首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effects of the source of recipient oocytes and timing of fusion and activation on the development competence of bovine nuclear transferred (NT) embryos derived from fresh cumulus cells isolated immediately after collection by ovum pickup (OPU). As recipient cytoplasts, we used in vivo-matured oocytes collected from hormone-treated heifers by OPU, or in vitro-matured oocytes from slaughterhouse-derived ovaries. NT embryos were chemically activated immediately (simultaneous fusion and activation, FA) or 2 h (delayed activation, DA) after fusion. When in vitro-matured oocytes were used as recipient cytoplasts, the development rate to the blastocyst stage of NT embryos produced by the DA method (23%) tended to be higher than those by the FA method (15%), but the difference was not significant. NT embryos derived from in vivo-matured cytoplasts have a high blastocyst yield (46%). Pregnancy rate at day 35 did not differ with the timing of fusion and activation (FA vs. DA; 50% vs. 44%) or oocyte source (in vivo- vs. in vitro-matured; 50% vs. 44%). Subsequently, the high fetal losses (88% of pregnancies) were observed with in vitro-matured cytoplasts, whereas no abortions were observed in NT fetuses from in vivo-matured cytoplasts. A total of three embryos derived from fresh cumulus cells developed to term. However, all three cloned calves were stillborn. These results indicate that improvement of development competence after NT is possible by using in vivo-matured oocytes as recipient cytoplasts in bovine NT.  相似文献   

2.
Different factors are believed to influence the outcome of nuclear transfer (NT) experiments. Besides the cell cycle stage of both recipient cytoplast and donor karyoplast, the origin of the donor cells (embryonic, fetal, and adult) is of interest. We compared in vitro development of NT embryos derived from small serum-starved (G0) or small cycling (G1) porcine fetal fibroblast cells. Serum starvation did not have a positive effect on cleavage rate or the percentage of embryos that developed to the morula and blastocyst stages. Next, we investigated the development of porcine NT embryos derived from different transgenic clonal cell lines that had originated from the same fetus. When different clonal lines of fetal fibroblasts were fused to enucleated metaphase II oocytes, differences in fusion rates as well as in development to the morula and blastocyst stages were observed (P < 0.05). When oocytes derived from sow ovaries were used as recipient cytoplasts, significantly better cleavage (P = 0.03) and blastocyst formation (P < 0.014) was obtained when compared with oocytes derived from gilts. Our data indicate that not only different cell lines, but also different clones derived from one primary cell line, result in different development when used for NT. In addition, the use of sow oocytes as a cytoplast source also improves the efficiency of NT experiments.  相似文献   

3.
Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p < 0.05) percentage of blastocyst development was observed in the NT embryos activated by calcium ionophore and 6-DMAP when compared with 6-DMAP alone (33% versus 17%). The results indicate that the somatic nuclei from buffalo can be reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.  相似文献   

4.
Viable Transgenic Goats Derived from Skin Cells   总被引:3,自引:0,他引:3  
The current study was undertaken to evaluate the possibility of expanding transgenic goat herds by means of somatic cell nuclear transfer (NT) using transgenic goat cells as nucleus donors. Skin cells from adult, transgenic goats were first synchronized at quiescent stage (G0) by serum starvation and then induced to exit G0 and proceed into G1. Oocytes collected from superovulated donors were enucleated, karyoplast-cytoplast couplets were constructed, and then fused and activated simultaneously by a single electrical pulse. Fused couplets were either co-cultured with oviductal cells in TCM-199 medium (in vitro culture) or transferred to intermediate recipient goat oviducts (in vivo culture) until final transfer. The resulting morulae and blastocysts were transferred to the final recipients. Pregnancies were confirmed by ultrasonography 25-30 days after embryo transfer. In vitro cultured NT embryos developed to morulae and blastocyst stages but did not produce any pregnancies while 30% (6/20) of the in vivo derived morulae and blastocysts produced pregnancies. Two of these pregnancies were resorbed early in gestation. Of the four recipients that maintained pregnancies to term, two delivered dead fetuses 2-3 days after their due dates, and two recipients gave birth to healthy kids at term. Fluorescence in situ hybridization (FISH) analysis confirmed that both kids were transgenic and had integration sites consistent with those observed in the adult cell line.  相似文献   

5.
Birth of African Wildcat cloned kittens born from domestic cats   总被引:5,自引:0,他引:5  
In the present study, we used the African Wildcat (Felis silvestris lybica) as a somatic cell donor to evaluate the in vivo developmental competence, after transfer into domestic cat recipients, of cloned embryos produced by the fusion of African Wildcat (AWC) fibroblast cell nuclei with domestic cat cytoplasts. Cloned embryos were produced by fusion of a single AWC somatic cell to in vivo or in vitro enucleated domestic cat cytoplasts. When the two sources of oocytes were compared, fusion rate was higher using in vivo-matured oocytes as recipient cytoplasts, but cleavage rate was higher after reconstruction of in vitro-matured oocytes. To determine the number of reconstructed embryos required per domestic cat recipient to consistently establish pregnancies, AWC cloned embryos were transferred within two groups: recipients (n = 24) receiving < or =25 embryos and recipients (n = 26) receiving > or =30 embryos. Twelve recipients (46.2%) receiving > or =30 embryos were diagnosed to be pregnant, while no pregnancies were established in recipients receiving < or =25 NT embryos. Also, to determine the influence of length of in vitro culture on pregnancy rate, we compared oviductal transfer on day 1 and uterine transfer on day 5, 6, or 7. Pregnancy rates were similar after transfer of embryos on day 1 (6/12; 50.0%), day 5 (4/9; 44.4%), or day 6 (2/5; 40.0%) to synchronous recipients, but the number of fetuses developing after transfer of embryos on day 1 (n = 17), versus day 5 (n = 4) or day 6 (n = 3) was significantly different. Of the 12 pregnant recipients, nine (75%) developed to term and fetal resorption or abortion occurred in the other three (25%) from day 30 to 48 of gestation. Of a total of 17 cloned kittens born, seven were stillborn, eight died within hours of delivery or up to 6 weeks of age, and two are alive and healthy. Perinatal mortality was due to lung immaturity at premature delivery, placental separation and bacterial septicemia. Subsequent DNA analysis of 12 cat-specific microsatellite loci confirmed that all 17 kittens were clones of the AWC donor male. These AWC kittens represent the first wild carnivores to be produced by nuclear transfer.  相似文献   

6.
We have examined the reprogramming ability of donor fibroblast nuclei in various phases of the cell cycle, upon transfer to cytoplasts, using a bovine nuclear transfer (NT) model. Bovine fetal fibroblasts were cultured in reduced serum and conditioned medium to induce quiescence (G0) and treated with nocodazole to induce M phase arrest. Unsynchronized actively dividing cells (control) were mainly in G1. Cells synchronized in G0, M, and G1 phase were transferred to enucleated bovine MII oocytes by direct injection using the Piezo-Drill microinjector. NT oocytes were artificially activated following injection. Cells at the M phase were also transferred to enucleated oocytes after artificial activation. Cells induced into quiescence by serum starvation and unsynchronized donor cells produced the highest rates of development to the morula/blastocyst stage (20% and 18%, respectively). Development to blastocyst was significantly higher in parthenogenetic controls compared to NT embryos. The transfer of M phase nuclei to MII cytoplasts was not associated with high development to the blastocyst stage. Nevertheless, determining the viability of these embryos requires transfer to recipient animals and assessment of in vivo development.  相似文献   

7.
Factors influencing premature chromosome condensation (PCC) in transferred rat nuclei have been examined. Chromosome condensation of rat cumulus cell nuclei did not occur when the cell nuclei were injected into enucleated rat oocytes. By contrast, chromosome condensation did occur after transfer to enucleated mouse oocytes or intact rat oocytes. In the first serial NT experiment, rat somatic cell nuclei were injected into enucleated mouse oocytes, and the reconstructed oocytes were activated by strontium chloride. From these reconstructed embryos, karyoplasts containing pronucleus-like vesicles were transferred into pronuclear zygote-derived cytoplasts by a DC pulse. Transfer of a total of 340 serial NT zygotes into recipient females, including 206 two-cell embryos, resulted in only seven implantation sites. In the second serial NT experiment, rat somatic cell nuclei were injected into intact rat oocytes; the recipient metaphase-plate was then aspirated under UV light from the NT oocytes in which PCC of injected nuclei was observed. After activation of the NT oocytes, karyoplasts were introduced into zygote-derived cytoplasts. Transfer of a total of 115 serial NT zygotes, including 37 two-cell embryos, resulted in four implantation sites but no live offspring. These results establish a mean of inducing chromosome condensation in rat oocytes and demonstrate that reconstructed rat zygotes can be prepared by serial NT procedures. Developmental competence of these embryos remains to be clarified.  相似文献   

8.
Dairy goats are ideal for the transgenic production of therapeutic recombinant proteins. The use of recombinant somatic cell lines for nuclear transfer (NT) allows the introduction of genes by transfection, increases the efficiency of transgenic animal production to 100%, and overcomes the problem of founder mosaicism. Although viable animals have been cloned via NT from somatic cells of 11 species, the efficiency has been extremely low. Both blastomere and somatic cell NT increased fetal loss and perinatal morbidity/mortality in cattle and sheep, but fetal loss and perinatal mortality appear to be relatively low in goats. In this study, we produced cloned goats by NT from cumulus cells and long-term cultured fetal fibroblast cells (FFCs) to abattoir-derived oocytes. NT embryos were constructed from electrofusion of cumulus cells (CCs), FFCs, or skin fibroblast cells (SFCs) with cytoplasts prepared from abattoir-derived ovaries. The NT embryos were activated with an optimized activating protocol (1 min exposure to 2.5 microM ionomycin followed by 2 hr incubation in 2mM 6-DMAP). Two viable cloned kids from CCs and one from long-term cultured FFCs (at passage 20-25) were born. Microsatellite analysis of 10 markers confirmed that all cloned offspring were derived from corresponding donor cells. To our knowledge, the production of cloned goat offspring using abattoir-derived oocytes receiving nuclei from CCs and long-term cultured FFCs has not been reported. The production of viable cloned animals after activation with reduced intensity of ionomycin and 6-DMAP treatment has also not been reported. Loss of cloned embryos was obvious after 45 and 90 days of pregnancy, and a lack of cotyledons, heart defects, and improperly closed abdominal wall were observed in the aborted fetuses and one cloned kid. The fusibility and in vitro developmental potential of embryos reconstructed from FFCs at passage 20-25 were significantly lower than those of embryos reconstructed from FFCs at passage 3-5, and the cloning efficiency of the long-term cultured cells was low (0.5%).  相似文献   

9.
In embryos derived by nuclear-transfer (NT), fusion of donor cell and recipient oocyte caused mitochondrial heteroplasmy. Previous studies from other laboratories have reported either elimination or maintenance of donor-derived mitochondrial DNA (mtDNA) from somatic cells in cloned animals. Here we examined the distribution of donor mtDNA in NT embryos and calves derived from somatic cells. Donor mitochondria were clearly observed by fluorescence labeling in the cytoplasm of NT embryos immediately after fusion; however, fluorescence diminished to undetectable levels at 24 hr after nuclear transfer. By PCR-mediated single-strand conformation polymorphism (PCR-SSCP) analysis, donor mtDNAs were not detected in the NT embryos immediately after fusion (less than 3-4%). In contrast, three of nine NT calves exhibited heteroplasmy with donor cell mtDNA populations ranging from 6 to 40%. These results provide the first evidence of a significant replicative advantage of donor mtDNAs to recipient mtDNAs during the course of embryogenesis in NT calves from somatic cells.  相似文献   

10.
Lu F  Shi D  Wei J  Yang S  Wei Y 《Theriogenology》2005,64(6):1309-1319
The objective of this study was to explore the feasibility of employing adult fibroblasts as donor cells in interspecies nuclear transfer (NT) between buffaloes and cattle. Buffalo and bovine oocytes matured in vitro for 22 h were enucleated by micromanipulation using the Spindle View system. An ear fibroblast, pretreated with 0.1 microg/mL aphidicolin for 24 h, followed by culture for 2-9 days in Dulbecco's Modified Eagle's Media+0.5% fetal bovine serum, was introduced into the cytoplast by microinjection. Reconstructed oocytes were activated by exposure to 5 microM ionomycin for 5 min and 2 mM 6-dimethylaminopurine for 3 h. When buffalo adult fibroblasts were used as donor cells, there were no differences (P < 0.75) in the cleavage rate (66.2% versus 64.0%) between bovine and buffalo recipient oocytes, but more embryos derived from bovine cytoplasts developed to blastocysts than from buffalo cytoplasts (13.3% versus 3.0%, P < 0.05). When bovine adult fibroblasts were used as donor nuclei, both cleavage rate (45.3%) and blastocyst yield (4.5%) of NT embryos derived from buffalo cytoplasts were lower than those of NT embryos derived from bovine cytoplasts (65.5 and 11.9%, P < 0.05). The proportion of parthenogenetic buffalo (29.1%) or bovine (35.6%) oocytes developing to blastocysts was higher than those of NT embryos (P < 0.01). Interspecies NT embryos were derived from the donor cells and 55.0-61.9% of them possessed a normal diploid karyotype. In conclusion, embryos reconstructed by interspecies NT of adult fibroblasts between buffaloes and cattle developed to blastocysts, but bovine cytoplasts may direct embryonic development more effectively than buffalo cytoplasts, regardless of donor cell species.  相似文献   

11.
This study investigated the basic conditions required for the production of horse embryos by the transfer of the nuclei of fetal and adult fibroblast cells to enucleated oocytes. Cumulus-oocyte complexes were recovered from abattoir ovaries and matured in vitro in groups of 20-30 for 28-30 h in tissue culture medium 199 containing 20% v:v fetal bovine serum in coculture with equine oviduct epithelial cells. Fetal fibroblast cells (FFC) were derived from a 32-day-old Thoroughbred x Pony fetus, and adult skin fibroblast cells (SFC) were obtained from subdermal biopsies recovered from a 4-yr-old female Pony. The rates of fusion between the recipient cytoplasm with either FFC or SFC were significantly greater when the cells were treated with a combination of direct current (DC) pulses and Sendai virus rather than with DC pulses alone (81%-82% vs. 49%-57%, P < 0.05). There were no differences in the rates of nuclear reprogramming between FFC and SFC (88% vs. 84%), but the rate of cleavage of the resulting embryos to the 2-cell stage was higher when FFC were used (53%) than when SFC were used (35%). Blastocysts were obtained from oocytes reconstructed with both types of donor cells and after culture in vitro for 6-7 days, but the overall proportion of blastocysts produced was very low in both cases (FFC, 4%; SFC, 7%). These results demonstrate a very limited potential for in vitro development of horse embryos after nuclear reprogramming following the transfer of nuclei from either fetal or adult fibroblasts into recipient enucleated oocytes.  相似文献   

12.
In order to optimize each of the individual steps in the nuclear transfer procedure, we report alternative protocols useful for producing recipient cytoplasts and for improving the success rate of nuclear transfer embryos in cattle, rhesus monkey, and hamster. Vital labeling of maternal chromatin/spindle is accomplished by long wavelength fluorochromes Sybr14 and rhodamine labeled tubulin allowing constant monitoring and verification during enucleation. The use of Chinese hamster ovary (CHO) donor cells expressing the viral influenza hemagglutinin fusion protein (HA-300a+), to adhere and induce fusion between the donor cells and enucleated cow, rhesus and hamster oocytes was examined. Cell surface hemagglutinin was activated with trypsin prior to nuclear transfer and fusion was induced by a short incubation of a newly created nuclear transfer couplet at pH 5.2 at room temperature. Donor cell cytoplasm was dynamically labeled with CMFDA, or further transfected with the green fluorescence protein (GFP) gene, so that fusion could be directly monitored using live imaging. High rates of fusion were observed between CHO donor cells and hamster (100%), rhesus (100%), and cow recipient cytoplasts (81.6%). Live imaging during fusion revealed rapid intermixing of cytoplasmic components between a recipient and a donor cell. Prelabeled donor cytoplasmic components were uniformly distributed throughout the recipient cytoplast, within minutes of fusion, while the newly introduced nucleus remained at the periphery. The fusion process did not induce activation as evidenced by unchanged distribution and density of cortical granules in the recipient cytoplasts. After artificial activation, the nuclear transfer embryos created in this manner were capable of completing several embryonic cell divisions. These procedures hold promise for enhancing the efficiency of nuclear transfer in mammals of importance for biomedical research, agriculture, biotechnology, and preserving unique, rare, and endangered species.  相似文献   

13.
We have examined the in vitro and in vivo development of cloned embryos produced by incorporation of fetal fibroblast into in vitro matured and enucleated cow oocytes by direct injection and by fusion. For injection, nuclei were either mechanically isolated using the microinjection needle or chemically isolated by treatment with NP-40 lysis buffer. Fetal fibroblasts were serum starved and treated with calcium ionophore before injection to induce chromatin condensation. A range of 8% to 16% of successfully injected oocytes developed to blastocysts in culture and a total of nine pregnancies resulted from transfer of cloned embryos produced by this method. Nuclear transfer by fusion resulted in 22% development to blastocysts. Unlike in mice, the embryos derived from injection did not result in viable pregnancies, which may suggest species differences. All pregnancies were terminated after 45 to 150 days from transfer. Two pregnancies resulted from transfer of cloned embryos obtained by fusion which produced two healthy female calves. The study proposes an alternative method for the production of cow cloned embryos. Further research, however, is required to optimize bovine cloning by injection.  相似文献   

14.
15.
This study was conducted to evaluate the effects of insulin-like growth factor I (IGF-I) and other media factors during oocyte maturation, and the presence of different compositions of amino acids in embryo culture medium, on the development of equine embryos. Oocytes recovered from slaughterhouse-derived ovaries were matured in vitro for 24 h and those with a polar body were subjected to intracytoplasmic sperm injection (ICSI) or nuclear transfer with adult fibroblasts (NT). For ICSI embryos, there were no significant differences in rates of morphological cleavage, cleavage with normal nuclei or average nucleus number at 96 h post-ICSI between the absence and presence of IGF-I in maturation medium, or between embryos cultured in G1.2 or a modified CZB medium (CZB-C). Embryos produced by interspecies NT (equine donor cells into bovine cytoplasts) also showed no difference in cleavage rate or average nucleus number whether cultured in G1.2 or in CZB-C. The rates of cleavage, cleavage with normal nuclei and average nucleus number of equine NT embryos were not significantly different among oocytes matured in M199 with FSH in the presence or absence of IGF-I, or in EMMI medium, which contains IGF-I, epidermal growth factor, steroid hormones, FSH and LH. There were no differences in development of equine NT embryos cultured in any of three amino acid treatments (with or without non-essential amino acids, or containing taurine, hypotaurine and cysteine only). The cleavage rate and average nucleus number of parthenogenetically activated oocytes (treated similarly to NT oocytes but not enucleated or subjected to donor cell injection) were significantly (p < 0.05) higher than those for NT embryos. These results indicate that the presence of IGF-I or of EMMI medium during in vitro maturation of equine oocytes does not have a beneficial effect on their developmental competence as assessed at 96 h. Presence or absence of non-essential amino acids in embryo culture medium does not affect development of NT embryos within the first 96 h of culture. Factors associated with enucleation or nuclear transfer decrease the developmental competence of equine NT embryos. CZB-C medium may be used for culture of equine embryos with results similar to those obtained with G1.2 medium, thus providing a base medium that may be modified for further study of culture requirements of equine embryos.  相似文献   

16.
The developmental potential of caprine fetal fibroblast nuclei after in vitro transfection and nuclear transfer (NT) into enucleated, in vitro-matured oocytes was evaluated. Fetal fibroblasts were isolated from Day 27 to Day 30 fetuses from a dwarf breed of goat (BELE: breed early lactate early). Cells were transfected with constructs containing the enhanced green fluorescent protein (eGFP) and neomycin resistance genes and were selected with G418. Three eGFP lines and one nontransfected line were used as donor cells in NT. Donor cells were cultured in Dulbecco minimum Eagle medium plus 0.5% fetal calf serum for 4-8 days prior to use in NT. Immature oocytes were recovered by laparoscopic ovum pick-up and matured for 24 h prior to enucleation and NT. Reconstructed embryos were transferred as cleaved embryos into synchronized recipients. A total of 27 embryos derived from transgenic cells and 70 embryos derived from nontransgenic cells were transferred into 13 recipients. Five recipients (38%) were confirmed pregnant at Day 35 by ultrasound. Of these, four recipients delivered five male kids (7.1% of embryos transferred) derived from the nontransfected line. One recipient delivered a female kid derived from an eGFP line (7.7% of embryos transferred for that cell line). Presence of the eGFP transgene was confirmed by polymerase chain reaction, Southern blotting, and fluorescent in situ hybridization analyses. Nuclear transfer derivation from the donor cells was confirmed by single-strand confirmation polymorphism analysis. These results demonstrate that both in vitro-transfected and nontransfected caprine fetal fibroblasts can direct full-term development following NT.  相似文献   

17.
The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 μg/mL G418, transgenic cell lines from each type of somatic cells were obtained. Nontransgenic granulosa cells and all 4 types of transgenic somatic cells were used as nuclear donor to produce transgenic embryos by NT. There was no significant difference in development rates to the blastocyst stage for NT embryos from transgenic and nontransgenic granulosa cells (44.6% and 42.8%, respectively), and transfer of NT embryos derived from transgenic and nontransgenic granulosa cells to recipients resulted in similar pregnancy rates on day 90 (19% and 25%, respectively). The development rates to the blastocyst stage of NT embryos were significantly different among different types of transgenic donor cells (P<0.05). Blastocyst rates from fetal oviduct epithelial cell and granulosa cell (49.1% and 44.6%, respectively) were higher than those from fetal fibroblast (32.7%) and fetal ovary epithelial cell (22.5%). These results suggest that (i) genetic manipulation to donor cells has no negative effect on in vitro and early in vivo developmental competence of bovine NT embryos and (ii) granulosa and fetal oviduct epithelial cells can be used to produce transgenic bovine NT embryos more efficiently. In addition, GFP can be used to select transgenic NT embryos as a non-invasive selective marker.  相似文献   

18.
To clone a pig from somatic cells, we first validated an electrical activation method for use on ovulated oocytes. We then evaluated delayed versus simultaneous activation (DA vs. SA) strategies, the use of 2 nuclear donor cells, and the use of cytoskeletal inhibitors during nuclear transfer. Using enucleated ovulated oocytes as cytoplasts for fetal fibroblast nuclei and transferring cloned embryos into a recipient within 2 h of activation, a 2-h delay between electrical fusion and activation yielded blastocysts more reliably and with a higher nuclear count than did SA. Comparable rates of development using DA were obtained following culture of embryos cloned from ovulated or in vitro-matured cytoplasts and fibroblast or cumulus nuclei. Treatment of cloned embryos with cytochalasin B (CB) postfusion and for 6 h after DA had no impact on blastocyst development as compared with CB treatment postfusion only. Inclusion of a microtubule inhibitor such as nocodozole with CB before and after DA improved nuclear retention and favored the formation of single pronuclei in experiments using a membrane dye to reliably monitor fusion. However, no improvement in blastocyst development was observed. Using fetal fibroblasts as nuclear donor cells, a live cloned piglet was produced in a pregnancy that was maintained by cotransfer of parthenogenetic embryos.  相似文献   

19.
The banteng (Bos javanicus), a member of the bovidae family, is currently listed as threatened by the IUCN Red List and it is estimated the total world population is <10,000 animals. In exotic or endangered species, the lack of oocytes and recipients precludes the use of traditional somatic cell nuclear transfer (NT), and an approach such as interspecies NT may be the only alternative to produce embryos and offspring. A total of 348 enucleated domestic bovine oocytes were reconstructed with either male (Treatment A) or female (Treatment B) adult banteng fibroblasts and a total of 103 bovine oocytes were parthenogenically activated as a control (Treatment C). There was no significant difference in fusion rate (68 versus 77%) between Treatments A and B. Of fused couplets, those in Treatment A had greater (P < 0.05) cleavage (67 versus 51%) and blastocyst (28 versus 15%) rate than Treatment B. Of a total of 24 blastocysts transferred into 12 domestic cattle recipients from Treatment A, two pregnancies (17%) were established with heart beats detectable at 30 day by rectal ultrasonography. No pregnancies resulted from the transfer of 14 blastocysts from Treatment B. Both pregnancies were subsequently lost, one between 30 and 60 days and the second between 60 and 90 days of gestation. The bovine cytoplast supported mitotic cleavage of banteng karyoplasts, and was capable of reprogramming the nucleus to achieve blastocyst stage embryos and pregnancies in exotic bovids.  相似文献   

20.
Cloning mammalian species from cell lines of adult animals has been demonstrated. Aside from its importance for cloning multiple copies of genetically valuable livestock, cloning now has the potential to salvage endangered or even extinct species. The aim of this study was to investigate the effect of the bovine and domestic (Ovis aries) ovine oocyte cytoplasm on the nucleus of an established cell line from an endangered argali wild sheep (Ovis ammon) after nuclear transplantation. A fibroblast cell line was established from skin biopsies from an adult argali ram from the People's Republic of China. Early karyotype analysis of cells between 3-6 passages revealed a normal diploid chromosome number of 56. The argali karyotype consisted of 2 pairs of biarmed and 25 pairs of acrocentric autosomes, a large acrocentric and minute biarmed Y. Bovine ovaries were collected from a local abattoir, oocytes aspirated, and immediately placed in maturation medium consisting of M-199 containing 10% fetal bovine serum, 100 IU/mL penicillin, 100 microg/mL streptomycin, 0.5 microg/mL follicle-stimulating hormone (FSH), 5.0 microg/mL luetinizing hormone (LH) and 1.0 microg/mL estradiol. Ovine (O. aries) oocytes were collected at surgery 25 hours postonset of estrus from the oviducts of superovulated donor animals. All cultures were carried out at 39 degrees C in a humidified atmosphere of 5% CO2 and air. In vitro matured MII bovine oocytes were enucleated 16-20 hours after onset of maturation and ovine oocytes within 2-3 hours after collection. Enucleation was confirmed using Hoechst 33342 and UV light. The donor argali cells were synchronized in G0-G1 phase by culturing in Dulbecco's modified Eagle's medium (DMEM) plus 0.5% fetal bovine serum for 5-10 days. Fusion of nuclear donor cell to an enucleated oocyte (cytoplast) to produce nuclear transfer (NT) embryos was induced by 2 electric pulses of 1.4 kV/cm for 30 microsc. Fused NT embryos were activated after 24 hours of maturation by exposure to ionomycin (5 microM, 4 minutes) followed by incubation in 6-dimethylaminopurine (0.2 mM, 4 hours) and cultured in microdrops of CR1aa medium. From a total of 166 constructed nuclear donor cell-bovine cytoplasm NT couples, 128 (77%) successfully fused, 100 (78%) developed to 8-16 cell stage, and 2 (1.56%) developed to the blastocyst stage. The presence of argali nuclei in 8-16 cell stage embryo clones was confirmed after observation of Hoechst 33342 stained embryos under UV light and chromosome analysis of metaphase spreads from blastomeres. A total of 127 constructed nuclear donor cell-ovine cytoplasm NT couples were produced, 101 (80%) successfully fused, 81 (80% of fused) developed to the 16- to 32-cell stage. A total of 28 hybrid (argali-sheep) and 21 sheep-sheep NT embryos were transferred into 6 recipients and 4 recipients, respectively. Two of these recipients, 1 carrying argali-sheep and 1 sheep-sheep, were confirmed pregnant at 49 days by ultrasound, but both pregnancies terminated by 59 days. The results of this study demonstrate the possibility of using xenogenic oocytes to produce early-stage embryos and pregnancies from an established fibroblast cell line of an endangered species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号