首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cultured fibroblasts isolated from murine livers by tissue trypsinization were exposed to a static magnetic field (0.490 T) and to extremely low frequency (ELF) magnetic field (50 Hz, 0.020 T). The cultures were exposed to magnetic fields on four consecutive days for exposure times of 2, 4, 8, 16, 32, and 64 min. After such exposures and obtaining of fibroblast subcellular fractions, lipid peroxidation product—malondialdehyde (MDA) was measured. Increased peroxidation of fibroblasts' membrane structures exposed to an ELF magnetic field was observed in subcellular fractions—microsomal, mitochondrial, and nuclear. No changes in peroxidation of membrane structures were found in fibroblasts exposed to a static magnetic field.  相似文献   

2.
Magnetotactic bacteria produce nanometer‐size intracellular magnetic crystals. The superior crystalline and magnetic properties of magnetosomes have been attracting much interest in medical applications. To investigate effects of intense static magnetic field on magnetosome formation in Magnetospirillum magneticum AMB‐1, cultures inoculated with either magnetic or non‐magnetic pre‐cultures were incubated under 0.2 T static magnetic field or geomagnetic field. The results showed that static magnetic field could impair the cellular growth and raise Cmag values of the cultures, which means that the percentage of magnetosome‐containing bacteria was increased. Static magnetic field exposure also caused an increased number of magnetic particles per cell, which could contribute to the increased cellular magnetism. The iron depletion in medium was slightly increased after static magnetic field exposure. The linearity of magnetosome chain was also affected by static magnetic field. Moreover, the applied intense magnetic field up‐regulated mamA, mms13, magA expression when cultures were inoculated with magnetic cells, and mms13 expression in cultures inoculated with non‐magnetic cells. The results implied that the interaction of the magnetic field created by magnetosomes in AMB‐1 was affected by the imposed magnetic field. The applied static magnetic field could affect the formation of magnetic crystals and the arrangement of the neighboring magnetosome. Bioelectromagnetics 30:313–321, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
In vitro assays were made of the effect of a static magnetic field of a neodymium magnet on cellular behavior. The cell turnover rate was examined by the incorporation of radioactive thymidine, and anabolic processes were measured by the incorporation of radioactive proline. Cell cultures of fibroblast- and osteoblast-like cells of the neonatal rat calvarium were assayed to determine uptakes of radioactive thymidine and proline; these assays were performed in conjunction with examination of an explant of the rat calvarium. The cells were assayed after exposure to a field for 1-, 3-, 5-, 7-, and 10-day periods. Cells were exposed to north and south poles with a pole-face flux density of 0.61 T; control cultures were exposed to an unmagnetised piece of neodymium. After sham exposure or exposure to the magnetic field, 50 μCuries/ml of culture media of isotope were added to the culture medium. The cultures were returned to an incubator for 6 h. Then, following centrifugation, the supernatant was assayed for radioactivity in a scintillation counter after addition of 3 ml of scintillation fluid. A statistically significant magnetic stimulation of turnover rate and synthesis of fibroblasts was found, but stimulation of osteoblasts did not occur. Conversely, the explants, which represent the osteoblasts and fibroblasts in an organised system, showed a statistically significant inhibition in uptake of the radioactive label. The data indicate both variability and diversity of cellular behaviour, and they accentuate the need for caution in the interpretation of effects of static magnetic fields. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Human Mesenchymal Stem Cells (hMSCs) were exposed to a developed extremely low-frequency (ELF) magnetic fields (50?Hz ,20?mT ELF) system to evaluate whether exposure to (ELF) magnetic fields affects growth, metabolism, and differentiation of hMSCs. MTT method was used to determine the growth and metabolism of hMSCs following exposure to ELF magnetic fields. Na(+)/K(+) concentration and osmolality of extracellular were measured after exposured culture. Alkaline phosphatase (ALP) assay and Calcium assay, ALP staining, and Alizarin red staining were performed to evaluate the osteogenic differentiation of hMSCs under the ELF magnetic field exposure. In these experiments, the cells were exposed to ELF for up to 23 days. The results showed that exposure to ELF magnetic field could inhibit the growth and metabolism of hMSC, but have no significant effect on differentiation of hMSCs. These results suggested that ELF magnetic field may influence the early development of hMSCs related adult cells.  相似文献   

5.
The present study demonstrates that exposure of bacteria to medium strength static magnetic fields can significantly alter antibiotic sensitivity. Cultures of Escherichia coli were exposed to fields produced by permanent magnets. Samples of bacterial cultures continuously growing in the presence and in the absence of static magnetic fields were left untreated or were treated with an antibiotic and measured at 45 min intervals for cell growth and survival. It was found that exposure of E. coli to the static fields significantly increased antibiotic resistance. Bioelectromagnetics 22:129-137, 2001. Published 2001 Wiley-Liss, Inc.  相似文献   

6.
This study was performed in order to investigate the biological effects of chronic exposure to low intensity radio frequency fields. By using CHO cells in culture, it was possible to extend exposure to several cell generations. The RF field consisted of a 27 MHz magnetic field (6 A/m), which produces a specific absorption rate of 1 W/kg. Exposure was continued for two to five days. The cells were then studied with respect to certain cell biological parameters: vital staining, plating efficiency, growth rate, volume and physical properties of the intracellular water, as measured by NMR. Scanning electron microscopy studies were also performed. A significant difference between exposed and control cells was found only with respect to intracellular water. A 10% decrease in line width which may indicate a corresponding increase in the spin-spin relaxation time was noted after exposure. A change in the colony forming pattern was also observed in thin cultures after two days of exposure.  相似文献   

7.
A system is described that uses an oscillating magnetic field to produce power-frequency electric fields with strengths in excess of those produced in an animal or human standing under a high-voltage electric-power transmission line. In contrast to other types of exposure systems capable of generating fields of this size, no electrodes are placed in the conducting growth media: the possibility of electrode contamination of the exposed suspension is thereby eliminated. Electric fields in the range 0.02–3.5 V/m can be produced in a cell culture with total harmonic distortions less than 1.5%. The magnetic field used to produce electric fields for exposure is largely confined within a closed ferromagnetic circuit, and experimental and control cells are exposed to leakage magnetic flux densities less than 5 μT. The temperatures of the experimental and control cell suspensions are held fixed within ±0.1°C by a water bath. Special chambers were developed to hold cell cultures during exposure and sham exposure. Chinese hamster ovary (CHO) cells incubated in these chambers grew for at least 48 h and had population doubling times of 16–17 h, approximately the same as for CHO cells grown under standard cell-culture conditions.  相似文献   

8.
On a daily basis, humans, and their colonizing microbiome, are exposed to both indoor and outdoor dust, containing both deleterious organic and inorganic contaminants, through dermal contact, inhalation, and ingestion. Recent studies evaluating the dust exposure responses of opportunistic pathogens, such as Escherichia coli and Pseudomonas aeruginosa, revealed significant increases in biofilm formation following dust exposure. In this study, the effects of dust exposure on mixed bacterial cultures as well as HT-29 co-cultures were evaluated. As it was observed in pure, single bacterial cultures earlier, neither indoor nor outdoor dust exposure (at concentrations of 100 μg/mL) influenced the growth of mixed bacterial liquid cultures. However, when in paired mixed cultures, dust exposure increased sensitivity to oxidative stress and significantly enhanced biofilm formation (outdoor dust). More specifically, mixed cultures (E. coli-Klebsiella pneumoniae, K. pneumoniae-P. aeruginosa, and E. coli-P. aeruginosa) exhibited increased sensitivity to 20 and 50 mM of H2O2 in comparison to their pure, single bacterial culture counterparts and significantly enhanced biofilm production for each mixed culture. Finally, bacterial proliferation during a eukaryotic gut cell (HT29) co-culture was significantly more robust for both K. pneumoniae and P. aeruginosa when exposed to both house and road dust; however, E. coli only experienced significantly enhanced proliferation, in HT29 co-culture, when exposed to road dust. Taken together, our findings demonstrate that bacteria respond to dust exposure differently when in the presence of multiple bacterial species or when in the presence of human gut epithelial cells, than when grown in isolation.  相似文献   

9.
Human Mesenchymal Stem Cells (hMSCs) were exposed to a developed extremely low-frequency (ELF) magnetic fields (50?Hz ,20?mT ELF) system to evaluate whether exposure to (ELF) magnetic fields affects growth, metabolism, and differentiation of hMSCs. MTT method was used to determine the growth and metabolism of hMSCs following exposure to ELF magnetic fields. Na+/K+ concentration and osmolality of extracelluar were measured after exposured culture. Alkaline phosphatase (ALP) assay and Calcium assay, ALP staining, and Alizarin red staining were performed to evaluate the osteogenic differentiation of hMSCs under the ELF magnetic field exposure. In these experiments, the cells were exposed to ELF for up to 23 days. The results showed that exposure to ELF magnetic field could inhibit the growth and metabolism of hMSC, but have no significant effect on differentiation of hMSCs. These results suggested that ELF magnetic field may influence the early development of hMSCs related adult cells.  相似文献   

10.
Primary cultures of chicken tendon fibroblasts have been exposed for various periods to a low-frequency, pulsed magnetic field, and the effects on protein and collagen synthesis have been examined by radioisotopic incorporation. Total protein synthesis was increased in confluent cells treated with a pulsed magnetic field for the last 24 h of culture as well as in cells treated for a total of 6 days. However, in 6 day-treated cultures, collagen accumulation was specifically enhanced as compared to total protein, whereas after short-term exposure, collagen production was increased only to the same extent as total protein. Levels of cyclic AMP were significantly decreased after 6-day pulsed magnetic field treatment, probably as a consequence of diminished adenylate cyclase activity. Exposure to pulsed magnetic field had no effect on cell proliferation or collagen phenotype. These results indicate that a pulsed magnetic field can specifically increase production of collagen, the major differentiated function of fibroblasts, possibly by altering cyclic-AMP metabolism.  相似文献   

11.
EMT6 mouse mammary tumour cells in vitro were exposed to an almost uniform 1400-gauss magnetic field during or after irradiation with 120 kV X-rays. Exposure of unirradiated control cultures to this field for up to 48 hours did not alter the viability or growth of the cells. Exposure of exponentially-growing cultures to the magnetic field during irradiation did not alter the survival curve. Exposure of exponentially-growing culturesto the magnetic field between two doses of 500 rad of X-rays did not alter significantly the pattern or magnitude of the recovery from sub-lethal damage. Exposure of plateau phase cultures to the magnetic field after irradiation did not alter significantly the pattern or magnitude of recovery from potentially-lethal damage. The effects of a short exposure to an almost uniform magnetic field of this strength on the production and repair of radiation damage appear to be minimal in this system.  相似文献   

12.
The growth of suspension cultures of Taxus chinensis var. mairei and Taxol production were promoted both by a sinusoidal alternating current magnetic field (50 Hz, 3.5 mT) and by a direct current magnetic field (3.5 mT). Taxol production increased rapidly from the 4th d with the direct current magnetic field but most slowly with the alternating current magnetic field. The maximal yield of Taxol was 490 microg l(-1) with the direct current magnetic field and 425 microg l(-1) with the alternating current magnetic field after 8 d of culture, which were, respectively, 1.4-fold and 1.2-fold of that without exposure to a magnetic field.  相似文献   

13.
In this study, in vitro tissue cultures of Paulownia tomentosa and Paulownia fortunei were prepared and then exposed to a magnetic flow density of 2.9–4.8 mT and 1 m s−1 flow rate for a period of 0, 2.2, 6.6 and 19.8 s. The magnetic field (MF) increased the regeneration capability of Paulownia cultures and shortened the regeneration time. On the 28th day of culture, the positive effect of magnetic field on plant fresh weight, length, number of leaves and chlorophyll content in node explants of P. tomentosa and P. fortunei was observed. It was found that this effect varied with exposure time. When the cultures were exposed to a magnetic field with strength of 2.9–4.8 mT for 19.8 s, the regenerated P. tomentosa and P. fortunei plants dominated the control plants.  相似文献   

14.
The cytokinesis block micronucleus method, a very sensitive cytogenetic assay, was used to ascertain the possible genotoxic effects of extremely low frequency pulsed magnetic fields in phytohemagglutinin-stimulated human lymphocytes cultures from 16 healthy donors. Four conditions were studied: i) lymphocytes not exposed to the field (control cultures); ii) lymphocytes exposed to the field; iii) lymphocytes treated with mitomycin-C and not exposed to the field; iv) lymphocytes treated with mitomycin-C and exposed to the field. Mitomycin-C-treated cultures were used as control for the micronucleus method, because it is known that mitomycin-C is a potent genotoxic agent, capable of inducing micronuclei. The frequency of micronuclei in field-exposed cultures was similar to the spontaneous frequency observed in control unexposed-cultures. Moreover, the exposure to pulsed magnetic fields did not affect the frequency of micronuclei induced by mitomycin-C, suggesting that, in the experimental conditions used, this kind of field neither affected the integrity of chromosomes nor interfered with the genotoxic activity of mitomycin-C.  相似文献   

15.
This study evaluated the effect of sinusoidal 50 Hz magnetic field on the basal and human chorionic gonadotropin (hCG)-stimulated testosterone (T) production of 48-h mouse Leydig cell culture. The luteinizing hormone (LH) analog hCG was used to check the T response of the controls and to evaluate the possible effect of the applied magnetic field on the steroidogenic capacity of the exposed cells. Leydig cells were obtained from the testes of 35- to 45-g CFLP mice and isolated by mechanical dissociation without enzyme treatment. The cell cultures were exposed to sinusoidal 50 Hz 100 μT (root mean square) AC magnetic field during the entire time of a 48-h incubation. Testosterone content of the culture media was measured by radioimmunoassay. In cultures exposed to the magnetic field, a marked increase of basal T production was found (P < .05), compared with the unexposed controls, whereas no significant difference was seen between the exposed or unexposed cultures in the presence of maximally stimulating concentration of hCG. These findings demonstrate that sinusoidal 50 Hz 100 μT magnetic fields are able to stimulate the basal T production of primary mouse Leydig cell culture, leaving the steroidogenic responsiveness to hCG unaltered. Bioelectromagnetics 19:429–431, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Previous assays with weak sinusoidal magnetic fields (SMF) have shown that bacteria that had been exposed to a 50 Hz magnetic field (0.1–1 mT) gave colonies with significantly lower transposition activity as compared to sham-exposed bacteria. These experiments have now been extended by using a pulsed-square wave magnetic field (PMF) and, unexpectedly, it was found that bacteria exposed to PMF showed a higher transposition activity compared to the controls. The increase of the transposition activity was positively correlated with the intensity of the magnetic fields (linear dose-effect relation). This phenomenon was not affected by any bacterial cell proliferation, since no significant difference was observed in number and size of PMF-exposed and sham-exposed colonies. In addition, the cell viability of E. coli was significantly higher than that of the controls when exposed to SMF, and lower than that of the controls when exposed to PMF. Under our experimental conditions it was shown that exposure to PMF stimulates the transposition activity and reduces cell viability of bacteria, whereas exposure to SMF reduces the transposition mobility and enhances cell viability. These results suggest that the biological effects of magnetic fields may critically depend on the physical characteristics of the magnetic signal, in particular the wave shape.  相似文献   

17.
The generalized polarization function of the fluorescent probe 2-dimethylamino-6-lauroylnaphthalene has been used to evaluate the lipid dynamics in Friend erythroleukemia cell membrane. The values of this function varied during the culture growth cycle, showing decreased lipid dynamics 24–48 h from the cell seeding. When the cycle occurred in a solenoid producing a magnetic field of 70 μT at 50 Hz in addition to the 45 μT DC of the earth (short-term 4-day exposure), the membrane lipid dynamics during this same time-period decreased by about 10% (P < .04). After long-term (184 days) or extremely long-term (395 days) exposure of the cells to the magnetic field, little additional variation in the membrane lipid dynamics was observed, suggesting an adaptation phenomenon. A variation of membrane lipid dynamics was also observed due to in vitro cell differentiation (P < .02). Nevertheless, the exposure of both undifferentiating and differentiating cells to a highly attenuated magnetic field in a magnetically shielded room (20 nT DC plus 2.5 pT AC) did not induce any modification of membrane lipid dynamics. Bioelectromagnetics 19:107–111, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Magnetotactic bacteria are characterized by the production of magnetosomes, nanoscale particles of lipid bilayer encapsulated magnetite, that act to orient the bacteria in magnetic fields. These magnetosomes allow magneto-aerotaxis, which is the motion of the bacteria along a magnetic field and toward preferred concentrations of oxygen. Magneto-aerotaxis has been shown to direct the motion of these bacteria downward toward sediments and microaerobic environments favorable for growth. Herein, we compare the magneto-aerotaxis of wild-type, magnetic Magnetospirillum magneticum AMB-1 with a nonmagnetic mutant we have engineered. Using an applied magnetic field and an advancing oxygen gradient, we have quantified the magnetic advantage in magneto-aerotaxis as a more rapid migration to preferred oxygen levels. Magnetic, wild-type cells swimming in an applied magnetic field more quickly migrate away from the advancing oxygen than either wild-type cells in a zero field or the nonmagnetic cells in any field. We find that the responses of the magnetic and mutant strains are well described by a relatively simple analytical model, an analysis of which indicates that the key benefit of magnetotaxis is an enhancement of a bacterium's ability to detect oxygen, not an increase in its average speed moving away from high oxygen concentrations.  相似文献   

19.
The influence of near null magnetic field on in vitro growth of different cultures of potato and related Solanum species was investigated for various exposure times and dates. Potato (Solanum tuberosum L. cv. Désirée) in vitro cultures of shoot tips or nodal segments were used. Three different exposure periods revealed either stimulation or inhibition of root, stem, or leaf in vitro growth after 14 or 28 days of exposure. In one experiment the significant stimulation of leaf growth was also demonstrated at biochemical level, the quantity of chlorophyll a and b and carotenoids increasing more than two-fold. For the wild species Solanum chacoense, S. microdontum, and S. verrucosum, standardized in vitro cultures of nodal stem segments were used. Root and stem growth was either stimulated or slightly inhibited after 9 days exposure to near null magnetic field. Callus cultures obtained from potato dihaploid line 120/19 were maintained in near null magnetic field in 2 different months. For these experiments as well as for Solanum verrucosum, callus cultures recorded either slight inhibition or no effect on fresh weight. For all experiments significant growth variation was brought about only when geomagnetic activity (AP index) showed variations at the beginning of in vitro growth and when the explant had at least one meristematic tissue. Moreover longer maintenance in near null magnetic field, 28 days as compared to 14 days or the controls, can also make a difference in plant growth in response to geomagnetic field variations when static component was reduced to zero value. These results of in vitro plant growth stimulation by variable component of geomagnetic field also sustain the so-called seasonal "window" effect.  相似文献   

20.
The growing exposure to magnetic fields of a certain intensity could represent a serious hazard for our health. In the present note we analyze the effect of a 740 Gauss magnetic field on human lymphocyte cell cultures. From the analysis of our data it is possible to point out that this field produces an inhibition of the cell growth, while does not affect at all the sister chromatid exchange frequency of the chromosomes. Conversely we found a significant increase of chromosome aberrations in the exposed cells. The chromosome aberrations found were mostly gaps and breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号