首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to evaluate the learning and memory, in an altered physiological state associated with increased blood pressure and activated renin angiotensin system in Wistar rats. The role of angiotensin in cognitive function was assessed by treatment with angiotensin converting enzyme (ACE) inhibitor enalapril (2 mg/kg), angiotensin 1 receptor (AT(1)) antagonist losartan (5 mg/kg) and their combination. The experimental renal hypertension was induced by the method of Goldblatt. Learning and memory was assessed using the radial arm maze test. Acetylcholine esterase (AChE) levels in the pons medulla, hippocampus, striatum and frontal cortex were measured as a cholinergic marker of learning and memory. Results indicate that in comparison to normotensive rats, renal hypertensive rats committed significantly higher number of errors and took more trials and days to learn the radial arm maze learning and exhibited memory deficit in the radial arm maze retrieval after two weeks of retention interval, indicating impaired acquisition and memory. Treatment with enalapril, losartan and their combination attenuated the observed memory deficits indicating a possible role of renin angiotensin system in cognitive function. AChE level was reduced in hippocampus and frontal cortex of renal hypertensive rats which could be attributed to the observed memory deficit in hypertensive rats. It can be concluded that, renal hypertensive rats had a poor acquisition, retrieval of the learned behavior, perhaps a possible disturbance in memory consolidation process and that this state was reversed with ACE inhibitor enalapril and AT 1 receptor antagonist losartan.  相似文献   

2.
The effects of enalapril, an angiotensin converting enzyme (ACE) inhibitor, and losartan, an angiotensin II receptor type I antagonist, were investigated on alterations in myofibrillar ATPase activity as well as myosin heavy chain (MHC) content and gene expression in failing hearts following myocardial infarction (MI). Three weeks after ligation of the left coronary artery, rats were treated with or without enalapril (10 mg/kg/day), and/or losartan (20 mg/kg/day) for 5 weeks. The infarcted animals exhibited an increase in left ventricle (LV) end diastolic pressure and depressed rates of LV pressure development as well as pressure decay. LV myofibrillar Ca2+ -stimulated ATPase activity was decreased in the infarcted hearts compared with controls, MHC alpha-isoform content was significantly decreased whereas that of MHC beta-isoform was markedly increased. The level of MHC alpha-isoform mRNA was decreased whereas that of MHC beta-isoform was increased in the viable infarcted LV. Treatment of animal with enalapril, losartan, or combination of enalapril and losartan partially prevented the MI induced changes in LV function, myofibrillar Ca2+ -stimulated ATPase activity, MHC protein expression and MHC gene expression. The results suggest that the beneficial effects of the renin-angiotensin system blockade in heart failure are associated with partial prevention of myofibrillar remodeling.  相似文献   

3.
Pathological changes in glomerular structure are typically associated with the progression of diabetic nephropathy. The involvement of angiotensin II (AII) in pathogenesis of diabetic nephropathy has been extensively studied and the therapeutic advantages associated with blockade of renin-angiotensin system (RAS), primarily with angiotensin converting enzyme (ACE) inhibitors, has been well-documented. We studied the effect of RAS blockade with an AII receptor antagonist (losartan) vs. an ACE inhibitor (enalapril) on glomerular lesions in KKAy mice, a model of type 2 diabetes mellitus. Losartan was administered at 3 and 10 mg/kg/day and enalapril at 3 mg/kg/day for 14 weeks in the drinking water. The doses of losartan at 10 mg/kg/day was expected to be equivalent to 3 mg/kg/day of enalapril when considering clinical doses for lowering blood pressure. The dose of 3 mg/kg/day of losartan was selected to compare the efficacy at equivalent dose of enalapril. Histologic observation demonstrated suppression of glomerular mesangial expansion and glomerulosclerosis with exudative lesion in the 10 mg/kg/day losartan group when compared to the untreated diabetic controls. A lesser degree of glomerulosclerosis was also observed with losartan and enalapril treatment at 3 mg/kg/day. Ultrastructural examination of renal glomeruli from the high dose losartan group revealed a decreased degree of effacement and/or irregular arrangement of glomerular podocytic foot process. The beneficial effect of RAS inhibition with the AII receptor antagonist losartan on diabetic glomerular lesions was clearly demonstrated in this study. These findings, therefore, provide mechanistic explanation for the clinical utility of losartan for use in the treatment of diabetic nephropathy in man.  相似文献   

4.
Two endothelium-derived factors, endothelin (ET), a vasoconstrictor, and vascular endothelial growth factor (VEGF), an angiogenic factor are thought to be involved in the pathogenesis of diabetic vascular complications. The aim of this study was to determine the effects of an angiotensin II type I (AT-1) receptor antagonist and an ACE inhibitor on the pathogenesis of VEGF and ET-1-mediated kidney disease in STZ-induced diabetic rats. Two days after STZ administration, diabetic rats were treated for 8 weeks with enalapril maleate, an ACE inhibitor, candesartan cilexetil, an AT-1 receptor antagonist, or saline. Urinary albumin and N-acetyl beta-D glucosaminidase (NAG) excretion as well as the VEGF protein content in the kidney were all found to be elevated in diabetic rats. Administration of enalapril maleate or candesartan cilexetil decreased the level of microalbuminuria and NAG excretion in diabetic rats. Administration of enalapril maleate also suppressed the elevated renal VEGF protein content in these animals while candesartan cilexetil treatment had no effect. Serum ET-1 and VEGF levels were unchanged by these treatments. These data support a role for AT-1 receptor antagonists and ACE inhibitors in the prevention of diabetic nephropathy, and suggest that the former may work by reducing renal VEGF levels.  相似文献   

5.
Chronic treatment of rats with N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension mediated partly by enhanced angiotensin-I-converting enzyme (ACE) activity. We examined the influence of L-NAME on rat liver morphology, on hepatic glycogen, cholesterol, and triglyceride content, and on the activities of the cytochrome P450 isoforms CYP1A1/2, CYP2B1/2, CYP2C11, and CYP2E1. Male Wistar rats were treated with L-NAME (20 mg/rat per day via drinking water) for 2, 4, and 8 weeks, and their livers were then removed for analysis. Enzymatic induction was produced by treating rats with phenobarbital (to induce CYP2B1/2), beta-naphthoflavone (to induce CYP1A1/2), or pyrazole (to induce CYP2E1). L-NAME significantly elevated blood pressure; this was reversed by concomitant treatment with enalapril (ACE inhibitor) or losartan (angiotensin II AT(1) receptor antagonist). L-NAME caused vascular hypertrophy in hepatic arteries, with perivascular and interstitial fibrosis involving collagen deposition. Hepatic glycogen content also significantly increased. L-NAME did not affect fasting glucose levels but significantly reduced insulin levels and increased the insulin sensitivity of rats, based on an intraperitoneal glucose tolerance test. Immunoblotting experiments indicated enhanced phosphorylation of protein kinase B and of glycogen synthase kinase 3. All these changes were reversed by concomitant treatment with enalapril or losartan. L-NAME had no effect on hepatic cholesterol or triglyceride content or on the basal or drug-induced activities and protein expression of the cytochrome P450 isoforms. Thus, the chronic inhibition of NO biosynthesis produced hepatic morphological alterations and changes in glycogen metabolism mediated by the renin-angiotensin system. The increase in hepatic glycogen content probably resulted from enhanced glycogen synthase activity following the inhibition of glycogen synthase kinase 3 by phosphorylation.  相似文献   

6.
Earlier studies have revealed an improvement of cardiac function in animals with congestive heart failure (CHF) due to myocardial infarction (MI) by treatment with angiotensin converting enzyme (ACE) inhibitors. Since heart failure is also associated with attenuated responses to catecholamines, we examined the effects of imidapril, an ACE inhibitor, on the beta-adrenoceptor (beta-AR) signal transduction in the failing heart. Heart failure in rats was induced by occluding the coronary artery, and 3 weeks later the animals were treated with g/(kg x day) (orally) imidapril for 4 weeks. The animals were assessed for their left ventricular function and inotropic responses to isoproterenol. Cardiomyocytes and crude membranes were isolated from the non-ischemic viable left ventricle and examined for the intracellular concentration of Ca2+ [Ca2+]i and beta-ARs as well as adenylyl cyclase (AC) activity, respectively. Animals with heart failure exhibited depressions in ventricular function and positive inotropic response to isoproterenol as well as isoproterenol-induced increase in [Ca2+]i in cardiomyocytes; these changes were attenuated by imidapril treatment. Both beta1-AR receptor density and isoproterenol-stimulated AC activity were decreased in the failing heart and these alterations were prevented by imidapril treatment. Alterations in cardiac function, positive inotropic effect of isoproterenol, beta1-AR density and isoproterenol-stimulated AC activity in the failing heart were also attenuated by treatment with another ACE inhibitor, enalapril and an angiotensin II receptor antagonist, losartan. The results indicate that imidapril not only attenuates cardiac dysfunction but also prevents changes in beta-AR signal transduction in CHF due to MI. These beneficial effects are similar to those of enalapril or losartan and thus appear to be due to blockade of the renin-angiotensin system.  相似文献   

7.
Low-affinity state beta1-adrenoceptor (beta1-AR) was functionally expressed in some blood vessels and was different from beta1, beta2 and beta3-AR. In rat aorta, low-affinity state beta1-AR activation produced an endothelium-independent relaxation which was impaired in spontaneously hypertensive rats (SHRs). In the present work, we investigated whether renin-angiotensin system was involved in this alteration by evaluating the effects of enalapril, an angiotensin converting enzyme (ACE) inhibitor or losartan, an AT1 angiotensin receptor antagonist. Cumulative concentration-response curves to low-affinity state beta1-AR agonists (CGP 12177, cyanopindolol or alprenolol) and to NS 1619, a large conductance Ca2+-activated K+ channels (BK) agonist were performed in denuded aortic rings isolated from control or treated Wistar Kyoto (WKY) rats or SHRs in different experimental conditions. The low-affinity state beta1-AR-mediated aortic vasodilation was impaired in 5 and 12 weeks old SHRs when compared to age-matched WKY. Twelve days enalapril (5 mg/kg/day) or losartan (15 mg/kg/day) treatments reduced systolic blood pressure (SBP) only in 12 weeks old SHRs whereas no significant change was observed in other groups. These treatments improved low-affinity state beta1-AR effect only in SHRs groups. In 12 weeks old WKY rats, CGP 12177-induced relaxation was insensitive to glibenclamide, a K(ATP)+ channel blocker, but was reduced by TEA or iberiotoxin, two large conductance Ca2+-activated K+ channel (BK) blockers. The impairment of NS 1619-induced vasodilation in both 5 and 12 weeks old SHRs was restored by enalapril or losartan. These results suggested that improvement of the low-affinity state beta1-AR-mediated vasodilation in 5 and 12 weeks old SHRs could be attributed to enhanced BK channels-induced hyperpolarization in SHRs independently of lowering of SBP.  相似文献   

8.
Recent study demonstrated that duodenal HCO3- secretion is affected by modulation of the renin-angiotensin system. We examined the effects of enalapril (angiotensin-converting enzyme (ACE) inhibitor) or losartan (angiotensin AT1 receptor antagonist) on duodenal HCO3- secretion in rats and investigated the mechanisms involved in the renin-angiotensin system-related HCO3- response. A proximal duodenal loop was perfused with saline, and HCO3- secretion was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. Enalapril increased the HCO3- secretion in a dose-dependent manner, with a decrease in arterial blood pressure (MBP), and these effects were significantly attenuated by pretreatment with indomethacin, L-NAME and FR172357 (a selective bradykinin B2 receptor antagonist). Although losartan alone did not affect the HCO3- secretion, despite reducing MBP, the agent dose-dependently increased the HCO3- secretion in the presence of angiotensin II, and this response was totally antagonized by prior administration of FR172357, indomethacin and L-NAME. Bradykinin also dose-dependently increased the HCO3- secretion with no change in MBP, though transient, and again the effects were blocked by indomethacin, L-NAME and FR172357. Both prostaglandin (PG) E2 and the nitric oxide (NO) donor NOR-3 also increased the HCO3- secretion, the latter effect being inhibited by indomethacin. These results suggest that both an ACE inhibitor and AT1 antagonist (in the presence of angiotensin II) increase duodenal HCO3- secretion via a common pathway, involving bradykinin, NO and PGs. It is also assumed that bradykinin releases NO locally, which in turns stimulates HCO3- secretion mediated by PGs.  相似文献   

9.
The aim of this study was to investigate whether a combined treatment of ACE inhibitor and exercise training is more effective than either treatment alone in alleviating the insulin resistant states in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of type 2 diabetes. OLETF rats (25 weeks old) were randomly divided into 5 groups; sedentary control, exercise-trained, temocapril (ACE inhibitor; 2 mg/kg/day)-treated, with and without exercise, and losartan (AT1 receptor antagonist; 1 mg/kg/day)-treated. Long-Evans Tokushima Otsuka rats were used as a non-diabetic control. Body weight, the amount of abdominal fat and blood pressure were higher for OLETF rats than for control rats. However, glucose infusion rate (GIR), an index of insulin resistance, was decreased greatly in OLETF rats. The fasting levels of blood glucose, insulin and lipids were also increased in the diabetic strain. In OLETF rats, both temocapril and losartan reversed hypertensive states significantly, whereas GIR and hyperlipidemia were improved when rats were treated with ACE inhibitors, but not with the AT1 receptor antagonist. Exercise training decreased body weight and the amount of abdominal fat, and also increased GIR in parallel with improved dislipidemia. The combination of the ACE inhibitor with exercise training also improved obesity, hyperinsulinemia, dislipidemia and fasting level of blood glucose, and this combination resulted in the greatest improvement of insulin resistance. These results suggest that the combination of ACE inhibitor and exercise training may be a beneficial treatment for mixed diabetic and hypertensive conditions.  相似文献   

10.
E H Ulm  T C Vassil 《Life sciences》1982,30(14):1225-1230
A centrifugal gel filtration separation of serum angiotensin converting enzyme (ACE) from a potent stable inhibitor is described. This, together with a 20 hr assay incubation of very dilute enzyme, permitted the assessment of the effects of enalapril maleate treatment on total serum ACE in rats and dogs. Total serum ACE increased in both species after 1 or 2 weeks at 10 mg/kg/day. Serum ACE in rats was more than doubled; whereas the increase was modest in dogs (48 +/- 9% minimum). The effect of the drug on serum ACE combined with inherent variability of ACE precluded use of serum ACE activity as an accurate measure of inhibitor concentration in animals receiving enalapril maleate.  相似文献   

11.
C Blais  P Leclair  G Molinaro  A Adam 《Peptides》1999,20(3):343-352
The effects of chronic treatment with losartan. an AT1 receptor antagonist, on the tissue content of bradykinin (BK) and des-Arg9-BK and on their pharmacological effects were examined in the carrageenan-induced paw edema model (0.5% solution, 50 microl/paw) in the rat. These effects were compared with those of angiotensin-converting enzyme inhibitors (ACEi). For this purpose, rats were chronically treated with losartan (3, 10 and 30 mg/kg/day) and enalapril or quinapril (1 mg/kg/day). Endogenous BK and des-Arg9-BK tissue contents at the site of local inflammation were measured by highly sensitive and specific enzyme immunoassays. Losartan 3 mg/kg/day for 7, 14 and 28 days had no significant effect on carrageenan-induced paw edema, but both losartan 10 and 30 mg/kg/day for 14 days significantly increased the hindpaw volume by 50% at 3 h and by 59% at 5 h. These effects, similar to those measured for ACEi, were inhibited by icatibant, a B2 kinin receptor antagonist (32.5 nmol/paw), that reduced carrageenan-induced paw edema to the level seen in vehicle-treated rats. In the same model, and contrary to ACEi, losartan 3, 10 and 30 mg/kg/day for 14 days had no significant effect on endogenous BK and des-Arg9-BK levels in the local inflammatory site or on circulating and tissue ACE activities. These results show, at least in that model, that the potentiating effects of losartan on carrageenan-induced paw edema are independent of the concentrations of endogenous kinins.  相似文献   

12.
Previous studies have shown that the renin-angiotensin system (RAS) is activated in diabetes and this may contribute to the subcellular remodelling and heart dysfunction in this disease. Therefore, we examined the effects of RAS blockade by enalapril, an angiotensin-converting enzyme inhibitor, and losartan, an angiotensin receptor AT1 antagonist, on cardiac function, myofibrillar and myosin ATPase activity as well as myosin heavy chain (MHC) isozyme expression in diabetic hearts. Diabetes was induced in rats by a single injection of streptozotocin (65 mg/kg; i.v.) and these animals were treated with and without enalapril (10 mg/kg/day; oral) or losartan (20 mg/kg/day; oral) for 8 weeks. Enalapril or losartan prevented the depressions in left ventricular rate of pressure development, rate of pressure decay and ventricular weight seen in diabetic animals. Both drugs also attenuated the decrease in myofibrillar Ca2+-ATPase, Mg2+-ATPase and myosin ATPase activity seen in diabetic rats. The diabetes-induced increase in beta-MHC content and gene expression as well as the decrease in alpha-MHC content and mRNA levels were also prevented by enalapril and losartan. These results suggest the occurrence of myofibrillar remodelling in diabetic cardiomyopathy and provide evidence that the beneficial effects of RAS blockade in diabetes may be associated with attenuation of myofibrillar remodelling in the heart.  相似文献   

13.
Treatment with different types of antihypertensive drugs during second month age has not prevented development of arterial hypertension and myocardial hypertrophy in the adult rats with inherited stress-induced arterial hypertension. At 6 months of age, the 11% attenuation of basal blood pressure has beet achieved only in the rats treated with angiotensin-converting enzyme inhibitor enalapril. Nevertheless, they expressed the most pronounced left ventricular hypertrophy. The unfavorable tissue and ultrastructural abnormalities were revealed in the myocardium of the rats which received the alpha1-adrenoceptor blocker terazosin. The delayed effects of losartan (angionetsin II receptor antagonist) and corinfar (calcium channel antagonist) on the myocardial structure were inessential.  相似文献   

14.
Previous studies have suggested that angiotensin II, a hormone known to regulate water and salt balance and blood pressure, may also regulate oxygen consumption and body temperature. In this study we investigated the role of endogenous angiotensin in the regulation of oxygen consumption and colonic temperature in rats under low (control) and high (water deprivation, administration of isoproterenol and hemorrhage) peripheral angiotensin conditions. Peripheral administration of losartan, an AT1 receptor antagonist or enalapril, an angiotensin converting enzyme inhibitor, did not alter oxygen consumption or colonic temperature in control or water deprived rats. Peripheral administration of losartan did not alter the oxygen consumption and colonic temperature responses to the administration of isoproterenol or hemorrhage. Endogenous peripherally generated angiotensin II does not play an important role in regulating either oxygen consumption or colonic temperature in rats under either low or high angiotensin II levels. The reductions in oxygen consumption and colonic temperature that accompany hemorrhage in rats are not mediated by angiotensin II.  相似文献   

15.
S Li  P Wu  S Zhong  Z Guo  W Lai  Y Zhang  X Liang  J Xiu  J Li  Y Liu 《Hormone research》2001,55(6):293-297
BACKGROUND: Plasma aldosterone escape is found during long-term angiotensin-converting enzyme inhibitor therapy. Evidence for aldosterone production in cardiovascular tissues raised the question of whether or not aldosterone escape occurs in these tissues. METHOD: Spontaneously hypertensive rats were treated with enalapril (20 mg/kg/day) and losartan (50 mg/kg/day) for 20 weeks; untreated spontaneously hypertensive and Wistar rats were used as positive and normal controls, respectively. Ex vivo mesenteric artery and heart perfusion, high-performance liquid chromatography, and radioimmunoassay for aldosterone were performed. RESULTS: The results showed that enalapril failed to significantly inhibit aldosterone production in mesenteric artery, myocardium and plasma. Losartan significantly inhibited aldosterone production to that of Wistar rats in the mesenteric artery, myocardium and plasma. CONCLUSION: This study provides the first evidence that long-term angiotensin-converting enzyme inhibition therapy induces aldosterone escape in hypertensive cardiovascular tissues, and angiotensin II subtype 1 receptor antagonist does not induce aldosterone escape in mesenteric artery, myocardium and plasma of spontaneously hypertensive rats.  相似文献   

16.
Enalapril maleate (MK-421), an ethyl ester, is an angiotensin-converting enzyme (ACE) inhibitor from a novel series of substituted N-carboxymethyldipeptides. The parent diacid (MK-422) N-[(S)-1-carboxy-3-phenylpropyl]-L-Ala-L-Pro of MK-421 inhibited hog plasma ACE with an I50 of 1.2 nM. Because deesterification occurs slowly or not at all in vitro, the in vitro I50 for enalapril was 1200 nM. However, both enalapril and MK-422 were potent inhibitors of ACE by the i.v. and oral routes in rats and dogs. In rats with experimental hypertension, enalapril was most potent in those models in which the renin-angiotensin system plays a dominant role (salt restriction, two-kidney Grollman) and in models rendered renin dependent by diuretics, although blood pressure reduction did occur in low or normal renin models such as spontaneously hypertensive rats, in which inhibition of ACE as measured by the blockade of angiotensin I pressor responses bore little temporal relationship to the later fall in blood pressure after enalapril.  相似文献   

17.
To investigate the mechanisms underlying the depressed sarcolemmal (SL) Na(+)-K(+)-ATPase activity in congestive heart failure (CHF), different isoforms and gene expression of Na(+)-K(+)-ATPase were examined in the failing left ventricle (LV) at 8 weeks after myocardial infarction (MI). In view of the increased activity of renin-angiotensin system (RAS) in CHF, these parameters were also studied after 5 weeks of treatment with enalapril (10 mg x kg-1 x day-1), an angiotensin-converting enzyme inhibitor, and losartan (20 mg.kg-1.day-1), an angiotensin II type 1 receptor antagonist, starting at 3 weeks after the coronary ligation in rats. The infarcted animals showed LV dysfunction and depressed SL Na(+)-K(+)-ATPase activity. Protein content and mRNA levels for Na(+)-K(+)-ATPase alpha2 isoform were decreased whereas those for Na(+)-K(+)-ATPase alpha3 isoform were increased in the failing LV. On the other hand, no significant changes were observed in protein content or mRNA levels for Na(+)-K(+)-ATPase alpha1 and beta1 isoforms. The treatment of infarcted animals with enalapril or losartan improved LV function and attenuated the depression in Na(+)-K(+)-ATPase alpha2 isoform as well as the increase in alpha3 isoform, at both the protein and mRNA levels; however, combination therapy with enalapril and losartan did not produce any additive effects. These results provide further evidence that CHF due to MI is associated with remodeling of SL membrane and suggest that the blockade of RAS plays an important role in preventing these alterations in the failing heart.  相似文献   

18.
Previous studies have shown that the renin–angiotensin system (RAS) is activated in diabetes and this may contribute to the subcellular remodelling and heart dysfunction in this disease. Therefore, we examined the effects of RAS blockade by enalapril, an angiotensin-converting enzyme inhibitor, and losartan, an angiotensin receptor AT1 antagonist, on cardiac function, myofibrillar and myosin ATPase activity as well as myosin heavy chain (MHC) isozyme expression in diabetic hearts. Diabetes was induced in rats by a single injection of streptozotocin (65 mg/kg; i.v.) and these animals were treated with and without enalapril (10 mg/kg/day; oral) or losartan (20 mg/kg/day; oral) for 8 weeks. Enalapril or losartan prevented the depressions in left ventricular rate of pressure development, rate of pressure decay and ventricular weight seen in diabetic animals. Both drugs also attenuated the decrease in myofibrillar Ca2+-ATPase, Mg2+-ATPase and myosin ATPase activity seen in diabetic rats. The diabetes-induced increase in -MHC content and gene expression as well as the decrease in -MHC content and mRNA levels were also prevented by enalapril and losartan. These results suggest the occurrence of myofibrillar remodelling in diabetic cardiomyopathy and provide evidence that the beneficial effects of RAS blockade in diabetes may be associated with attenuation of myofibrillar remodelling in the heart. (Mol Cell Biochem 261: 271–278, 2004)  相似文献   

19.
Epidemiological studies suggest that intrauterine undernutrition plays an important role in the development of arterial hypertension and endothelial dysfunction in adulthood. We have evaluated the effect of the Renin Angiotensin System inhibition on the blood pressure and the mesenteric arteriolar reactivity of the intrauterine undernourished rats. Wistar rats were fed either normal or 50% of the normal intake diets, during the whole gestational period. In this study only the male offspring was used. At 16 weeks of age, the rats were used for the study of blood pressure, microvascular reactivity studied in vivo-in situ to Angiotensin II (Ang II), Bradykinin (Bk) and Acetylcholine (Ach) before and after either losartan (10 mg/kg/15 days) or enalapril (15 mg/kg/21 days) treatment. We also evaluated the mesenteric and plasmatic Angiotensin Converting Enzyme (ACE), renal function, lipid plasmatic content, and insulin and glucose metabolism. Intrauterine undernutrition induced hypertension and increased response of mesenteric arterioles to Ang II and decreased vasodilation to Bk and Ach. The treatments with losartan or enalapril normalized the blood pressure levels and significantly improved the arteriolar responses to Bk, Ach and reduced the response to Ang II. No differences have been detected to ACE activity, renal function, lipid content and insulin and glucose metabolism. This study shows for the first time that Renin Angiotensin System inhibitors can normalize the cardiovascular alterations induced by intrauterine undernutrition.  相似文献   

20.
Recruitment of neutrophils to the lung is a sentinel event in acute lung inflammation. Identifying mechanisms that regulate neutrophil recruitment to the lung may result in strategies to limit lung damage and improve clinical outcomes. Recently, the renin angiotensin system (RAS) has been shown to regulate neutrophil influx in acute inflammatory models of cardiac, neurologic, and gastrointestinal disease. As a role for the RAS in LPS-induced acute lung inflammation has not been described, we undertook this study to examine the possibility that the RAS regulates neutrophil recruitment to the lung after LPS exposure. Pretreatment of mice with the angiotensin-converting enzyme (ACE) inhibitor enalapril, but not the anti-hypertensive hydralazine, decreased pulmonary neutrophil recruitment after exposure to LPS. We hypothesize that inhibition of LPS-induced neutrophil accumulation to the lung with enalapril occurred through both an increase in bradykinin, and a decrease in angiotensin II (ATII), mediated signaling. Bradykinin receptor blockade reversed the inhibitory effect of enalapril on neutrophil recruitment. Similarly, pretreatment with bradykinin receptor agonists inhibited IL-8-induced neutrophil chemotaxis and LPS-induced neutrophil recruitment to the lung. Inhibition of ATII-mediated signaling, with the ATII receptor 1a inhibitor losartan, decreased LPS-induced pulmonary neutrophil recruitment, and this was suggested to occur through decreased PAI-1 levels. LPS-induced PAI-1 levels were diminished in animals pretreated with losartan and in those deficient for the ATII receptor 1a. Taken together, these results suggest that ACE regulates LPS-induced pulmonary neutrophil recruitment via modulation of both bradykinin- and ATII-mediated pathways, each regulating neutrophil recruitment by separate, but distinct, mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号