首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial DNA molecules of two interfertile algal species, Chlamydomonas smithii and C. reinhardtii, are co-linear except for a 1075 bp intron (the -insert) that is present in the cob gene of C. smithii. The -insert, a group I intron (Cs cob·1) containing an open reading frame (ORF) which encodes a basic, hydrophilic protein of 237 amino acids, is unidirectionally transmitted to all diploid progeny during interspecific crosses. In this report, we show that the Cs cob·1-encoded protein is a site-specific endonuclease (I-Csm I) which could mediate the intron transfer via the gene conversion mechanism. The Cs cob·1 ORF was cloned into the vector pMALcr1 and over-expressed as a hybrid protein fused to maltose-binding protein (MBP). This fusion protein exhibited an in vivo endonuclease activity which specifically cleaved the intron homing site within the intronless cob gene.  相似文献   

2.
Summary The linear mitochondrial DNAs of the two infertile algal species Chlamydomonas smithii and C. reinhardtii are co-linear with the exception of a 1 kb intron ( intron) located in the cytochrome b gene of C. smithii. C. smithii also possesses an additional HpaI restriction site (H marker) located in the COXI gene, about 5 kb from the intron. In reciprocal crosses, C. smithii (H ++) × C. reinhardtii (H ), the intron is transmitted to all diploid progeny, whereas the H marker is frequently transmitted either biparentally or paternally depending on whether the C. smithii parent is maternal (mt +) or paternal (mt ). In diploids resulting from artificial fusion between vegetative cells, the absolute transmission of a is accompanied by the frequent transmission of the H + marker, irrespective of the mating type of the parental strains. Finally, in reciprocal crosses between C. smithii (H ++) and recombinant H + clones, the transmission of the H marker is predominantly paternal or biparental. These results allow us to conclude that (1) the a intron behaves as a group I intron whose unidirectional conversion influences the transmission of the H marker; and (2) the mt paternal mitochondrial genome is transmitted more often than the mt +. The mating type has no effect in diploids obtained by artificial fusion.  相似文献   

3.
Summary A novel and efficient genetic procedure is described for generating mitochondrial mutants of the green alga Chlamydomonas reinhardtii. The development of a mutagenesis procedure using manganese cations and the application of cytoduction techniques resulted in a combined approach for the generation and analysis of mitochondrial mutants. Although mitochondrial mutations are inherited in sexual crosses from the minus mating type parent, the cytoduction technique can be used to transfer mitochondrial mutations into recipient strains with different genetic backgrounds, irrespective of their mating type. Cytoduction allows the transfer of mitochondrial markers from diploid to haploid cells also, which is of great benefit since diploid cells do not germinate in C. reinhardtii. We report here the isolation and characterisation of eight mutants, which are resistant to the antibiotics myxothiazol and mucidin. The mutants all have point mutations in the mitochondrial gene for apocytochrome b. Using in vitro-amplified cytb gene fragments as probes for direct DNA sequencing, three different types of single base pair substitutions were revealed in all mutants tested. In particular, amino acid substitutions in the mutant apocytochrome b polypeptide have been identified at residues 129, 132 and 137, which have been implicated in forming part of an antibiotic-binding niche. The amino acid substitution at position 132 has not been so far described for mutant apocytochrome b in any other organism, prokaryotic or eukaryotic. The genetic approach presented here confirms C. reinhardtii as a model system that is unique among plant cells.  相似文献   

4.
Target sequence cleavage is the essential step for intron invasion into an intronless allele. DNA cleavage at a specific site is performed by an endonuclease, termed a homing enzyme, which is encoded by an open reading frame within the intron. The recognition properties of them have only been analyzed in vitro, using purified, recombinant homing enzyme and various mutated DNA substrates, but it is unclear whether the homing enzyme behaves similarly in vivo. To answer this question, we determined the recognition properties of I-CsmI in vivo. I-CsmI is a homing enzyme encoded by the open reading frame of the alpha-group I-intron, located in the mitochondrial apocytochrome b gene of the green alga Chlamydomonas smithii. The in vivo recognition properties of it were determined as the frequency of intron invasion into a mutated target site. For this purpose, we utilized hybrid diploid cells developed by crossing alpha-intron-plus C. smithii to intron-minus C. reinhardtii containing mutated target sequences. The intron invasion frequency was much higher than the expected from the in vitro cleavage frequency of the respective mutated substrates. Even the substrates that had very little cleavage in the in vitro experiment were efficiently invaded in vivo, and were accompanied by a large degree of coconversion. Considering the ease of the homing enzyme invading into various mutated target sequences, we propose that the principle bottleneck for lateral intron transmission is not the sequence specificity of the homing enzyme, but instead is limited by the rare occurrence of inter-specific cell fusion.  相似文献   

5.
Summary The chloroplast ribosomal intron of Chlamydomonas reinhardtii encodes a sequence-specific DNA endonuclease (I-CreI), which is most probably involved in the mobility of this intron. Here we show that I-CreI generates a 4 by staggered cleavage just downstream of the intron insertion site. The I-CreI recognition sequence is 19–24 by in size and is located asymmetrically around the intron insertion site. Screening of natural variants of the I-CreI recognition sequence indicates that the I-CreI endonuclease tolerates single and even multiple base changes within its recognition sequence.  相似文献   

6.
Three types of respiratory deficient mitochondrial strains have been reported in Chlamydomonas reinhardtii: a deficiency due to (i) two base substitutions causing an amino acid change in the apocytochrome b (COB) gene (i.e., strain named dum-15), (ii) one base deletion in the COXI gene (dum-19), or (iii) a large deletion extending from the left terminus of the genome to somewhere in the COB gene (dum-1, -14, and -16). We found that these respiratory deficient strains of C. reinhardtii can be divided into two groups: strains that are constantly transformable and those could not be transformed in our experiments. All transformable mitochondrial strains were limited to the type that has a large deletion in the left arm of the genome. For these mitochondria, transformation was successful not only with purified intact mitochondrial genomes but also with DNA-constructs containing the compensating regions. In comparison, mitochondria of all the non-transformable strains have both of their genome termini intact, leading us to speculate that mitochondria lacking their left genome terminus have unstable genomes and might have a higher potential for recombination. Analysis of mitochondrial gene organization in the resulting respiratory active transformants was performed by DNA sequencing and restriction enzyme digestion. Such analysis showed that homologous recombination occurred at various regions between the mitochondrial genome and the artificial DNA-constructs. Further analysis by Southern hybridization showed that the wild-type genome rapidly replaces the respiratory deficient monomer and dimer mitochondrial genomes, while the E. coli vector region of the artificial DNA-construct likely does not remain in the mitochondria.  相似文献   

7.
Genomic clones encoding the plastidic fructose- 1,6-bisphosphate aldolase ofChlamydomonas reinhardtii were isolated and sequenced. The gene contains three introns which are located within the coding sequence for the mature protein. No introns are located within or near the sequence encoding the transit-peptide, in contrast to the genes for plastidic aldolases of higher plants. Neither the number nor the positions of the three introns of theC. reinhardtii aldolase gene are conserved in the plastidic or cytosolic aldolase genes of higher plants and animals. The 5 border sequences of introns in the aldolase gene ofC. reinhardtii exhibit the conserved plant consensus sequence. The 3 acceptor splice sites for introns 1 and 3 show much less similarity to the eukaryotic consensus sequences than do those of intron 2. The plastidic aldolase gene has two tandemly repeated CAAT box motifs in the promoter region. Genomic Southern blots indicate that the gene is encoded by a single locus in theC. reinhardtii genome.  相似文献   

8.
9.
Hu Z  Zhao Z  Wu Z  Fan Z  Chen J  Wu J  Li J 《Mitochondrion》2011,11(5):716-721
The efficient expression of exogenous gene in mitochondria of photosynthetic organism has been an insurmountable problem. In this study, the pBsLPNCG was constructed by inserting the egfp gene into a site between TERMINVREP-Left repeats and the cob gene in a fragment of mitochondrial DNA of Chlamydomonas reinhardtii CC-124 and introduced into the mitochondria of respiratory deficient dum-1 mutation of C. reinhardtii CC-2654. Sequencing and DNA Southern analyses revealed that egfp gene had been integrated into the mitochondrial genome of transgenic algae as expected and no other copy of egfp existed in their nucleic genome. Both the fluorescence detection and Western blot analysis confirmed the presence of eGFP protein in the transgenic algae; it indicated that the egfp gene was successfully expressed in the mitochondria of C. reinhardtii.  相似文献   

10.
Summary The first AUG in the Chlamydomonas reinhardtii ADP/ATP translocator (CRANT) mRNA initiates an open reading frame (ORF) which is very similar (51–79% amino acid identity) to other ANT proteins. In contrast to higher plants, no evidence for a long amino-terminal extension was obtained. The 5 non-transcribed region of the single-copy CRANT gene contains sequence motifs present in other C. reinhardtii nuclear genes. Four introns, whose positions are not conserved in other ANT genes, interrupt the protein coding region. A short heat shock specifically reduces CRANT mRNA levels. CRANT mRNA levels were unaffected by a mutation in photosynthesis. In a dark/light regime CRANT mRNA levels are high in the dark phase and low in the early light phase. Data on translation initiation sites, splice junctions and the codon preferences of C. reinhardtii nuclear genes were compiled. With the exception of two rare codons, ACA and GGA, the CRANT gene exhibits the biased codon usage of C. reinhardtii nuclear genes that are highly expressed during normal vegetative growth.  相似文献   

11.
Summary We have isolated complementary DNA (cDNA) clones for apocytochrome c from the green algaChlamydomonas reinhardtii and shown that they are encoded by a single nuclear gene termedcyc.Cyc mRNA levels are found to depend primarily on the presence of acetate as a reduced carbon source in the culture medium. The deduced amino acid sequence shows that, apart from the probable removal of the initiating methionine,C. reinhardtii apocytochrome c is syntheszed in its mature form. Its structure is generally similar to that of cytochromes c from higher plants. Several punctual deviations from the general pattern of cytochrome c sequences that is found in other organisms have interesting structural and functional implications. These include, in particular, valines 19 and 39, asparagine 78, and alanine 83. A phylogenetic tree was constructed by the matrix method from cytochrome c data for a representative range of species. The results suggest thatC. reinhardtii diverged from higher plants approximately 700–750 million years ago; they also are not easy to reconcile with the current attribution ofChlamydomonas reinhardtii andEnteromorpha intestinalis to a unique phylum, because these two species probably diverged from one another at about the same time as they diverged from the line leading to higher plants.  相似文献   

12.
A chimeric gene composed of the coding sequence of theble gene fromStreptoalloteichus hindustanus fused to the 5 and 3 untranslated regions of theChlamydomonas reinhardtii nuclear geneRBCS2 has been constructed. Introduction of this chimeric gene into the nuclear genome ofC. reinhardtii by co-transformation with theARG7 marker yields Arg+ transformants of which approximately 80% possess theble gene. Of these co-transformants, approximately 3% display a phleomycin-resistant (PmR) phenotype. Western blot analysis using antibodies against theble gene product confirms the presence of the protein in the PmR transformants and genetic analysis demonstrates the co-segregation of theble gene with the phenotype in progeny arising from the mating of a PmR transformant to wild-type strains. Direct selection of PmR transformants was achieved by allowing an 18-h period for recovery and growth of transformed cells prior to selection. This work represents the first demonstration of stable expression and inheritance of a foreign gene in the nuclear genome ofC. reinhardtii and provides a useful dominant marker for nuclear transformation.  相似文献   

13.
14.
cDNA and genomic clones encoding the subunit of mitochondrial ATP synthase from Chlamydomonas reinhardtii have been isolated using heterologous DNA probes from the photosynthetic bacterium Rhodospirillum rubrum. The protein encoded by the cDNA is 79–83% identical to corresponding proteins from higher-plant and mammalian mitochondria, and 75% identical to the R. rubrum protein. It contains both an N-terminal presequence and a unique C-terminal extension. The presequence, which is the first mitochondrial presequence determined in C. reinhardtii, is similar in structure to mitochondrial presequences from other organisms. As chloroplast presequences from C. reinhardtii also share features with mitochondrial presequences from other organisms (L.-G. Franzén et al., FEBS Lett 260 (1990) 165–168), this raises interesting questions about protein targeting to chloroplasts and mitochondria in C. reinhardtii. The possibility that the C-terminal extension is involved in targeting the protein to the mitochondrion is discussed. Southern blot analysis indicates that the protein is encoded by a single-copy gene.  相似文献   

15.
Summary In this paper we report the inability of four group I introns in the gene encoding subunit I of cytochrome c oxidase (cox1) and the group II intron in the apocytochrome b gene (cob) to splice autocatalytically. Furthermore we present the characterization of the first cox1 intron in the mutator strain ana r -14 and the construction and characterization of strains with intronless mitochondrial genomes. We provide evidence that removal of introns at the DNA level (termed DNA splicing) is dependent on an active RNA maturase. Finally we demonstrate that the absence of introns does not abolish homologous mitochondrial recombination.Abbreviations cox1, cox2, cox3 genes encoding subunits 1, 2 and 3 of cytochrome - c oxidase - cob gene encoding apocytochrome b - cox1I1, cox1I2a, cox1I2b, cox1I3 introns in cox1 - cox1Ix +/– indicates the presence or absence of the intron either in the native gene or after intron DNA excision - cox1Ix is a deletion in the intron leading to respiratory deficiency  相似文献   

16.
Summary A mitochondrial RNA splice defect in the first intron of the COB gene (bI1) can be suppressed by a dominant nuclear mutation SUP-101. Starting with a gene bank of yeast nuclear DNA from a SUP-101 suppressor strain cloned in the YEp13 plasmid, we have isolated a recombinant plasmid which exerts a suppressor activity similar to the SUP-101 allele. The N3(2) insert of this plasmid contains an open reading frame (ORF) of 1014 bp which is transcribed to a 12 S RNA. Deletion of the 5 end of this ORF and its upstream sequences abolishes the suppressor activity. The N3(2) insert thus carries a functional gene (called MRS3) which can suppress a mitochondrial splice defect. The chromosomal equivalent of the cloned gene has been mapped to chromosome 10. Disruption of this chromosomal gene has no phenotypic effect on wild-type cells.  相似文献   

17.
Light-independent chlorophyll synthesis occurs in some algae, lower plants, and gymnosperms, but not in angiosperms. We have identified a new chloroplast gene, chlB, that is required for the light-independent accumulation of chlorophyll in the green alga Chlamydomonas reinhardtii. The chlB gene was cloned, sequenced, and then disrupted by performing particle gun-mediated chloroplast transformation. The resulting homoplasmic mutant was unable to accumulate chlorophyll in the dark and thus exhibited a yellow-in-the-dark phenotype. The chlB gene encodes a polypeptide of 688 amino acid residues, and is distinct from two previously characterized chloroplast genes (chlN and chlL) also required for light-independent chlorophyll accumulation in C. reinhardtii. Three unidentified open reading frames in chloroplast genomes of liverwort, black pine, and Chlamydomonas moewusii were also identified as chlB genes, based on their striking sequence similarities to the C. reinhardtii chlB gene. A chlB-like gene is absent in chloroplast genomes of tobacco and rice, consistent with the lack of light-independent chlorophyll synthesis in these plants. Polypeptides encoded by the chloroplast chlB genes also show significant sequence similarities with the bchB gene product of Rhodobacter capsulatus. Comparisons among the chloroplast chlB and the bacterial bchB gene products revealed five highly conserved sequence areas that are interspersed by four stretches of highly variable and probably insertional sequences.  相似文献   

18.
We isolated and sequenced a cDNA clone encoding a minor chlorophyll a/b-binding protein, CP26, which is associated with the light-harvesting complex II of Chlamydomonas reinhardtii. Protein sequences of internal peptide fragments from purified CP26 were determined and used to identify a cDNA clone. The 1.1 kb lhcb5 gene codes for a polypeptide of 289 amino acids with a predicted molecular weight of 30713. The lhcb5 gene product could reconstitute with chlorophylls and xanthophylls to form a green band on a gel. Although the expression of many lhcb genes are strictly regulated by light, the lhcb5 gene was only loosely regulated. We propose that a plant acclimatizes itself to the light environment by quantitatively and qualitatively modulating the light-harvesting complex. Characterization of the primary structure and the implications of its unique expression are discussed.  相似文献   

19.
Summary A physical map of black pine (Pinus thunbergii) chloroplast DNA (120 kb) was constructed and two separate portions of its nucleotide sequence were determined. One portion contains trnQ-UUG, ORF510, ORF83, trnK-UUU (ORF515 in the trnK intron), ORF22, psbA, trnI-CAU (on the opposing strand) and trnH-GUG, in that order. Sequence analysis of another portion revealed the presence of a 495 by inverted repeat containing trnI-CAU and the 3 end of psbA but lacking rRNA genes. The position of trnI-CAU is unique because most chloroplast DNAs have no gene between psbA and trnH (trnI-CAU is usually located further downstream). Black pine chloroplast DNA lacks rps16, which has been found between trnQ and trnK in angiosperm chloroplast DNAs, but possesses ORF510 instead. This ORF is highly homologous to ORF513 found in the corresponding region of liverwort chloroplast DNA and ORF563 located downstream from trnT in Chlamydomonas moewusii chloroplast DNA. A possible pathway for the evolution of black pine chloroplast DNA is discussed.  相似文献   

20.
Summary We report that the mitochondrial genome of Chlamydomonas moewusii has a 22 kb circular map and thus contrasts with the mitochondrial genome of Chlamydomonas reinhardtii, which is linear and about 6 kb shorter. Overlapping restriction fragments spanning over 90% of the C. moewusii mitochondrial DNA (mtDNA) were identified in a clone bank constructed using a Sau3AI partial digest of a C. moewusii DNA fraction enriched for mtDNA by preparative CsCI density gradient centrifugation. Overlapping Sau3AI clones were identified by a chromosome walk initiated with a clone of C. moewusii mtDNA. The mtDNA map was completed by Southern blot analysis of the C. moewusii mtDNA fraction using isolated mtDNA clones. Regions that hybridized to C. reinhardtii or wheat mitochondrial gene probes for subunit I of cytochrome oxidase (cox1), apocytochrome b (cob), three subunits of NADH dehydrogenase (nadl, nad2 and nad5) and the small and the large ribosomal RNAs (rrnS and rrnL, respectively) were localized on the C. moewusii mtDNA map by Southern blot analysis. The results show that the order of genes in the mitochondrial genome of C. moewusii is completely rearranged relative to that of C. reinhardtii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号