首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
p38 mitogen-activated protein kinase (MAPK) belongs to the MAPK superfamily, phosphorylating serine and/or threonine residues of the target proteins. The activation of p38 MAPK leads to cell growth, differentiation, inflammation, survival or apoptosis. In this study, we tested the effect of two highly specific and potent inhibitors of p38 MAPK (namely, SB203580 and SB202190) on human breast cancer cell line MDA-MB-231 to elucidate the controversial role of p38 MAPK on cell proliferation and/or cell migration/metastasis further. It was determined that the IC50 value of SB203580 was 85.1 µM, while that of SB202190 was 46.6 µM, suggesting that SB202190 is slightly more effective than SB203580. To verify the effect of each inhibitor on cell proliferation and cytotoxicity, the cells were treated with various doses of SB203580 and SB202190 and examined using iCELLigence system. No significant effect of 1 and 5 µM of both inhibitors were seen on cell proliferation as compared to the DMSO-treated control cells for up to 96 h. On the other hand, both SB203580 and SB202190 significantly prevented cell proliferation at a concentration of 50 µM. SB202190 was again more effective than SB203580. Afterwards, we tested the effect of each inhibitor on cell migration using wound assay. Both SB203580 and SB202190 significantly reduced cell migration in a time-dependent manner at a concentration of 50 µM. However, interestingly it was observed that a low and noncytotoxic dose of 5 µM of SB203580 and SB202190 also did cause significant cell migration inhibition at 48 h of the treatment, corroborating the fact that p38 MAPK pathway has a critical role in cell migration/metastasis. Then, we tested whether each p38 MAPK inhibitor has any effect on cell adhesion during a treatment period of 3 h using iCELLigence system. A concentration of only 50 µM of SB202190 reduced cell adhesion for about 1.5 h (p < 0.001); after that period of time, cell adhesion in 50 µM SB202190-treated cells returned to the level of the control cells. To determine the mechanism of growth and cell migration inhibitory effects of p38 MAPK inhibitors, the activation/inactivation of various proteins and enzymes was subsequently analyzed by PathScan® Intracellular Signaling Array kit. The ERK1/2 phosphorylation level was not modified by low concentrations (1 or 5 µM) of SB202190 and SB203580; while a high concentration (50 µM) of both inhibitors caused significant reductions in the ERK1/2 phosphorylation. In addition, it was determined that both p38 MAPK inhibitors caused significant increases on the Ser15 phosphorylation of mutant p53 in MDA-MB-231 under these experimental conditions; while SB202190 was more potent than SB203580.  相似文献   

3.
In this paper, we report that SB202190 alone, a specific inhibitor of p38(MAPK), induces low density lipoprotein (LDL) receptor expression (6-8-fold) in a sterol-sensitive manner in HepG2 cells. Consistent with this finding, selective activation of the p38(MAPK) signaling pathway by expression of MKK6b(E), a constitutive activator of p38(MAPK), significantly reduced LDL receptor promoter activity. Expression of the p38(MAPK) alpha-isoform had a similar effect, whereas expression of the p38(MAPK) betaII-isoform had no significant effect on LDL receptor promoter activity. SB202190-dependent increase in LDL receptor expression was accompanied by induction of p42/44(MAPK), and inhibition of this pathway completely prevented SB202190-induced LDL receptor expression, suggesting that p38(MAPK) negatively regulates the p42/44(MAPK) cascade and the responses mediated by this kinase. Cross-talk between these kinases appears to be one-way because modulation of p42/44(MAPK) activity did not affect p38(MAPK) activation by a variety of stress inducers. Taken together, these findings reveal a hitherto unrecognized one-way communication that exists between p38(MAPK) and p42/44(MAPK) and provide the first evidence that through the p42/44(MAPK) signaling cascade, the p38(MAPK) alpha-isoform negatively regulates LDL receptor expression, thus representing a novel mechanism of fine tuning cellular levels of cholesterol in response to a diverse set of environmental cues.  相似文献   

4.
5.
PPM1D is a p53-inducible Ser/Thr protein phosphatase. PPM1D gene amplification and overexpression have been reported in a variety of human tumors, including breast cancer and neuroblastoma. Because the phosphatase activity of PPM1D is essential for its oncogenic role, PPM1D inhibitors should be viable anti-cancer agents. In our current study, we showed that SPI-001 was a potent and specific PPM1D inhibitor. SPI-001 inhibited PPM1D phosphatase activity in PPM1D-overexpressing human breast cancer cells and increased phosphorylation of p53. Furthermore, SPI-001 suppressed cell proliferation by inducing apoptosis. Our present study suggested that SPI-001 was a potential lead compound in developing anti-cancer drugs.  相似文献   

6.
Neuroplastin-65 is a brain-specific, synapse-enriched member of the immunoglobulin (Ig) superfamily of cell adhesion molecules. Previous studies highlighted the importance of neuroplastin-65 for long-term potentiation (LTP), but the mechanism was unclear. Here, we show how neuroplastin-65 activation of mitogen-activated protein kinase p38 (p38MAPK) modified synapse strength by altering surface glutamate receptor expression. Organotypic hippocampal slice cultures treated with the complete extracellular fragment of neuroplastin-65 (FcIg1-3) sustained an increase in the phosphorylation of p38MAPK and an inability to induce LTP at hippocampal synapses. The LTP block was reversed by application of the p38MAPK inhibitor SB202190, suggesting that p38MAPK activation occurred downstream of neuroplastin-65 binding and upstream of the loss of LTP. Further investigation revealed that the mechanism underlying neuroplastin-65-dependent prevention of LTP was a p38MAPK-dependent acceleration of the loss of surface-exposed glutamate receptor subunits that was reversed by pretreatment with the p38MAPK inhibitor SB202190. Our results indicate that neuroplastin-65 binding and associated stimulation of p38MAPK activity are upstream of a mechanism to control surface glutamate receptor expression and thereby influence plasticity at excitatory hippocampal synapses.  相似文献   

7.
8.
The oncogenic Wip1 phosphatase (PPM1D) is induced upon DNA damage in a p53-dependent manner and is required for inactivation or suppression of DNA damage-induced cell cycle checkpoint arrest and of apoptosis by dephosphorylating and inactivating phosphorylated Chk2, Chk1, and ATM kinases. It has been reported that arsenic trioxide (ATO), a potent cancer chemotherapeutic agent, in particular for acute promyelocytic leukemia, activates the Chk2/p53 pathway, leading to apoptosis. ATO is also known to activate the p38 MAPK/p53 pathway. Here we show that phosphatase activities of purified Wip1 toward phosphorylated Chk2 and p38 in vitro are inhibited by ATO in a dose-dependent manner. Furthermore, DNA damage-induced phosphorylation of Chk2 and p38 in cultured cells is suppressed by ectopic expression of Wip1, and this Wip1-mediated suppression can be restored by the presence of ATO. We also show that treatment of acute promyelocytic leukemia cells with ATO resulted in induction of phosphorylation and activation of Chk2 and p38 MAPK, which are required for ATO-induced apoptosis. Importantly, this ATO-induced activation of Chk2/p53 and p38 MAPK/p53 apoptotic pathways can be enhanced by siRNA-mediated suppression of Wip1 expression, further indicating that ATO inhibits Wip1 phosphatase in vivo. These results exemplify that Wip1 is a direct molecular target of ATO.  相似文献   

9.
10.
A selective p38 MAP kinase (p38 MAPK) inhibitor, SB202190, induced apoptotic cell death of a macrophage-like cell line, J774.1, in the presence of lipopolysaccharide (LPS), as judged by DNA nicks revealed by terminal deoxy transferase (TdT)-mediated dUTP nick end labeling (TUNEL), activation of caspase-3, and subsequent release of lactate dehydrogenase. This cytotoxicity was dependent on both LPS and SB202190, and such inhibitors of the upstream LPS-signaling cascade as polymyxin B and TPCK blocked this macrophage cell death. SB202190 suppressed the kinase activity of p38, leading to inhibition of activation of MAPKAPK2 and then the subsequent phosphorylation of hsp27 in LPS-treated macrophages both in vitro and in vivo, but an inactive analog of SB202190, SB202474, did not. There was a threshold of the time of addition of SB202190 to LPS-treated macrophages to induce apoptosis, which was before full transmission of p38 activity to a direct downstream kinase, MAPKAPK2. Besides, localization of phosphorylated hsp27 in Golgi area of the LPS-treated macrophages was suppressed by SB202190, while it was not by SB202474. These results suggest that selective inhibition of p38 MAPK activity in LPS-induced MAP kinase cascade leads to apoptosis of macrophages.  相似文献   

11.
12.
13.
SB202190, a widely used inhibitor of p38 MAPKα and β, was recently described to induce autophagic vacuoles and cell death in colon and ovarian cancer cells lines and, therefore, this effect was supposed to be specific for transformed cells and to open therapeutic options. Here, we demonstrate that SB202190 and the structurally related inhibitor SB203580 induce pro-autophagic gene expression and vacuole formation in various cancer and non-cancer cell lines of human, rat, mouse and hamster origin. This effect seems to induce defective autophagy leading to the accumulation of acidic vacuoles, p62 protein and lipid conjugated LC3. Using further p38 inhibitors we show that p38 MAPK inhibition is not sufficient for the autophagic response. In line with these results, expression of a SB202190-resistant mutant of p38α, which significantly increases activity of the p38 pathway under inhibitory conditions, does not block SB202190-dependent vacuole formation, indicating that lack of p38α activity is not necessary for this effect. Obviously, the induction of autophagic vacuole formation by SB203580 and SB202190 is due to off-target effects of these inhibitors on post-translational protein modifications, such as phosphorylation of the MAPKs ERK1/2 and JNK1/2, ribosomal protein S6, and PKB/Akt. Interestingly, the PI3K-inhibitor wortmannin induces transient vacuole formation indicating that the PI3K-PKB/Akt-mTOR pathway is essential for preventing autophagy and that cross-inhibition of this pathway by SB202190 could be the reason for the early part of the effect observed.  相似文献   

14.
Adenosine-induced acceleration of glycolysis in hearts stressed by transient ischemia is accompanied by suppression of glycogen synthesis and by increases in activity of adenosine 5'-monophosphate-activated protein kinase (AMPK). Because p38 mitogen-activated protein kinase (MAPK) may regulate glucose metabolism and may be activated downstream of AMPK, this study determined the effects of the p38 MAPK inhibitors SB202190 and SB203580 on adenosine-induced alterations in glucose utilization and AMPK activity. Studies were performed in working rat hearts perfused aerobically following stressing by transient ischemia (2 x 10-min ischemia followed by 5-min reperfusion). Phosphorylation of AMPK and p38 MAPK each were increased fourfold by adenosine, and these effects were inhibited by either SB202190 or SB203580. Neither of these inhibitors directly affected AMPK activity. Attenuation of the adenosine-induced increase in AMPK and p38 MAPK phosphorylation by SB202190 and SB203580 occurred independently of any change in tissue ATP-to-AMP ratio and did not alter glucose uptake, but it was accompanied by an increase in glycogen synthesis and glycogen content and by inhibition of glycolysis and proton production. There was a significant inverse correlation between the rate of glycogen synthesis and AMPK activity and between AMPK activity and glycogen content. These data demonstrate that AMPK is likely downstream of p38 MAPK in mediating the effects of adenosine on glucose utilization in hearts stressed by transient ischemia. The ability of p38 MAPK inhibitors to relieve the inhibition of glycogen synthesis and to inhibit glycolysis and proton production suggests that these agents may restore adenosine-induced cardioprotection in stressed hearts.  相似文献   

15.
Although SB202190 and SB203580 are described as specific p38 MAP kinase inhibitors, several reports have indicated that other enzymes are also sensitive to SB203580. Using a pharmacological approach, we report for the first time that compounds SB202190 and SB203580 were able to directly and selectively interact with a G-protein-coupled receptor, namely the cholecystokinin receptor subtype CCK1, but not with the CCK2 receptor. We demonstrated that these compounds were non-competitive antagonists of the CCK1 receptor at concentrations typically used to inhibit protein kinases. By chimeric construction of the CCK2 receptor, we determined the involvement of two CCK1 receptor intracellular loops in the binding of SB202190 and SB203580. We also showed that two CCK antagonists, L364,718 and L365,260, were able to regulate p38 mitogen-activated protein (MAP) kinase activity. Using a reporter gene strategy and immunoblotting experiments, we demonstrated that both CCK antagonists inhibited selectively the enzymatic activity of p38 MAP kinase. Kinase assays suggested that this inhibition resulted from a direct interaction with both CCK antagonists. Molecular modeling simulations suggested that this interaction occurs in the ATP binding pocket of p38 MAP kinase. These results suggest that SB202190 and SB203580 bind to the CCK1 receptor and, as such, these compounds should be used with caution in models that express this receptor. We also found that L364,718 and L365,260, two CCK receptor antagonists, directly interacted with p38 MAP kinase and inhibited its activity. These findings suggest that the CCK1 receptor shares structural analogies with the p38 MAP kinase ATP binding site. They open the way to potential design of either a new family of MAP kinase inhibitors from CCK1 receptor ligand structures or new CCK1 receptor ligands based on p38 MAP kinase inhibitor structures.  相似文献   

16.
Protein phosphatase, Mg2+/Mn2+ dependent, 1D (PPM1D) is emerging as an oncogene by virtue of its negative control on several tumor suppressor pathways. However, the clinical significance of PPM1D in pancreatic cancer (PC) has not been defined. In this study, we determined PPM1D expression in human PC tissues and cell lines and their irrespective noncancerous controls. We subsequently investigated the functional role of PPM1D in the migration, invasion, and apoptosis of MIA PaCa-2 and PANC-1 PC cells in vitro and explored the signaling pathways involved. Furthermore, we examined the role of PPM1D in PC tumorigenesis in vivo. Our results showed that PPM1D is overexpressed in human PC tissues and cell lines and significantly correlated with tumor growth and metastasis. PPM1D promotes PC cell migration and invasion via potentiation of the Wnt/β-catenin pathway through downregulation of apoptosis-stimulating of p53 protein 2 (ASPP2). In contrast to PPM1D, our results showed that ASPP2 is downregulated in PC tissues. Additionally, PPM1D suppresses PC cell apoptosis via inhibition of the p38 MAPK/p53 pathway through both dephosphorylation of p38 MAPK and downregulation of ASPP2. Furthermore, PPM1D promotes PC tumor growth in vivo. Our results demonstrated that PPM1D is an oncogene in PC.  相似文献   

17.
The synthesis of melanin pigments, or melanogenesis, is regulated by the balance of a variety of signal transduction pathways. Among these pathways, p38 MAPK signaling was found to be involved in stress-induced melanogenesis and to be activated by α-melanocyte-stimulating hormone (α-MSH) and ultraviolet irradiation. Previous studies have shown that α-MSH-stimulated melanogenesis can be inhibited by blocking p38 MAPK activity with SB203580, a pyridinyl imidazole compound. Consistent with this, we observed that pyridinyl imidazoles (SB203580 and SB202190) inhibited both basal and α-MSH-induced melanogenesis in B16 melanoma cells. However, SB202474, which has no ability to inhibit p38 MAPK activity and is usually used as a negative control compound in p38 MAPK studies, also suppressed melanin synthesis induction. Furthermore, the independence of the p38 kinase pathway from the repression of melanogenesis by pyridinyl imidazole compounds was also confirmed by small interfering RNA experiments. Interfering with p38 MAPK expression surprisingly stimulated melanogenesis and tyrosinase family protein expression. Although the molecular mechanism(s) by which p38 promotes the degradation of melanogenic enzymes remain to be determined, the involvement of the ubiquitin-proteasome pathway was demonstrated by co-treatment with the proteasome-specific inhibitor MG132 and the relative decrease in the ubiquitination of tyrosinase in cells transfected with p38-specific small interfering RNA.  相似文献   

18.
19.
20.
Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号