首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
The eukaryotic initiation factor (eIF)-5 mediates hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. The eIF-2.GDP formed under these conditions is released from the 40 S ribosomal subunit while initiator Met-tRNA(f) remains bound. The released eIF-2.GDP can participate in an eIF-2B-catalyzed GDP/GTP exchange reaction to reform the Met-tRNA(f).eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were also present in an eIF-5-catalyzed reaction, the eIF-2.GDP produced remained bound to the 60 S ribosomal subunit of the 80 S initiation complex. When such an 80 S initiation complex, containing bound eIF-2.GDP, was incubated with GTP and eIF-2B, GDP was released. However, eIF-2 still remained bound to the ribosomes and was unable to form a Met-tRNA(f)l.eIF-2.GTP ternary complex. In contrast, when 60 S ribosomal subunits were preincubated with either free eIF-2 or with eIF-2.eIF-2B complex and then added to a reaction containing both the 40 S initiation complex and eIF-5, the eIF-2.GDP produced did not bind to the 60 S ribosomal subunits but was released from the ribosomes. Thus, the 80 S initiation complex formed under these conditions did not contain bound eIF-2.GDP. Under similar experimental conditions, preincubation of 60 S ribosomal subunits with purified eIF-2B (free of eIF-2) failed to cause release of eIF-2.GDP from the ribosomal initiation complex. These results suggest that 60 S ribosome-bound eIF-2.GDP does not act as a direct substrate for eIF-2B-mediated release of eIF-2 from ribosomes. Rather, the affinity of 60 S ribosomal subunits for either eIF-2, or the eIF-2 moiety of the eIF-2.eIF-2B complex, prevents association of 60 S ribosomal subunits with eIF-2.GDP formed in the initiation reaction. This ensures release of eIF-2 from ribosomes following hydrolysis of GTP bound to the 40 S initiation complex.  相似文献   

2.
The formation and release of an eukaryotic initiation factor (eIF)-2 X GDP binary complex during eIF-5-mediated assembly of an 80 S ribosomal polypeptide chain initiation complex have been studied by sucrose gradient centrifugation analysis. Isolated 40 S initiation complex reacts with eIF-5 and 60 S ribosomal subunits to form an 80 S ribosomal initiation complex with concomitant hydrolysis of an equimolar amount of bound GTP to GDP and Pi. Sucrose gradient analysis of reaction products revealed that GDP was released from ribosomes as an eIF-2 X GDP complex. Evidence is presented that eIF-5-mediated hydrolysis releases the GTP bound to the 40 S initiation complex as an intact eIF-2 X GDP complex rather than as free GDP and eIF-2 which subsequently recombine to form the binary complex. Furthermore, formation and release of eIF-2 X GDP from the ribosomal complex do not require concomitant formation of an 80 S initiation complex since both reactions occur efficiently when the 40 S initiation complex reacts with eIF-5 in the absence of 60 S ribosomal subunits. These results, along with the observation that the 40 S initiation complex formed with the nonhydrolyzable analogue of GTP, 5'-guanylylmethylene diphosphonate, can neither join a 60 S ribosomal subunit nor releases ribosome-bound eIF-2, suggest that following eIF-5-mediated hydrolysis of GTP bound to the 40 S initiation complex, both Pi and eIF-2 X GDP complex are released from ribosomes prior to the joining of 60 S ribosomal subunits to the 40 S initiation complex.  相似文献   

3.
Eukaryotic initiation factor 5 (eIF-5), isolated from rabbit reticulocyte lysates, is a monomeric protein of 58-62 kDa. The function of eIF-5 in the formation of an 80 S polypeptide chain initiation complex from a 40 S initiation complex has been investigated. Incubation of the isolated 40 S initiation complex (40 S.AUG.Met.tRNAf.eIF-2 GTP) with eIF-5 resulted in the rapid and quantitative hydrolysis of GTP bound to the 40 S initiation complex. The rate of this reaction was unaffected by the presence of 60 S ribosomal subunits. Analysis of eIF-5-catalyzed reaction products by gel filtration indicated that both eIF-2.GDP binary complex and Pi formed were released from the ribosomal complex whereas Met-tRNAf remained bound to 40 S ribosomes as a Met-tRNAf.40 S.AUG complex. Reactions carried out with biologically active 32P-labeled eIF-5 indicated that this protein was not associated with the 40 S.AUG.Met-tRNAf complex; similar results were obtained by immunological methods using monospecific anti-eIF-5 antibodies. The isolated 40 S.AUG.Met-RNAf complex, free of eIF-2.GDP binary complex and eIF-5, readily interacted with 60 S ribosomal subunits in the absence of exogenously added eIF-5 to form the 80 S initiation complex capable of transferring Met-tRNAf into peptide linkages. These results indicate that the sole function of eIF-5 in the initiation of protein synthesis is to mediate hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. This leads to formation of the intermediate 40 S.AUG.Met-tRNAf and dissociation of the eIF-2.GDP binary complex. Subsequent joining of 60 S ribosomal subunits to the intermediate 40 S.AUG.Met-tRNAf complex does not require participation of eIF-5. Thus, the formation of an 80 S ribosomal polypeptide chain initiation complex from a 40 S ribosomal initiation complex can be summarized by the following sequence of partial reactions. (40 S.AUG.Met-tRNAf.eIF-2.GTP) eIF-5----(40 S.AUG.Met-tRNAf) + (eIF-2.GDP) + Pi (1) (40 S.AUG.Met-tRNAf) + 60 S----(80 S.AUG.Met-tRNAf) (2) 80 S initiation complex.  相似文献   

4.
The AUG-dependent formation of an 80 S ribosomal initiation complex was studied using purified rabbit reticulocyte initiation factors radiolabeled by reductive methylation. The radiolabeled initiation factors were as biologically active as untreated factors. Reaction mixtures containing a variety of components (AUG, GTP, Met-tRNAf, initiation factors, and 40 S and 60 S ribosomal subunits) were incubated at 30 degrees C and then analyzed on linear sucrose gradients for the formation of ribosomal complexes. The results show that both eukaryotic initiation factor (eIF)-3 and the ternary complex (eIF-2.GTP.Met-tRNAf) bind independently to the 40 S subunit and each of these components enhances the binding of the other. All of the polypeptides of eIF-2 and eIF-3 participate in this binding. Formation of an 80 S ribosomal complex requires eIF-5 and 60 S subunits in a reaction that is stimulated by eIF-4C. Both eIF-2 and eIF-3 are released from the 40 S preinitiation complex during formation of the 80 S initiation complex. Release of eIF-2 and eIF-3 does not occur and 80 S ribosomal complexes are not formed if GTP is replaced by a nonhydrolyzable analog such as guanosine 5'-O3-(1,2-mu-imido)triphosphate. Despite a variety of attempts, it has not yet been possible to demonstrate binding of eIF-4C, eIF-4D, or eIF-5 to either 40 S or 80 S ribosomal complexes.  相似文献   

5.
Studies on the formation and release of the eukaryotic initiation factor (eIF)-2.GDP binary complex formed during eIF-5-mediated assembly of an 80 S initiation complex have been carried out. Incubation of a 40 S initiation complex with eIF-5, in the presence or absence of 60 S ribosomal subunits at 25 degrees C, causes rapid and quantitative hydrolysis of ribosome-bound GTP to form an eIF-2.GDP binary complex and Pi. Analysis of both reaction products by Sephadex G-200 gel filtration reveals that while Pi is released from ribosomes, the eIF-2.GDP complex remains bound to the ribosomal initiation complex. The eIF-2.GDP binary complex can however be released from ribosome by subjecting the eIF-5-catalyzed reaction products to either longer periods of incubation at 37 degrees C or sucrose gradient centrifugation. Furthermore, addition of a high molar excess of isolated eIF-2.GDP binary complex to a 40 S initiation reaction mixture does not cause exchange of ribosome-bound eIF-2.GDP complex formed by eIF-5-catalyzed hydrolysis of GTP. These results indicate that eIF-2.GDP complex is directly formed on the surface of ribosomes following hydrolysis of GTP bound to a 40 S initiation complex, and that ribosome-bound eIF-2 X GDP complex is an intermediate in polypeptide chain initiation reaction.  相似文献   

6.
The assembly of initiation complexes is studied in a protein synthesis initiation assay containing ribosomal subunits, globin [125I]mRNA, [3H]Met-tRNAf, seven purified initiation factors, ATP and GTP. By omitting single components from the initiation assay, specific roles of the initiation factors, ATP and GTP are demonstrated. The initiation factor eIF-2 is required for the binding of Met-tRNAf to the 40 S ribosomal subunit. The initial Met-tRNAf binding to the small ribosomal subunit is a stringent prerequisite for the subsequent mRNA binding. The initiation factors eIF-3, eIF-4A, eIF-4B and eIF-4C together with ATP promote the binding of mRNA to the 40 S initiation complex. The association of the 40 S initiation complex with the 60 S ribosome subunit to form an 80 S initiation complex is mediated by the initiation factor eIF-5 and requires the hydrolysis of GTP. The factor eIF-1 gives a twofold overall stimulation of initiation complex formation. A model of the sequential steps in the assembly of the 80 S initiation complex in mammalian protein synthesis is presented.  相似文献   

7.
The phosphorylation of eukaryotic initiation factor (eIF) 2 alpha that occurs when rabbit reticulocyte lysate is incubated in the absence of hemin or with poly(I.C) causes inhibition of polypeptide chain initiation by preventing a separate factor (termed RF) from promoting the exchange of GTP for GDP on eIF-2. When lysate was incubated in the presence of hemin and [14C] eIF-2 or [alpha-32P]GTP, we observed binding of eIF-2 and GDP or GTP to 60 S ribosomal subunits that was slightly greater than that bound to 40 S subunits and little binding to 80 S ribosomes. When incubation was in the absence of hemin or in the presence of hemin plus 0.1 microgram/ml poly(I.C), eIF-2 and GDP binding to 60 S subunits was increased 1.5- to 2-fold, that bound to 80 S ribosomes was almost as great as that bound to 60 S subunits, and that bound to 40 S subunits was unchanged. Our data indicate that about 40% of the eIF-2 that becomes bound to 60 S subunits and 80 S ribosomes in the absence of hemin or with poly(I.C) is eIF-2(alpha-P) and suggest that the eIF-2 and GDP bound is probably in the form of a binary complex. The accumulation of eIF-2.GDP on 60 S subunits occurs before binding of Met-tRNAf to 40 S subunits becomes reduced and before protein synthesis becomes inhibited. The rate of turnover of GDP (presumably eIF-2.GDP) on 60 S subunits and 80 S ribosomes in the absence of hemin is reduced to less than 10% the control rate, because the dissociation of eIF-2.GDP is inhibited. Additional RF increases the turnover of eIF-2.GDP on 60 S subunits and 80 S ribosomes to near the control rate by promoting dissociation of eIF-2.GDP but not eIF-2(alpha-P).GDP. Our findings suggest that eIF-2.GTP binding to and eIF-2.GDP release from 60 S subunits may normally occur and serve to promote subunit joining. The phosphorylation of eIF-2 alpha inhibits polypeptide chain initiation by preventing dissociation of eIF-2.GDP from either free 60 S subunits (thus inhibiting subunit joining directly) or the 60 S subunit component of an 80 S initiation complex (thereby blocking elongation and resulting in the dissociation of the 80 S complex).  相似文献   

8.
Eukaryotic initiation factor 5 (eIF-5), which specifically catalyzes the joining of a 60 S ribosomal subunit to a 40 S initiation complex to form a functional 80 S initiation complex, has been purified from ribosomal salt wash proteins of calf liver. The purified factor exhibits only one polypeptide band of Mr = 62,000 following electrophoresis in 10% polyacrylamide gels in the presence of sodium dodecyl sulfate. The native protein has a sedimentation coefficient of 4.2 S and a Stokes radius of 33 A which is consistent with eIF-5 being a monomeric protein of Mr = 58,000-62,000. Less pure preparations of eIF-5 elute in gel filtration columns with an apparent Mr of 160,000-180,000 presumably due to association of eIF-5 with other high molecular weight proteins since eIF-5 activity present in such preparations can also be shown by gel electrophoretic separation under denaturing conditions to be associated with a 62,000-dalton protein. Furthermore, eIF-5 purified from calf liver extracts with or without a number of protease inhibitors is indistinguishable with regard to molecular weight and final specific activity of purified preparations. The purified factor catalyzes the hydrolysis of GTP present in 40 S initiation complexes in the absence of 60 S ribosomal subunits. The presence of 60 S ribosomal subunits neither stimulates nor inhibits the hydrolysis of GTP. However, the factor cannot mediate 40 S or 40 + 60 S ribosome-dependent hydrolysis of GTP in the absence of Met-tRNAf or other components required for 40 S initiation complex formation. It can be calculated that 1 pmol of eIF-5 protein can catalyze the formation of at least 10 pmol of 80 S initiation complex under the conditions of in vitro initiation reactions.  相似文献   

9.
Evidence is presented that the GTP initially bound in ternary complex (Met-tRNAf.GTP.eukaryotic initiation factor 2 (eIF-2)) is the same GTP that is hydrolyzed to allow joining of a 40 S preinitiation complex with 60 S subunits. This evidence was obtained by two quite dissimilar techniques. The first was a kinetic analysis of AUG-directed methionyl-puromycin synthesis using either eIF-2 of eIF-2A to direct the binding of Met-tRNAf to 40 S subunits. The second technique was the isolation of 40 S preinitiation complexes by Sepharose 6B chromatography and subsequent quantitation of GTP hydrolysis and methionyl-puromycin synthesis under conditions where 80 S complex formation is permitted.  相似文献   

10.
A cDNA containing the complete genome of satellite tobacco necrosis virus (STNV) RNA was constructed and cloned into a plasmid vector containing the T7 polymerase promotor. A second clone containing the first 54 nucleotides from the 5' end, which includes the ribosome binding site, was also constructed. RNAs were transcribed from these plasmids (pSTNV1239 and pSTNV54) and tested for their ability to bind to wheat germ 40 S ribosomal subunits in the presence of wheat germ initiation factors eIF-4A, eIF-4F, eIF-4G, eIF-3, eIF-2, Met-tRNA, ATP, and guanosine 5'-(beta, gamma-imino)triphosphate (GMP-PNP). Maximal binding of the STNV RNA transcribed from pSTNV1239 is obtained only in the presence of all the initiation factors and ATP. In contrast, close to maximal binding of STNV RNA transcribed from pSTNV54 is obtained in the absence of eIF-4A, eIF-4F, eIF-4G, and ATP. A series of deletion clones from the 3' end of the STNV cDNA was prepared, and the requirements for binding to 40 S ribosomal subunits were determined. STNV RNAs containing more than 134 nucleotides from the 5' end require eIF-4A, eIF-4F, eIF-4G, and ATP for maximal binding to 40 S ribosomal subunits, whereas STNV RNAs containing 86 nucleotides or less no longer require ATP and these factors. These findings indicate that a region 3' to the initiation codon affects the requirements for eIF-4A, eIF-4F, eIF-4G, and ATP.  相似文献   

11.
A major site of regulation of polypeptide chain initiation is the binding of Met-tRNA to 40 S ribosomal subunits which is mediated by eukaryotic initiation factor 2 (eIF-2). The formation of ternary complex, eIF-2.GTP.Met-tRNA, is potently inhibited by GDP. Measurement of the parameters for guanine nucleotide binding to eIF-2 is critical to understanding the control of protein synthesis by fluctuations in cellular energy levels. We have compared the dissociation constants (Kd) of eIF-2.GDP and eIF-2.GTP and find that GDP has a 400-fold higher affinity for GDP than GTP. The Kd for GDP is almost an order of magnitude less than has been reported previously. The difference between the Kd values for the two nucleotides is the result of a faster rate constant for GTP release, the rate constants for binding being approximately equal. This combination of rate constants and low levels of contaminating GDP in preparations of GTP can explain the apparently unstable nature of eIF-2.GTP observed by others. Mg2+ stabilizes binary complexes slowing the rates of release of nucleotide from both eIF-2.GDP and eIF-2.GTP. The competition between GTP and GDP for binding to eIF-2.guanine nucleotide exchange factor complex has been measured. A 10-fold higher GTP concentration than GDP is required to reduce [32P] GDP binding to eIF-2.guanine nucleotide exchange factor complex by 50%. The relevance of this competition to the regulation of protein synthesis by energy levels is discussed.  相似文献   

12.
An enzyme fraction containing phosphatase activity for phosphorylated eukaryotic peptide initiation factor 2 (eIF-2) has been isolated from rabbit reticulocytes and partially characterized. The enzyme efficiently catalyzes release of phosphate from the small subunit of eIF-2 (eIF-2 alpha) that has been phosphorylated by the hemin-controlled repressor. It is shown to restore activity of this phosphorylated eIF-2 for binding of methionyl-tRNAf to 40 S ribosomal subunits in a partial reaction of peptide initiation. The enzyme fraction also has phosphatase activity for eIF-2 phosphorylated in its largest subunit and for the 100,000-dalton peptide associated with the eIF-2 alpha kinase activity of the hemin-controlled repressor. The phosphoprotein phosphatase has been isolated by a procedure involving precipitation with ethanol at room temperature and has an apparent molecular weight in the order of 76,000. Its phosphatase activity for eIF-2 alpha is stimulated about 3-fold by optimal concentrations of Mn2+, but is not stimulated by Ca2+ or Mg2+. The enzyme is strongly inhibited by Fe2+ and by purine nucleoside diphosphates.  相似文献   

13.
Eukaryotic initiation factor eIF-2 is an oligomeric protein consisting of three different subunits. During initiation of protein synthesis eIF-2 interacts with GTP, Met-tRNAf and 40 S ribosomal subunit. By affinity labeling with a photo-reactive GTP analogue it was shown that in the binary complex [eIF-2 X GTP] GTP is in contact with the gamma-subunit of eIF-2.  相似文献   

14.
The function of eukaryotic initiation factor 5 (eIF-5) from rabbit reticulocyte lysate has been studied by sucrose gradient preparation of 40 S and 80 S initiation complexes. eIF-5 is required for transfer of initiator tRNA from 40 S preinitiation complexes to puromycin-reactive 80 S complexes. The transfer is dependent upon GTP hydrolysis and is associated with release of eIF-2 and eIF-3 from the 40 S subunit. The GTP-dependent loss of eIF-2 and eIF-3 is catalyzed by eIF-5 in the absence of 60 S subunits or when subunit joining is prevented by edeine, but not when GTP is replaced by GuoPP(NH)P. Unstable 40 S subunit . Met-tRNAf complexes generated by eIF-5 can form puromycin-reactive 80 S complexes when 60 S subunits are added in the absence of added GTP. In addition, kinetic evidence is presented that indicates GTP hydrolysis occurs prior to 80 S complex formation.  相似文献   

15.
Recent observations have indicated that eukaryotic initiation factor (eIF)-2 and GTP or GDP normally bind to 60 S ribosomal subunits in rabbit reticulocyte lysate and that when eIF-2 alpha is phosphorylated and polypeptide chain initiation is inhibited, eIF-2 X GDP accumulates on 60 S subunits due to impaired dissociation that is normally mediated by the reversing factor (eIF-2B). Current findings now indicate that inhibition due to phosphorylation of eIF-2 alpha is mediated, at least in part, by the inability to dissociate eIF-2 X GDP from the 60 S subunit of complete initiation complexes. At the onset of inhibition, there is an accumulation of Met-tRNA(f) and eIF-2 on the polysomes, despite a marked reduction in Met-tRNA(f) bound to 40 S subunits and Met-peptidyl-tRNA bound to the polysomes. This initial effect is not associated with the formation of "half-mers" (polysomes containing an extra unpaired 40 S subunit), and the 40 S X Met-tRNA(f) complexes, though reduced, still sediment at 43 S. When inhibition is maximal and the polysomes are largely disaggregated, there is an accumulation of 48 S complexes consisting of a 40 S subunit and Met-tRNA(f) bound to globin mRNA as well as small polysomal half-mers, such that residual protein synthesis occurs to about the same degree on "1 1/2"s and "2 1/2"s as on mono-, di-, and triribosomes. Exogenous eIF-2B increases protein synthesis on mono-, di-, and triribosomes and decreases that on half-mers. This is associated with reduced binding of Met-tRNA(f) and eIF-2 to ribosomal particles sedimenting at 80 S and greater and a shift from 48 S to 43 S complexes. These results suggest that eIF-2B must normally promote dissociation of eIF-2 X GDP from the 60 S subunit of complete initiation complexes before they can elongate but cannot when eIF-2 alpha is phosphorylated, resulting in the accumulation of these complexes, some of which dissociate into Met-tRNA(f) X 40 S X mRNA and 60 S X eIF-2 X GDP.  相似文献   

16.
Translational initiation factor 3 (eIF-3) is phosphorylated by the cyclic AMP-regulated protein kinases from rabbit reticulocytes. eIF-3 is a large molecular weight complex which facilitates binding of the ternary complex containing met tRNAf, GTP and initiation factor 2 to 40S ribosomal subunits. A single polypeptide with a molecular weight of 130,000 is modified. The phosphorylation is dependent upon the presence of cyclic AMP and is inhibited by the inhibitor protein diagnostic for cyclic AMP-regulated protein kinase. Assuming a molecular weight of 700,000 for eIF-3, one mole of phosphate is incorporated per mole of eIF-3. Thus the phosphorylation of two interacting components of the protein synthesizing system, 40S ribosomal subunits and eIF-3, is controlled by cyclic AMP.  相似文献   

17.
Eukaryotic initiation factor 5B (eIF5B) is a GTPase that facilitates joining of the 60 S ribosomal subunit to the 40 S ribosomal subunit during translation initiation. Formation of the resulting 80 S initiation complex triggers eIF5B to hydrolyze its bound GTP, reducing the affinity of the factor for the complex and allowing it to dissociate. Here we present a kinetic analysis of GTP hydrolysis by eIF5B in the context of the translation initiation pathway. Our data indicate that stimulation of GTP hydrolysis by eIF5B requires the completion of early steps in translation initiation, including the eIF1- and eIF1A-dependent delivery of initiator methionyl-tRNA to the 40 S ribosomal subunit and subsequent GTP hydrolysis by eIF2. Full activation of GTP hydrolysis by eIF5B requires the extreme C terminus of eIF1A, which has previously been shown to interact with the C terminus of eIF5B. Disruption of either isoleucine residue in the eIF1A C-terminal sequence DIDDI reduces the rate constant for GTP hydrolysis by approximately 20-fold, whereas changing the aspartic acid residues has no effect. Changing the isoleucines in the C terminus of eIF1A also disrupts the ability of eIF5B to facilitate subunit joining. These data indicate that the interaction of the C terminus of eIF1A with eIF5B promotes ribosomal subunit joining and possibly provides a checkpoint for correct complex formation, allowing full activation of GTP hydrolysis only upon formation of a properly organized 80 S initiation complex.  相似文献   

18.
Protein synthesis in Ehrlich ascites tumor cells is inhibited when cellular calcium is depleted by the addition of EGTA to the growth medium. This inhibition is at the level of polypeptide chain initiation as evidenced by a disaggregation of polyribosomes accompanied by a significant elevation in 80-S monomers. To identify direct effects of calcium on the protein synthesis apparatus we have developed a calcium-dependent, cell-free protein-synthesizing system from the Ehrlich cells by using 1,2-bis(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA), a recently developed chelator with a high (greater than 10(5)) selectivity for calcium (pKa = 6.97) over magnesium (pKa = 1.77). BAPTA inhibits protein synthesis by 70% at 1 mM and 90% at 2 mM. This effect was reversed by calcium but not by other cations tested. The levels of 43-S complexes (i.e., 40-S subunits containing bound methionyl-tRNAf.eIF-2.GTP) were significantly lower in the calcium-deprived incubations, indicating either inhibition of the rate of formation or decreased stability of 43-S complexes. Analysis of 43-S complexes on CsCl gradients showed that in BAPTA-treated lysates, 40-S subunits containing eIF-3, completely disappeared and the residual methionyl-tRNA-containing complexes were bound to 40-S subunits lacking eIF-3. Our results demonstrate a direct involvement of Ca2+ in protein synthesis and we have localized the effect of calcium deprivation to decreased binding of eIF-2 and eIF-3 to 40-S subunits.  相似文献   

19.
Dormant and developing embryos of Artemia salina contain equivalent amounts of eIF-2, the eukaryotic initiation factor which forms a ternary complex with GTP and Met-tRNAf. The factor was purified from 0.5 M NH4Cl ribosomal washes by (NH4)2SO4 fractionation, followed by chromatography on heparin-Sepharose, DEAE-cellulose, hydroxyapatite and phosphocellulose. Purified preparations from dormant and developing embryos have similar specific activities and nucleotide requirements. The mobility of both proteins in dodecylsulfate gel electrophoresis is indistinguishable, and each contains three major polypeptide chains of molecular weight 52 000, 45 000 and 42 000. Both proteins are also immunologically identical, and each stimulates amino acid incorporation in a cell-free system of protein synthesis. The binding of [35S]Met-tRNAf to 40-S ribosomal subunits is catalyzed by eIF-2 isolated from dormant or developing embryos and is dependent upon GPT and AUG. Binding of [35S]Met-tRNAf to 40-S ribosomal subunits, and ternary complex formation with eIF-2, GTP, and [35S]Met-tRNAf is stimulated 2--3-fold by a factor present in the 0.5 M NH4Cl ribosomal wash and which elutes from DEAE-cellulose at 50 mM KCl. This protein does not exhibit GTP-dependent binding of [35S]Met-tRNAf. Binding of GDP and GTP was investigated with purified eIF-2 from developing embryos. The factor forms a binary complex with GDP or GTP, and eIF-2-bound [3H]GDP exchanges very slowly with free nucleotides. Our results suggest that eIF-2 does not limit resumption of embryo development following encystment, nor does it limit mRNA translation in extracts from dormant embryos.  相似文献   

20.
Binding of the poorly hydrolyzable GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to purified guanine-nucleotide-binding regulatory proteins (G proteins) has been shown to be nonreversible in the presence of millimolar concentrations of Mg2+. In porcine atrial membranes, binding of [35S]GTP[S] to G proteins was stable in the presence of 1 mM Mg2+. However, either large dilution or, even more strongly, addition of unlabelled guanine nucleotides, in the potency order, GTP[S] greater than GTP greater than or equal to guanosine 5'-[beta,gamma-imino]triphosphate greater than GDP greater than or equal to guanosine 5'-[beta-thio]diphosphate greater than GMP, markedly enhanced the observed dissociation, with 20-30% of bound [35S]GTP[S] being released by unlabelled guanine nucleotide within 20 min at 25 degrees C. Most interestingly, dissociation of [35S]GTP[S] was rapidly and markedly stimulated by agonist (carbachol) activation of cardiac muscarinic acetylcholine receptors. Carbachol-stimulated release of [35S]GTP[S] was strictly dependent on the presence of Mg2+ and an unlabelled guanine nucleotide. Although having different potency and efficiency in releasing [35S]GTP[S] from the membranes by themselves, the guanine nucleoside triphosphates and diphosphates studied, at maximally effective concentrations, promoted the carbachol-induced dissociation to the same extent, while GMP and ATP were ineffective. GTP[S]-binding-saturation experiments indicated that one agonist-activated muscarinic acetylcholine receptor can cause release of bound GTP[S] from three to four G proteins. The data presented indicate that binding of GTP[S] to G proteins in intact membranes, in contrast to purified G proteins, is reversible, and that agonist-activated receptors can even, either directly or indirectly, interact with GTP[S]-bound G proteins, resulting in release of bound guanine nucleoside triphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号