of shoots and plant sulphurconcentrations. The effect of SO2 on L-ascorbic acid concentrationsmay suggest a mechanism for reduced freezing tolerance of plantsafter exposure to SO2. Key words: SO2, Medicago sativa L., Growth  相似文献   

12.
Concentrations of inorganic cations are often lower in plantssupplied with NH4+ as compared with NO3. To examine whetherthis is attributable to impaired root uptake of cations or lowerinternal demand, the rates of uptake and translocation of K,Mg, and Ca were compared in maize plants (Zea mays L.) withdifferent growth-related nutrient demands. Plants were grownin nutrient solution with either 1·0 mol m–3 NO3or NH4+ and the shoot growth rate per unit weight of roots wasmodified by varying the temperature of the shoot base (SBT)including the apical shoot meristem. The shoot growth rate per unit weight of roots, which was takenas the parameter for the nutrient demand imposed on the rootsystem, was markedly lower at 12°C than at 24°C SBT.As a consequence of the lower nutrient demand at 12°C SBT,uptake rates of NO3 and NH4+ declined by more than 50%Compared with NO3 supply, NH4+ nutrition depressed theconcentrations of K and particularly of Ca in the shoot, bothin plants with high and with low nutrient demand. This indicatesa control of cation concentration by internal demand ratherthan by uptake capacity of the roots. Translocation rates of K, Mg and Ca in the xylem exudate werelower in NH4+- than in NO3-fed plants. Net accumulationrates of Ca in the shoot were also decreased, whereas net accumulationrates of K in the shoot were even higher in NH4+-fed plants.It is concluded that reduced cation concentrations in the xylemsap of plants supplied with NH4+ are due to the lower demandof cations for charge balance. The lower K translocation tothe shoot is compensated by reduced retranslocation to the roots.For Ca, in contrast, decreased translocation rates in NH4+-fedplants result in lower shoot concentration. Key words: Nitrogen form, cation nutrition, charge balance, xylem exudate, recirculation  相似文献   

13.
Macduff, J. H., Hopper, M. J. and Wild, A. 1987. The effectof root temperature on growth and uptake of ammonium and nitrateby Brassica napus L. CV. Bien venu in flowing solution culture.II. Uptake from solutions containing NH4NO3.—J. exp. Bot.38: 53–66 The effects of root temperature on uptake and assimilation ofNH4+ and NO3 by oilseed rape (Brassica napus L. CV. Bienvenu) were examined. Plants were grown for 49 d in flowing nutrientsolution at pH 6?0 with root temperature decrementally reducedfrom 20?C to 5?C; and then exposed to different root temperatures(3, 5, 7, 9, 11, 13, 17 or 25?C) held constant for 14 d. Theair temperature was 20/15?C day/night and nitrogen was suppliedautomatically to maintain 10 mmol m–3 NH4NO3 in solution.Total uptake of nitrogen over 14 d increased threefold between3–13?C but was constant above 13?C. Net uptake of NH4+exceeded that of NO3 at all temperatures except 17?C,and represented 47–65% of the total uptake of nitrogen.Unit absorption rates of NH4+ and of 1?5–2?7 for NO3suggested that NO3 absorption was more sensitive thanNH4+ absorption to temperature. Rates of absorption were relativelystable at 3?C and 5?C compared with those at 17?C and 25?C whichincreased sharply after 10 d. Tissue concentration of N in theshoot, expressed on a fresh weight basis, was independent ofroot temperature throughout, but doubled between 3–25?Cwhen expressed on a dry weight basis. The apparent proportionof net uptake of NO3 that was assimilated was inverselyrelated to root temperature. The results are used to examinethe relation between unit absorption rate adn shoot:root ratioin the context of short and long term responses to change ofroot temperature Key words: Brassica napus, oilseed rape, root temperature, nitrogen uptake  相似文献   

14.
The rates of CO2 assimilation by potted spray carnation plants(cv. Cerise Royalette) were determined over a wide range oflight intensities (45–450 W m–2 PAR), CO2 concentrations(200–3100 vpm), and leaf temperatures (5–35 °C).Assimilation rates varied with these factors in a way similarto the response of single leaves of other temperate crops, althoughthe absolute values were lower. The optimal temperature forCO2 assimilation was between 5 and 10 °C at 45 W m–2PAR but it increased progressively with increasing light intensityand CO2 concentration up to 27 °C at 450 W m–2 PARand 3100 vpm CO2 as expressed by the equation TOpt = –6.47-h 2.336 In G + 0.031951 where C is CO2 concentration in vpmand I is photo-synthetically active radiation in W m–2.CO2 enrichment also increased stomatal resistance, especiallyat high light intensities. The influence of these results on optimalization of temperaturesand CO2 concentrations for carnation crops subjected to dailylight variation, and the discrepancy between optimal temperaturesfor growth and net photosynthesis, are discussed briefly  相似文献   

15.
The sensitivity of S23 Lolium perenne L. to 11 parts 10–8SO2 was investigated at two different wind speeds. At the higherwind speed of 25 m min–8, SO2 caused significant reductionsin leaf area, root/shoot ratio, and all dry weight fractionsmeasured. At the lower wind speed of 10 m min–1 growthreductions were not found. The differences in sensitivity ofplants to SO2 at different wind speeds is discussed in relationto boundary layer resistances of leaves. It is concluded thatthe sensitivity of a plant to a particular pollutant shouldno longer be measured in terms of only the concentration andlength of exposure.  相似文献   

16.
CO2-exchange rates (CER) of the sixth and the flag leaves oftwo spring-wheat varieties, Kolibri and Famos, were comparedusing an open-circuit infrared gas analysing system. Measurementswere repeated every two weeks starting when leaf blades werefully expanded. Single plants were grown in a controlled environmenthaving a photopuiod of 15 h and a day/night temperature of 24/19°C(H), 18/13 °C (M), and 12/7 °C (L) respectively untilapprox. 2 weeks after anthesis and at 18/13 °C until maturity.The photosynthetic photon-flux density (PPFD) at the top ofthe plants was 500 µE m–2 sec–1. During themeasurements PPFD was gradually reduced from 2000 to 0 µEm–2 sec–1 whereas the temperature was maintainedat the respctive growth-temperatures during the light period.The CER of the sixth leaf declined fairly similarly for bothvarieties, except for Kolibri where a faster decline was observedduring the first two weeks after full leaf expansion. The CERof the flag leaf declined more slowly than that of the sixthleaf. With the flag leaf of Famos, the decline was nearly linear,whereas with Kolibri it was very slow during the first few weeksbut rapid as the leaves further senesced. This pattern becamemore pronounced as the growth temperature decreased. The declinein relation to leaf age was much smaller at low PPFD than athigh PPFD during the same period. At full leaf expansion Kolibrireached higher maximum CER than Famos except at H. As the PPFDwas reduced the difference became smaller and at very low PPFDsuch as 50 µE m–2 sec–1 was reversed for thesixth leaf. Under optimum growth conditions maximum values ofCER were greater than 50mg CO2 dm–2h–1 and PPFDfor light saturation was close to 2000 µE m–2 sec–1.A comparison between the actual CER and a fitted curve widelyused, PN=(a+b/l)–1–DR, showed that the goodnessof fit strongly depends on cultivar, treatment and leaf ageas well as on the number and the level of PPFD from which datafor calculations are taken. Triticum aestivum, L., wheat, photosynthesis, photon-flux density, light response, carbon, dioxide exchange  相似文献   

17.
The distribution of photosynthate labelled with 14C was studiedin spring wheat grown with different amounts of nitrogen fertilizerin the three years 1972–4, after exposing the flag leafor the leaf below the flag leaf to 14CO2 at 6–10 or 19–26days after anthesis. The movement of 14C to ears was unaffectedby nitrogen fertilizer except after early exposure in 1973,when nitrogen increased the retention of 14C in stems at maturity The concentration of sugar in the top part of the shoot at theend of the day was unaffected by nitrogen in 1973, but at 22days after anthesis in 1974 the concentration of sucrose inthe glumes and rachis, and in the flag leaf lamina was increasedby nitrogen. Loss of sugar by translocation and respirationduring the night may explain why this increase in concentrationwas not reflected in the 14C distribution 24 h after supplying14C. The proportion of the total 14C content of the shoot that wasin the ear at maturity ranged from 68 to 95 per cent dependingon when and to which leaf the 14CO2 was supplied. Less than5 per cent remained in the leaf exposed to 14CO2. The proportionof the final ear weight contributed by the leaf below the flagleaf was about half that contributed by the flag leaf. In 1974 about 24 per cent of the 14C absorbed by the flag leaf,and 56 per cent of that absorbed by the second leaf, was lostby maturity, presumably by respiration. Most loss occurred inthe first 24 h.  相似文献   

18.
Variable fluorescence (Fv) of intact leaves was measured whenthe temperature was lowered at a rate of 1–2?C per mn,from 20?C to –20?C. The quantum flux density of the excitinglight was 1–2 µE m–2 sec–1 in orderto sensitize F only at 20?C. The fluorescence yield decreasedrapidly at the freezing point of the leaf and upon further coolingthe fluorescence yield increased again. Fm was obtained a fewdegrees below the freezing point. Repeated freeze-thaw cycles caused successively increased damageto the thylakoid membranes on either the oxidizing or the reducingside of photosystem II. An eventual loss of Fv over Fo was typicalfor damage on the water splitting side of photosystem II, whereasdamage after the primary electron acceptor Q of photosystemII was characterized by an invariable fluorescence yield atFm over the temperature range examined. (Received January 18, 1982; Accepted June 12, 1982)  相似文献   

19.
Yamashita, T. 1987. Modulated degradation of ribulose ftisphosphatecarboxylase in leaves on top-pruned shoots of the mulberry tree(Morus alba L.).—J. exp. Bot. 38: 1957–1964. The effects of pruning shoot tops on the synthesis and degradationof ribulose 1,5–Wsphosphate carboxylase (RuBPCase) inleaves on remaining shoots were investigated in mulberry trees.Leucine labelled with 14C was fed to leaf discs from field-grownmulberry trees and 14C incorporation into RuBPCase was examined.Proportion of 14C in RuBPCase to leucine–14C absorbedby leaf discs was remarkably lowered by top-pruning, thoughoccasionally a slight increase was observed soon after pruning.Yet RuBPCase content in leaves on top-pruned shoots became progressivelyhigher than that in leaves on intact shoots. Changes in 14Cin Ru1BPCase in leaves of mulberry saplings previously fed 14CO2were followed. Following 14CO2 feeding, the attainment of themaximal level of 14C in RuBPCase was retarded by top-pruning.The highest level of 14C in RuBPCase was maintained in leaveson top-pruned shoots but decreased in leaves on intact shoots.Specific radioactivity in RuBPCase continued to increase inleaves on top-pruned shoots even after attaining a maximum levelin the control leaves. These facts suggest that the increasein RuBPCase by top-pruning results from a cessation of its degradationfor the remobilization of nitrogen for newly developing leaveson shoot tops. Key words: RuBP carboxylase, shoot pruning, mulberry (Morus alba)  相似文献   

20.
Acclimation of NO3 transport fluxes (influx, efflux)in roots of oilseed rape (Brassica napus L. cv. Bien venu) andtheir sensitivity to growth at low root temperature was studiedin relation to external NO3 supply, defined by constantconcentrations ranging from sub- to supra-optimal with respectto plant growth rate. Plants were grown from seed in flowingnutrient solutions containing 250 mmol m–3 NO3at 17°C for 20d, and solution temperature in half the cultureunits was then lowered decrementally over 3 d to 7°C. Threedays later plants were supplied with NO3 at 1, 10, 100or 1000 mmol m–3 maintained for 18 d. Dry matter productionwas decreased more by low root zone temperature than low [NO3]e. Root specific growth rates were inversely related to [NO3]eand shoot:root ratios increased with time at [NO3]e between10–1000 mmol m–3. Net uptake of NO3 at 17°Cwas twice that at 7°C, and at both temperatures it doubledwith increasing [NO3]e between 1–10 mmol m–3with further small increases at higher [NO3]e. Mean unitabsorption rates of NO3 between 0–6 d and 6–14d were linearly related (r2 of 0.79–0.99) to log10[NO].Steady-state Q10 (7–17°C) for uptake between 0–6d were 0.91, 1.62, 1.27, and 1.10, respectively, at [NO3]eof 1, 10, 100, and 1000 mmol m–3, compared with correspondingvalues of 0.98, 1.38, 1.68, and 1.89 between 6–14 d. Thedata indicated that net uptake rates at 7 and 17°C divergedover time at high [NO3]e. Short-term uptake rates from1 mol m–3 NO3 measured at 17°C were higherin plants grown with roots at 7°C than at 17°C; for7°C plants there was a strong inverse linear relationship(r2=0.94) between uptake rate and treatment log10 [NO3]ewhilst rates in 17°C plants were independent of prior [NO3]e. Rates of NO3 influx and efflux under different steady-stateconditions of NO3 supply and root temperature were calculatedfrom dilution of 15N added to culture solutions. Efflux wassubstantial relative to net uptake in all treatments, and wasinversely related to [NO3]e at 17°C but not at 7°C.Ratios of influx: efflux ranged from 1.6–2.9 at 17°Cand 1.3–1.8 at 7°C, indicating the proportionatelygreater impact of efflux at low root temperature. Ratios ofefflux: net uptake were 0.53–1.56 at 17°C and 1.21–3.58at 7°C. The apparent sensitivities of influx and effluxto steady-state root temperature varied with [NO3]e.Both fluxes were higher at 17°C than 7°C in the presenceof 100–1000 mmol m–3 NO3 but the trend wasreversed at 1–10 mmol m–3 NO. Concentrations oftotal N measured in xylem exudate were at least 2-fold higherat 7°C compared with 17°C, attributable mainly to higherconcentrations of NO3 glutamine and proline. The resultsare discussed in terms of acclimatory and other responses shownby the NO3 transport system under conditions of limitingNO3 supply and low root temperature. Key words: Brassica napus, nitrate supply, efflux, influx, root temperature, xylem exudate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号