首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of high CO2-concentration on photoacoustic signals from tobacco leaves is studied by means of a recently developed pulse modulation method which provides simultaneous information on photothermal and photobaric components in the millisecond time domain. High CO2-concentrations are found to induce large gas-uptake signals. Simultaneous measurements of chlorophyll fluorescence suggest that the uptake signals are correlated with energy-dependent fluorescence quenching. Very similar CO2-concentration dependencies are found in the absence and presence of methylviologen, which is known to catalyze O2-reduction, and in the presence of glyceraldehyde, which blocks Calvin cycle and photorespiration. It is suggested that the CO2-enhanced uptake signal is likely to reflect O2-uptake in the Mehler reaction. However, it is not ruled out that also rapid CO2-solubilisation or CO2-binding caused by light-induced stroma alkalisation are involved. Strong uptake is also induced when the CO2-concentration in the closed photoacoustic chamber increases due to dark-respiration. The consequences of these findings with respect to the interpretation of photoacoustic data (e.g., low-light effect) and to the regulatory role of O2-dependent electron flow are discussed.  相似文献   

2.
A newly developed photoacoustic system for measurement of photosynthetic reactions in intact leaves is described. The system is based on pulsed light-emitting diodes, the pulse program and pulse response analysis being computer controlled. Separation of various components in the overall photoacoustic signal is achieved by curve fitting analysis of the responses following individual measuring light pulses in the millisecond time domain. This procedure is in distinction to the conventionally used analysis in the frequency domain, with the advantage that various signal components are obtained by on-line deconvolution, yielding simultaneous recordings of photothermal (complement of energy storage) and photobaric (evolution and uptake) signals. The basic components of the new system are described by block diagrams and the principal steps for deconvolution of the overall photoacoustic response are outlined. An example of application with simultaneous recording of chlorophyll fluorescence is given. It is apparent that the photobaric uptake component represents a significant part of the overall signal, particularly during induction of photosynthesis after dark-adaptation. This component probably contains not only O2-uptake but uptake of CO2 as well.Abbreviations PA photoacoustic - LED light-emitting-diode - RAM random access memory  相似文献   

3.
Active CO(2) Transport by the Green Alga Chlamydomonas reinhardtii   总被引:6,自引:6,他引:0       下载免费PDF全文
Mass spectrometric measurements of dissolved free 13CO2 were used to monitor CO2 uptake by air grown (low CO2) cells and protoplasts from the green alga Chlamydomonas reinhardtii. In the presence of 50 micromolar dissolved inorganic carbon and light, protoplasts which had been washed free of external carbonic anhydrase reduced the 13CO2 concentration in the medium to close to zero. Similar results were obtained with low CO2 cells treated with 50 micromolar acetazolamide. Addition of carbonic anhydrase to protoplasts after the period of rapid CO2 uptake revealed that the removal of CO2 from the medium in the light was due to selective and active CO2 transport rather than uptake of total dissolved inorganic carbon. In the light, low CO2 cells and protoplasts incubated with carbonic anhydrase took up CO2 at an apparently low rate which reflected the uptake of total dissolved inorganic carbon. No net CO2 uptake occurred in the dark. Measurement of chlorophyll a fluorescence yield with low CO2 cells and washed protoplasts showed that variable fluorescence was mainly influenced by energy quenching which was reciprocally related to photosynthetic activity with its highest value at the CO2 compensation point. During the linear uptake of CO2, low CO2 cells and protoplasts incubated with carbonic anhydrase showed similar rates of net O2 evolution (102 and 108 micromoles per milligram of chlorophyll per hour, respectively). The rate of net O2 evolution (83 micromoles per milligram of chlorophyll per hour) with washed protoplasts was 20 to 30% lower during the period of rapid CO2 uptake and decreased to a still lower value of 46 micromoles per milligram of chlorophyll per hour when most of the free CO2 had been removed from the medium. The addition of carbonic anhydrase at this point resulted in more than a doubling of the rate of O2 evolution. These results show low CO2 cells of Chlamydomonas are able to transport both CO2 and HCO3 but CO2 is preferentially removed from the medium. The external carbonic anhydrase is important in the supply to the cells of free CO2 from the dehydration of HCO3.  相似文献   

4.
The photoacoustic gas uptake signal correlates with carbonicanhydrase activity in transgenic tobacco plants, various levelsof which were induced by antisense RNA [Price et al. (1994)Planta 193: 339]. This is taken as evidence that the uptakesignal is caused by C02-solubilisation upon light-driven stromaalkalisation rather than by (O2-uptake. (Received December 8, 1997; Accepted January 31, 1998)  相似文献   

5.
At concentrations of 100–200 M, ethoxyzolamide, a lipophilic inhibitor of carbonic anhydrase, considerably (by 60%) inhibited light-induced CO2-dependent oxygen evolution in pea protoplasts at the optimum concentration of inorganic carbon (100 M CO2) in the medium. At the same concentrations of the inhibitor, electron transport in isolated pea thylakoids was inhibited only by 6–9%. Acetazolamide, a water-soluble inhibitor of carbonic anhydrase, affected neither the rate of CO2-dependent O2evolution in protoplasts nor electron transport in thylakoid membranes. A light-dependent proton uptake by protoplasts was demonstrated. At pH 7.2, the induction kinetics and the rate of proton uptake were similar to those for CO2-dependent O2evolution. The rate of proton uptake was decreased twofold by 1 mM acetazolamide. This fact agrees with the notion that a membrane-bound carbonic anhydrase is operative in the plasma membrane of higher plant cells. A mechanism of its functioning is suggested. Possible functions of carbonic anhydrases in the cells of C3-plants are discussed.  相似文献   

6.
For an analysis of the inhibition of the photosynthetic CO2-uptake after heat stress attached leaves of Hedera helix L. were heat-stressed for 30 min at various temperatures. Subsequently their photosynthetic CO2-uptake, transpiration, respiration in light and darkness, and CO2-compensation concentration were measured under optimal conditions. After heat stress the stomatal resistance increased only corresponding to the raised CO2-concentration inside the leaves (due to the reduced CO2-uptake). The physical resistance between the mesophyll cell walls and the chloroplasts remained unchanged after heat stress. A non-stomatal inhibition of the CO2-uptake is indicated by a strong increase of the CO2-compensation concentration after heat stress. This is hardly due to a stimulation of the respiration in light, as the CO2-evolution into CO2-free air in light was even reduced. Therefore, it must be concluded that the photosynthetic process itself is impaired after heat stress.  相似文献   

7.
A mendelian mutant of the unicellular green alga Chlamydomonas reinhardii has been isolated which is deficient in carbonic anhydrase (EC 4.2.1.1) activity. This mutant strain, designated ca-1-12-1C (gene locus ca-1), was selected on the basis of a high CO2 requirement for photoautotrophic growth. Photosynthesis by the mutant at atmospheric CO2 concentration was very much reduced compared to wild type and, unlike wild type, was strongly inhibited by O2. In contrast to a CO2 compensation concentration of near zero in wild type at all O2 concentrations examined, the mutant exhibited a high, O2-stimulated CO2 compensation concentration. Evidence of photorespiratory activity in the mutant but not in wild type was obtained from the analysis of photosynthetic products in the presence of 14CO2. At air levels of CO2 and O2, the mutant synthesized large amounts of glycolate, while little glycolate was synthesized by wild type under identical conditions. Both mutant and wild type strains formed only small amounts of glycolate at saturating CO2 concentration. At ambient CO2, wild type accumulated inorganic carbon to a concentration several-fold higher than that in the suspension medium. The mutant cells accumulated inorganic carbon internally to a concentration 6-fold greater than found in wild type, yet photosynthesis was CO2 limited. The mutant phenotype was mimicked by wild type cells treated with ethoxyzolamide, an inhibitor of carbonic anhydrase activity. These observations indicate a requirement for carbonic anhydrase-catalyzed dehydration of bicarbonate in maintaining high internal CO2 concentrations and high photosynthesis rates. Thus, in wild type cells, carbonic anhydrase rapidly converts the bicarbonate taken up to CO2, creating a high internal CO2 concentration which stimulates photosynthesis and suppresses photorespiration. In mutant cells, bicarbonate is taken up rapidly but, because of a carbonic anhydrase deficiency, is not dehydrated at a rate sufficiently rapid to maintain a high internal CO2 concentration.  相似文献   

8.
Photosynthesis and light O2-uptake of the aerial portion of the CAM plant Ananas comosus (L.) merr. were studied by CO2 and O2 gas exchange measurements. The amount of CO2 which was fixed during a complete day-night cycle was equal to the amount of total net O2 evolved. This finding justifies the assumption that in each time interval of the light period, the difference between the rates of net O2-evolution and of net light atmospheric CO2-uptake give the rates of malate-decarboxylation-dependent CO2 assimilation. Based upon this hypothesis, the following photosynthetic characteristics were observed: (a) From the onset of the light to midphase IV of CAM, the photosynthetic quotient (net O2 evolved/net CO2 fixed) was higher than 1. This indicates that malate-decarboxylation supplied CO2 for the photosynthetic carbon reduction cycle during this period. (b) In phase III and early phase IV, the rate of CO2 assimilation deduced from net O2-evolution was 3 times higher than the maximum rate of atmospheric CO2-fixation during phase IV. A conceivable explanation for this stimulation of photosynthesis is that the intracellular CO2-concentration was high because of malate decarboxylation. (c) During the final hours of the light period, the photosynthetic quotient decreased below 1. This may be the result of CO2-fixation by phosphoenolpyruvate-carboxylase activity and malate accumulation. Based upon this hypothesis, the gas exchange data indicates that at least 50% of the CO2 fixed during the last hour of the light period was stored as malate. Light O2-uptake determined with 18O2 showed two remarkable characteristics: from the onset of the light until midphase IV the rate of O2-uptake increased progressively; during the following part of the light period, the rate of O2-uptake was 3.5 times higher than the maximum rate of CO2-uptake. When malate decarboxylation was reduced or suppressed after a night in a CO2-free atmosphere or in continuous illumination, the rate of O2-uptake was higher than in the control. This supports the hypothesis that the low rate of O2-uptake in the first part of the light period is due to the inhibition of photorespiration by increased intracellular CO2 concentration because of malate decarboxylation. In view of the law of gas diffusion and the kinetic properties of the ribulose-1,5-bisphosphate carboxylase/oxygenase, O2 and CO2 gas exchange suggest that at the end of the light period the intracellular CO2 concentration was very low. We propose that the high ratio of O2-uptake/CO2-fixation is principally caused by the stimulation of photorespiration during this period.  相似文献   

9.
A burst of net CO2 uptake was observed during the first 3–4 min after the onset of illumination in both wild-type Chlamydomonas reinhardii in which carbonic anhydrase was chemically inhibited with ethoxyzolamide and in a mutant of C. reinhardii (ca-1-12-1C) deficient in carbonic anhydrase activity. The burst was followed by a rapid decrease in the CO2 uptake rate so that net evolution often occurred. After a 2–3 min period of CO2 evolution, net CO2 uptake again increased and ultimately reached a steady-state, positive rate. From [14CO2]-tracer studies it was determined that CO2 fixation proceeded at a nearly linear rate throughout the period of illumination. Thus, prior to reaching a steady state, there was a rapid accumulation of inorganic carbon inside the cells which apparently reached a supercritical concentration and the excess was excreted, causing a subsequent efflux of CO2. A post illumination burst of net CO2 efflux was also observed in ethoxyzolamide-inhibited wild type and ca-1 mutant cells, but not in the unihibited wild type. [14CO2]-tracer experiments revealed that this burst was the result of a collapse of a large internal inorganic carbon pool at the onset of darkness rather than a photorespiratory post-illumination burst. These results indicate that upon illumination, chemical or genetic inhibition of carbonic anhydrase initially causes an accumulation of excess inroganic carbon in C. reinhardii cells, and that unknown regulatory mechanisms correct for this imbalance by first excreting the excess inorganic carbon and then, after several dampened oscillations, achieving an equilibrium between bicarbonate uptake, bicarbonate dehydration, and CO2 fixation.  相似文献   

10.
Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.  相似文献   

11.
Inorganic carbon (Ci) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO2. Both air-grown cells, that have a CO2 concentrating system, and 5% CO2-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (Ci) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO2-grown cells also accumulated some Ci, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO2 fixation by high CO2-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO2-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase.  相似文献   

12.
Carbon dioxide and senescence in cotton plants   总被引:7,自引:5,他引:2       下载免费PDF全文
Chang CW 《Plant physiology》1975,55(3):515-519
Glandless cotton plants (Gossypium hirsutum L. cv. Coker 100) were subjected to the influence of high CO2-bicarbonate. The content of protein decreased with no accompanying increase in its degraded products. The decrease in protein was correlated with the low content of chlorophyll and also with the reduced activity of carbonic anhydrase. The initiation of these correlations coincided with the time when the control leaves contained the highest enzyme activity during leaf growth. The high concentration of bicarbonate directly restricted the rate of photophosphorylation and that of the Hill reaction in isolated chloroplasts. The amount of ATP in leaves treated in vivo also diminished. High CO2 as bicarbonate, however, did not directly inhibit the activity of carbonic anhydrase in vitro.  相似文献   

13.
A shortage in the zinc supply to spinach (Spinacia oleracea L.) drastically reduced carbonic anhydrase levels with little effect on net CO2 uptake per unit leaf area, except with the most severe zinc stresses. Under these conditions, carbonic anhydrase was below 10% and photosynthesis 60 to 70% of the control levels. When photosynthesis was measured at a range of CO2 supply levels, zinc-deficient leaves were less efficient at 300 to 350 microliters per liter CO2 and above, but the same as controls at lower CO2 levels. This suggests that carbonic anhydrase does not affect the diffusion of CO2, and that the effect of zinc deficiency was on the photosynthetic process itself. Our evidence does not support the hypothesis that carbonic anhydrase has some role in facilitating the supply of CO2 to the sites of carboxylation within the chloroplast.  相似文献   

14.
Rotatore C  Colman B 《Plant physiology》1990,93(4):1597-1600
Chloroplasts, isolated from protoplasts of the green alga, Chlorella ellipsoidea, were estimated to be 99% intact by the ferricyanide-reduction assay, and gave CO2 and PGA-dependent rates of O2 evolution of 64.5 to 150 micromoles per milligram of chlorophyll per hour, that is 30 to 70% of the photosynthetic activity of the parent cells. Intact chloroplasts showed no carbonic anhydrase activity, but it was detected in preparations of ruptured organelles. Rates of photosynthesis, measured in a closed system at pH 7.5, were twice the calculated rate of CO2 supply from the uncatalyzed dehydration of HCO3 indicating a direct uptake of bicarbonate by the intact chloroplasts. Mass spectrometric measurements of CO2 depletion from the medium on the illumination of chloroplasts indicate the lack of an active CO2 transport across the chloroplast envelope.  相似文献   

15.
Investigations using steady-state culture conditions indicate that carbonic anhydrase activity is correlated to the photosynthetic rate in Euglena in some but not all circumstances. When cultures grown with 5% CO2 were changed to air growth, the photosynthetic rate was independent of the carbonic anhydrase activity. While experiments using the inhibitor acetazolamide indicated a close correlation between photosynthetic capacity and carbonic anhydrase activity, the inhibitor was found to be nonspecific. Acetazolamide altered photosystem activities directly as measured by the photoreduction of DCPIP in chloroplast preparations, whole-cell fluorescence transients of chlorophyll a, and by whole chain photoelectron flow. Ethoxzolamide, another inhibitor of carbonic anhydrase, was also found to inhibit photosystem activities, i.e., the photoreduction of DCPIP, and in vivo photoelectron flow, at high concentrations. Cells grown in 5% CO2 were less sensitive to the effects of acetazolamide than cells exposed to air. The rate of electron flow in chloroplasts from cells grown with 5% CO2 and exposed to 10 mM acetazolamide was 2.5-fold faster than that of chloroplasts from air-grown cells exposed to the same concentration of inhibitor. The whole cell chlorophyll a fluorescence transients of cultures grown with high CO2 were completely different from those of air-grown cells and also showed fewer effects on exposure to acetazolamide. These results suggest a reevaluation of the hypothesis that carbonic anhydrase activity regulates photosynthesis. It is also apparent that results from air-grown and 5% CO2-grown cultures cannot be directly compared in such studies.  相似文献   

16.
Carbonyl sulfide (COS), a substrate for carbonic anhydrase, inhibited alkalization of the medium, O2 evolution, dissolved inorganic carbon accumulation, and photosynthetic CO2 fixation at pH 7 or higher by five species of unicellular green algae that had been air-adapted for forming a CO2-concentrating process. This COS inhibition can be attributed to inhibition of external HCO3 conversion to CO2 and OH by the carbonic anhydrase component of an active CO2 pump. At a low pH of 5 to 6, COS stimulated O2 evolution during photosynthesis by algae with low CO2 in the media without alkalization of the media. This is attributed to some COS hydrolysis by carbonic anhydrase to CO2. Although COS had less effect on HCO3 accumulation at pH 9 by a HCO3 pump in Scenedesmus, COS reduced O2 evolution probably by inhibiting internal carbonic anhydrases. Because COS is hydrolyzed to CO2 and H2S, its inhibition of the CO2 pump activity and photosynthesis is not accurate, when measured by O2 evolution, by NaH14CO3 accumulation, or by 14CO2 fixation.  相似文献   

17.
A full-length cDNA clone encoding carbonic anhydrase was isolated from an Arabidopsis thaliana (Columbia) leaf library. Comparison of the derived amino acid sequence obtained from this clone with those of pea and spinach reveals a considerable degree of identity. The carbonic anhydrase cDNA was used to probe the level of RNA encoding this protein in the leaves of plants grown in elevated CO2 (660 ppm). We have found that under these conditions the steady-state level of carbonic anhydrase mRNA was increased in comparison with control plants grown in normal atmospheric concentrations of CO2 (330 ppm). This raises the intruiging possibility that there exists in higher plants a mechanism for perceiving and responding to changes in environmental CO2 concentrations at the genetic level.  相似文献   

18.
Net O2 evolution, gross CO2 uptake and net HCO inf3 su– uptake during steady-state photosynthesis were investigated by a recently developed mass-spectrometric technique for disequilibrium flux analysis with cells of the marine cyanobacterium Synechococcus PCC7002 grown at different CO2 concentrations. Regardless of the CO2 concentration during growth, all cells had the capacity to transport both CO2 and HCO inf3 su– ; however, the activity of HCO inf3 su– transport was more than twofold higher than CO2 transport even in cyanobacteria grown at high concentration of inorganic carbon (Ci = CO2 + HCO inf3 su– ). In low-Ci cells, the affinities of CO2 and HCO inf3 su– transport for their substrates were about 5 (CO2 uptake) and 10 (HCO inf3 su– uptake) times higher than in high-Ci cells, while air-grown cells formed an intermediate state. For the same cells, the intracellular accumulated Ci pool reached 18, 32 and 55 mM in high-Ci, air-grown and low-Ci cells, respectively, when measured at 1 mM external Ci. Photosynthetic O2 evolution, maximal CO2 and HCO inf3 su– transport activities, and consequently their relative contribution to photosynthesis, were largely unaffected by the CO2 provided during growth. When the cells were adapted to freshwater medium, results similar to those for artificial seawater were obtained for all CO2 concentrations. Transport studies with high-Ci cells revealed that CO2 and HCO inf3 su– uptake were equally inhibited when CO2 fixation was reduced by the addition of glycolaldehyde. In contrast, in low-Ci cells steady-state CO2 transport was preferably reduced by the same inhibitor. The inhibitor of carbonic anhydrase ethoxyzolamide inhibited both CO2 and HCO inf3 su– uptake as well as O2 evolution in both cell types. In high-Ci cells, the degree of inhibition was similar for HCO inf3 su– transport and O2 evolution with 50% inhibition occurring at around 1 mM ethoxyzolamide. However, the uptake of CO2 was much more sensitive to the inhibitor than HCO inf3 su– transport, with an apparent I50 value of around 250 M ethoxyzolamide for CO2 uptake. The implications of our results are discussed with respect to Ci utilisation in the marine Synechococcus strain.Abbreviations Chl chlorophyll - Ci inorganic carbon (CO2 + HCO inf3 su– ) - CA carbonic anhydrase - CCM CO2-concentrating mechanism - EZA ethoxyzolamide - GA glycolaldehyde - K1/2 concentration required for half-maximal response - Rubisco ribulose-1,5,-bisphosphate carboxylase-oxygenase D.S. is a recipient of a research fellowship from the Deutsche Forschungsgemeinschaft (D.F.G.). In addition, we are grateful to Donald A. Bryant, Department of Molecular and Cell Biology and Center of Biomolecular Structure Function, Pennsylvania State University, USA, for sending us the wild-type strain of Synechococcus PCC7002.  相似文献   

19.
Membrane-permeable and impermeable inhibitors of carbonic anhydrase have been used to assess the roles of extracellular and intracellular carbonic anhydrase on the inorganic carbon concentrating system in Chlamydomonas reinhardtii. Acetazolamide, ethoxzolamide, and a membrane-impermeable, dextran-bound sulfonamide were potent inhibitors of extracellular carbonic anhydrase measured with intact cells. At pH 5.1, where CO2 is the predominant species of inorganic carbon, both acetazolamide and the dextran-bound sulfonamide had no effect on the concentration of CO2 required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]) or inorganic carbon accumulation. However, a more permeable inhibitor, ethoxzolamide, inhibited CO2 fixation but increased the accumulation of inorganic carbon as compared with untreated cells. At pH 8, the K0.5(CO2) was increased from 0.6 micromolar to about 2 to 3 micromolar with both acetazolamide and the dextran-bound sulfonamide, but to a higher value of 60 micromolar with ethoxzolamide. These results are consistent with the hypothesis that CO2 is the species of inorganic carbon which crosses the plasmalemma and that extracellular carbonic anhydrase is required to replenish CO2 from HCO3 at high pH. These data also implicate a role for intracellular carbonic anhydrase in the inorganic carbon accumulating system, and indicate that both acetazolamide and the dextran-bound sulfonamide inhibit only the extracellular enzyme. It is suggested that HCO3 transport for internal accumulation might occur at the level of the chloroplast envelope.  相似文献   

20.
Carbonic anhydrase activity of intactCommelina communis L. leaves was measured using mass spectrometry, by following the18O-exchange kinetics between18O-enriched carbon dioxide and water. A gas-diffusion model (Gerster, 1971, Planta97, 155–172) was used to interpret the18O-exchange kinetics and to determine two constants, one (k) related to the hydration of CO2 and the other (ke), related to the diffusion of CO2. Both constants were determined inCommelina communis L. leaves after stripping the lower epidermis to remove any stomatal influence. The hydration constant (k) was 17200 +2200 ·min–1 (mean±SD, 12 experiments), i.e., about 8 600 times the uncatalyzed hydration of CO2 in pure water, and was specifically inhibited by ethoxyzolamide, a powerful inhibitor of carbonic anhydrases, half-inhibition occurring around 10–5 Methoxyzolamide. The diffusion constant (ke) was 1.18±0.28·min–1 (mean±SD, 12 experiments) and was only slightly inhibited (about 20%) by ethoxyzolamide. Carbonic anhydrase activity of stripped leaves was not affected by the leaf water status (up to 50% relative water deficits), was strongly inhibited by monovalent anions such as Cl or NO 3 , and decreased by about 50% when the photon flux density during growth was increased from 100 to 500 mol photons·m–2·s–1. By studying the effect of ethoxyzolamide (10–4 M) on photosynthetic O2 exchange, measured using18O2 and mass spectrometry, we found that inhibition of carbonic anhydrase activity by 92–95% had little effect on the response curves of net O2 evolution to increased CO2 concentrations. Ethoxyzolamide had no effect on the photosynthetic electron-transport rate, measured as gross O2 photosynthesis at high CO2 concentration (>350 l·–1), but was found to increase both gross O2 photosynthesis and O2 uptake at lower CO2 levels. The chloroplastic CO2 concentration calculated from O2-exchange data was not significantly modified by ethoxyzolamide. We conclude from these results that, under normal conditions of photosynthesis, most of the carbonic anhydrase activity is not involved in CO2 assimilation. Measurement of carbonic anhydrase activity using18O-isotope exchange therefore provides a suitable model to study the in-vivo regulation of this chloroplastic enzyme in plants submitted to various environmental conditions.Abbreviations CA carbonic anhydrase - Ccc chloroplastic CO2 concentration - Ce external CO2 concentration - EZA ethoxyzolamide - k CO2 hydration rate constant - ke CO2 diffusion rate constan - PPFD photosynthetic photon flux density - Rubisco ribulose-1,5 bisphosphate carboxylase oxygenase - RWD relative water deficit The authors wish to thank P. Carrier for technical assistance with mass-spectrometric experiments and Dr. P. Thibault for helpful suggestions and comments. Dr. A. Vavasseur is gratefully acknowledged for supplyingCommelima communis. cultures. P.C., P.T. and A.V. are all from the CEA, Département de Physiologie Végétale et Ecosystèmes, Cadarache, France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号