首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary It is shown that in vitro pollination can be used in future studies of the time course of pollen-tube development and analysis of self-incompatibility in sugar beet, Beta vulgaris L. Upon selfng a self-incompatible genotype showed the same incompatibility response after both in vitro and in vivo pollinations. No differences between cross-compatible and self-compatible pollentube growth were observed. The pollen-tube rejection occurred whether or not the pollen was prehydrated. RNA staining with Acridine Orange showed that there was less cellular RNA in the pistil tissue from in vitro-pollinated flowers. Nevertheless, pollen-tube growth and the self-incompatibility response were similar after in vivo and in vitro pollinations.  相似文献   

2.
Haploid plants of Beta vulgaris were obtained by gynogenesis from ovules isolated from male-fertile and annual and biennial male-sterile plants. We show that on a N6 basal medium, supplemented with 2.85 M IAA and 0.94 M Kinetin or 0.88 M BAP, haploids originate directly through embryogenesis. In order to determine the optimal developmental stage of the ovule of Beta vulgaris for gynogenesis, we carried out a histological study of whole ovules from open male-sterile flowers (collected 1 to 5 days after flowering) and unopened male-fertile flowers (collected 1 to 3 days before anthesis). In all cases, the gametophyte appeared completely differentiated. These results suggest that maturity of the gametophyte is reached a few days before anthesis and therefore ovules from unopened flowers are already suitable for plating. A developmental study of the haploid cells of the sugarbeet embryo sac during the first week of in vitro culture showed that the viable gynogenetic embryo originated only from the egg cell.  相似文献   

3.
Summary Structural observations on in situ- and in vitro-grown ovules from different intra- and interspecific crosses in the genus Beta were tested using computer registration and statistical analysis. In intra- as well as interspecific crosses embryo development occurs with the same rate independent of growth conditions. Therefore, with respect to growth rate, embryo development seems to be highly autonomous, provided that nutrient influx into the ovule is sufficient. The endosperm develops significantly more rapidly during in vitro culture than in situ. A large degree of variability with respect to structural changes in the ovule tissue during in vitro culture is observed in and between the crosses. In general, the interspecific cross responds more rapidly on in vitro culture. In all crosses the embryo, although genetically identical to the suspensor, shows a higher degree of response to in vitro culture than the embryo itself. Early suspensor degeneration in the interspecific cross is the only observed difference between the crosses, which could explains the lack of root formation in seedlings of interspecific hybrids. The use of statistical analysis on the anatomical parameters used to compare treatment as well as crosses has proven to be an efficient and novel approach to plant reproduction biology.  相似文献   

4.
Summary We have established a first linkage map for beets based on RFLP, isozyme and morphological markers. The population studied consisted of 96 F2 individuals derived from an intraspecific cross. As was expected for outbreeding species, a relatively high degree of polymorphism was found within sugar beet; 47% of the DNA markers were polymorphic for the chosen population. The map consists of 115 independent chromosomal loci designated by 108 genomic DNA probes, 6 isozyme and one morphological marker. The loci cover 789 cM with an average spacing of 6.9 cM. They are dispersed over nine linkage groups corresponding to the haploid chromosome number of Beta species. Eighteen markers (15.4%) showed distorted segregation which, in most instances, can be explained by gametic selection of linked lethal loci. The application of the linkage map in sugar beet breeding is discussed.  相似文献   

5.
Vacuoles isolated from storage roots of red beet (Beta vulgaris L.) posess a Mg2+-dependent, alkaline pyrophosphatase (PPase) activity which is further stimulated by salts of monovalent cations. The requirement for Mg2+ is specific. Mn2+ and Zn2+ permitted only 20% and 12%, respectively, of the PPase activity obtained in the presence of Mg2+ while Ca2+, Co2+ and Cu2+ were ineffective. Stimulation of Mg2+-PPase activity by salts of certain monovalent cations was due to the cation and the order of effectiveness of the cations tested was K+=Rb+=NH 4 + >Cs+. Salts of Li+ and Na+ inhibited Mg2+-PPase activity by 44% and 24%, respectively. KCl-stimulation of Mg2+-PPase activity was maximal with 60–100 mM KCl. There was a sigmoidal relationship between PPase activity and Mg2+ concentrations which resulted in markedly non-linear Lineweaver-Burk plots. At pH 8.0, the optimal [Mg2+]:[PPi] ratio for both Mg2+-PPase and (Mg2++KCl)-PPase activities was approximately 1:1, which probably indicates MgP2O7 2- is the true substrate.Abbreviations BSA bovine serum albumen - EDTA ethylenediamine tetra-acetic acid, disodium salt - MES 2-(N-morpholino)ethanesulphonic acid - Mg T 2+ total magnesium - Pi inorganic phosphate - PPase inorganic pyrophosphatase - PPi inorganic pyrophosphate - TCA trichloroacetic acid - Tris tris(hydroxymethyl)methylamine  相似文献   

6.
Rhizomania, one of the most devastating diseases in sugar beet, is caused by Beet Necrotic Yellow Vein Virus (BNYVV) belonging to the genus Benyvirus. Use of sugar beet varieties with resistance to BNYVV is generally considered as the only way to maintain a profitable yield on rhizomania-infested fields. As an alternative to natural resistance, we explored the transgenic expression of viral dsRNA for engineering resistance to rhizomania. Transgenic plants expressing an inverted repeat of a 0.4 kb fragment derived from the BNYVV replicase gene displayed high levels of resistance against different genetic strains of BNYVV when inoculated using the natural vector, Polymyxa betae. The resistance was maintained under high infection pressures and over prolonged growing periods in the greenhouse as well as in the field. Resistant plants accumulated extremely low amounts of transgene mRNA and high amounts of the corresponding siRNA in the roots, illustrative of RNA silencing as the underlying mechanism. The transgenic resistance compared very favourably to natural sources of resistance to rhizomania and thus offers an attractive alternative for breeding resistant sugar beet varieties.  相似文献   

7.
Ion stimulation and some other properties of an ATPase activity associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.) have been determined. The ATPase had a specific requirement for Mg2+ and in the presence of Mg2+ it was stimulated by salts of monovalent cations. The degree of stimulation by monovalent salts was influenced mainly by the anion and the order of effectiveness of the anions tested was Cl->HCO 3 - >Br->malate>acetate>SO 4 2- . For any given series of anions the magnitude of the stimulation obtained was influenced by the accompanying cation (NH 4 + Na+>K+). This cation effect was abolished by 0.01% (v/v) Triton X-100 and it is suggested that it is the result of different permeabilities of membrane vesicles to the cations. There was no evidence of synergistic stimulation of the ATPase by mixtures of Na+ and K+. KCl- and NaCl-stimulation was maximal with salt concentrations in the range 60–150 mM. The true substrate of the enzyme was shown to be MgATP. It was shown that KCl stimulation was the result of an increase in Vmax rather than a change in the affinity of the enzyme for MgATP. The ATPase was inhibited by N,N-dicyclohexylcarbodiimide, diethylstilbestrol, mersalyl and KNO3 but other inhibitors tested (azide, oligomycin, orthovanadate, K3[Cr(oxalate)6] and ethyl-3-[3-dimethylaminopropyl]carbodiimide) were without effect or caused only partial inhibition at the highest concentration tested. The ATPase activity was equally distributed between pellet and supernatant fractions obtained after the subfractionation of vacuoles but the properties of the ATPase in each fraction were the same. It is suggested that beet vacuoles possess only one ATPase. The properties of the ATPase are compared with those of ATPases associated with other plant membranes and organelles and its possible role in transport at the tonoplast is discussed.Abbreviations ATPF free ATP - ATPT total ATP - BSA bovine serum albumen - DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - DNP 2,4-dinitrophenol - EDAC ethyl-3-(3-dimethylaminopropyl)carbodiimide - Km apparent Michaelis constant - MgATP complex of Mg2+ and ATP - Mg F 2+ free Mg2+ - Mg T 2 total Mg2+ - MES 2-(N-Morpholino)ethanesulphonic acid - Na2EDTA disodium ethylenediaminetetraacetic acid - NEM N-ethylmaleimide - Pi inorganic phosphate - TCA trichloroacetic acid - Tris tris(hydroxymethyl)methylamine - Vmax maximum velocity  相似文献   

8.
Accumulation of various osmolytes was examined in plants of sugar beet cv. Janus grown under two soil water treatments: control (60% of the field water capacity; FWC) and drought (30–35% FWC). The water shortage started on the 61st day after emergence (DAE), at the stage of the beginning of tap-roots development and was imposed for 35 days. Osmotic potential of sugar beet plant organs, particularly tap-roots, was decreased significantly as a consequence of a long-term drought. Water shortage reduced univalent (K+, Na+) cations concentrations in the petioles and divalent (Ca2+, Mg2+) ions level in the mature and old leaves. Cation concentrations in the tap-roots were not affected by water shortage. The ratio of univalent to divalent cations was significantly increased in young leaves and petioles as a consequence of drought. Long-term water deficit caused a significant reduction of inorganic phosphorus (Pi) concentration in young and old leaves. Under the water stress condition, the concentration of proline was increased in all individual plant organs, except proline concentration in the youngest leaves. Drought treatment caused a significant increase of glycine betaine content in shoot without any change in tap-roots. Glucose concentrations were significantly increased only in tap-roots as the effect of drought. In response to water shortage the accumulation of sucrose was observed in all the examined leaves and tap-roots. Overall, a long-term drought activated an effective mechanism for osmotic adjustment both in the shoot and in the root tissues which may be critical to survival rather than to maintain plant growth but sugar beet organs accumulate different solutes as a response to water cessation.  相似文献   

9.
10.
Summary The development of microspore mother cells (MMC) and tapetum in male-fertile and male-sterile anthers of Beta vulgaris L. was compared at the electron microscope level. These studies were complemented by morphometric analyses of mitochondria in both tissues through successive stages of microsporogenesis. The earliest irregularities in the ultrastructure of male-sterile anthers were noted within the tapetum at the tetrad stage. These disturbances were initially expressed by a slight reduction in mitochondrial size and the appearance of concentric configurations of endoplasmic reticulum. As development proceeded, a further decrease in mitochondrial size become more conspicuous and was accompanied by a reduction in ribosome population and a failure of the tapetum to produce Ubisch bodies. This failure to produce Ubisch bodies is reflected in the underdevelopment of sterile microspore exine.  相似文献   

11.
Methods are described for obtaining explants which produce adventitious shoots, for subsequent stimulation of rooting and then transplanting using six commercial sugar-beet cultivars. The rate of adventitious shoot regeneration from petioles or intact leaf explants was affected by the source of donor plants, cytokinin type (BAP or Kin) and concentration and cultivar. Increasing the sucrose concentration of the medium from 3% to 5% or 8% had no apparent effect. Adventitious shoots could be produced directly from callus formed on the base of the petioles. In general adventitious shoots were produced on either the concave surface of the petiole or from the callus, occasionally simultaneously on both, and on the convex surface of the petiole in intact leaf explants. The highest rooting rate with 3% sucrose and 1.0 mg l–1 NAA was obtained using half-strength MS medium. There was considerable variation in the propagules from petioles or callus indicating that this system may provide valuable somaclonal variation.Abbreviations BAP benzylaminopurine - IBA indole-3-butyric acid - GA3 gibberellic acid - MS Murashige and Skoog medium - NAA naphthaleneacetic acid Author for correspondence  相似文献   

12.
Summary A restriction endonuclease fragment map of sugar beet chloroplast DNA (ctDNA) has been constructed with the enzymes SmaI, PstI and PvuII. The ctDNA was found to be contained in a circular molecule of 148.5 kbp. In common with many other higher plant ctDNAs, sugar beet ctDNA consists of two inverted repeat sequences of about 20.5 kbp separated by two single-copy regions of different sizes (about 23.2 and 84.3 kbp). Southern hybridization analyses indicated that the genes for rRNAs (23S+16S) and the large subunit of ribulose 1,5-bisphosphate carboxylase were located in the inverted repeats and the large single-copy regions, respectively.  相似文献   

13.
Thomas J. Buckhout 《Planta》1989,178(3):393-399
An analysis of the molecular mechanism of sucrose transport across the plasmalemma was conducted with isolated plasma-membrane (PM) vesicles. Plasma membrane was isolated by aqueous two-phase partitioning from fully expanded sugar beet (Beta vulgaris L.) leaves. The isolated fraction was predominantly PM vesicles as determined by marker-enzyme analysis, and the vesicles were oriented right-side-out as determined by structurally linked latency of the PM enzyme, vanadate-sensitive Mg2+-ATPase. Sucrose uptake was investigated by equilibrating PM vesicles in pH 7.6 buffer and diluting them 20-fold into pH 6.0 buffer. Using this pH-jump technique, vesicles accumulated acetate in a pH-dependent, protonophore-sensitive manner, which demonstrated the presence of a pH gradient (pH) across the vesicle membrane. Addition of sucrose to pH-jumped PM vesicles resulted in a pH-dependent, protonophoresensitive uptake of sucrose into the vesicles. Uptake was sucrose-specific in that a 10-fold excess of mannose, glucose, fructose, mannitol, melibiose, lactose or maltose did not inhibit sucrose accumulation. The rate of pH-dependent uptake was saturable with respect of sucrose concentration and had an apparent K m, of 0.45 mM. Sucrose uptake was stimulated approximately twofold by the addition of valinomycin and K+, which indicated an electrogenic sucrose-H+ symport. Membrane potentials () were imposed across the vesicle membrane using valinomycin and K+. A membrane potential, negative inside, stimulated pH-dependent sucrose uptake while a , positive inside, inhibited uptake. Conditions that produce a negative in the absence of a pH gradient supported, although weakly, sucrose uptake. These data support an electrogenic sucrose-H+ symport as the mechanism of sucrose transport across the PM in Beta leaves.Abbreviations and symbols CCCP carbonyl cyanide m-chlorophenylhydrazone - cyt cytochrome - PM plasma-membrane(s) - electrical potential difference  相似文献   

14.
Phosphatase activities were measured in preparations of vacuoles isolated from storage roots of red beet (Beta vulgaris L.). The vacuoles possessed both acid phosphatase and ATPase activities which could be distinguished by their susceptibility to inhibition by low concentrations of ammonium molybdate [(NH4)6Mo7O24·4H2O]. The acid phosphatase was completely inhibited by 100 M ammonium molybdate but the ATPase was unaffected. The acid phosphatase was a soluble enzyme which hydrolysed a large number of phosphate esters and had a pH optimum of 5.5. In contrast, the ATPase was partially membrane-bound, had a pH optimum of 8.0 and hydrolysed ATP preferentially, although it was also active agianst PPi, GTP and GDP. At pH 8.0 both the ATPase and PPase activities were Mg2+-dependent and were further stimulated by KCl. The ATPase and PPase activities at pH 8.0 may be different enzymes. The recovery and purification of the ATPase during vacuole isolation were determined. The results indicate that the Mg2+-dependent, KCl-stimulated ATPase activity is not exclusively associated with vacuoles.Abbreviations BSA bovine serum albumen - MES 2-(N-Morpholino)ethanesulphonic acid - MOPS 3-(N-Morpholino)propanesulphonic acid - Na2EDTA ethylenediaminetetra-acetic acid, disodium salt - Pi inorganic phosphate - PPi inorganic pyrophosphate - PPase inorganic pyrophosphatase - TCA trichloroacetic acid - TES N-tris(hydroxymethyl)methyl-2-amino-ethanesulphonic acid - Tris tris(hydroxymethyl)methylamine  相似文献   

15.
Summary The development of sporogenous and tapetal cells in the anthers of male-fertile and cytoplasmic male-sterile sugar beet (Beta vulgaris L.) plants was studied using light and transmission electron microscopy. In general, male-sterile anthers showed a much greater variability in developmental pattern than male-fertile anthers. The earliest deviation from normal anther development was observed to occur in sterile anthers at meiotic early prophase: there was a degeneration or irregular proliferation of the tapetal cells. Other early aberrant events were the occurrence of numerous small vesicles in the microspore mother cells (MMC) and a disorganized chromatin condensation. Deviations that occurred in sterile anthers at later developmental stages included: (1) less distinct inner structures in the mitochondria of both MMC and tapetal cells from middle prophase onwards. (2) dilated ER and nuclear membranes at MMC prophase, in some cases associated with the formation of protein bodies. (3) breakdown of cell walls in MMCs and tapetal cells at late meiotic prophase. (4) no massive increase in tapetal ER at the tetrad stage. (5) a general dissolution of membranes, first in the MMC, then in the tapetum. (6) abortion of microspores and the occurrence of a plasmodial tapetum in anthers reaching the microspore stage. (7) no distinct degeneration of tapetal cells after microspore formation. Thus, it seems that the factors that lead to abortive microsporogenesis are structurally expressed at widely different times during anther development. Aberrant patterns are not restricted to the tetrad stage but occur at early prophase.  相似文献   

16.
Summary Haploid plantlets from male fertile and male sterile sugarbeet plants could be induced at frequencies up to 2.2% using ovule culture. Ovary culture on media without charcoal resulted in a similar induction frequency. Plant development was inhibited by callus development originating from the mother tissue. When the callus parts were removed and the ovule transferred to a new medium without 2,4 D, callus formation could be inhibited by adding 0.5% charcoal to the medium. Up to 6.1% haploids were induced. Chromosome counts in leaf tips, chloroplast counts and isozyme patterns revealed that all plants were haploid and originated from the haploid cells of the embryo sac. Root tips showed spontaneous polyploidisation.  相似文献   

17.
G. Mäck  R. Tischner 《Planta》1994,194(3):353-359
In extracts from the primary leaf blade of sugar beet (Beta vulgaris L.) we separated a chloroplastic isoform (GS 2) of glutamine synthetase (GS, EC 6.3.1.2) and one or two (depending on leaf age) cytosolic isoforms (GS 1a and GS 1b). The latter were prominent in the early (GS 1a) and late stages of leaf ontogeny (GS 1a and GS 1b), whereas during leaf maturation GS 2 was the predominantly active GS isoform. The GS 1 isoforms were active exclusively in the octameric state although tetrameric GS 1 protein was detected immunologically. Their activity stayed at a relatively constant level during leaf ontogeny; an increase was observed only in the senescent leaf. The activity of GS 2, however, changed drastically during primary leaf ontogeny and was modulated by changes in the oligomeric state of the active enzyme. In the early and late stages of leaf ontogeny when GS 2 activity was low (lower than that of the GS 1 isoforms), GS 2 was active only in the octameric state. In the maturing leaf, when GS 2 activity had reached its maximum level (much higher than that of the GS 1 isoforms), 80 of total GS 2 activity was due the activity of the tetrameric form of the enzyme and 20 was due to octameric GS 2. Tetrameric GS 2 was a hetero-tetramer and thus not the unspecific dissociation product of homo-octameric GS 2. In addition, GS 2 activity was modulated by an activation/inactivation of the tetrameric GS 2 protein. Due to an activation of the GS 2 tetramer, the activity of tetrameric GS 2 increased during leaf maturation from zero level 23-fold compared with that of GS 1a and 18-fold compared with that of GS 1b. Possible activators of tetrameric GS 2 are thiol-reactive substances. During leaf senescence, GS 2 activity decreased to zero; this decrease was due to an inactivation of the tetrameric GS 2 protein probably caused by oxidation.Abbreviations FLL final lamina length - FPLC fast protein liquid chromatography - GS glutamine synthetase - GHA -glutamyl hydroxamate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase Dr. Roger Wallsgrove's (Rothamsted Experimental Station, Harpenden, UK) generous gift of GS antiserum is greatly appreciated.  相似文献   

18.
The membrane potential in vacuoles isolated from storage roots of red beet (Beta vulgaris L.) has been studied by following changes in the fluorescence of the dye 3,3-diethylthiodicarbocyanine iodide, and by determining the uptake of the lipophilic triphenylmethylphosphonium cation. The vacuoles have a membrane potential, internal negative, which is estimated to be around-60 mV. These potentials become less negative by nearly 10 mV on addition of ATP. This ATP-dependent depolarisation is inhibited by the protonophore carbonylcyanide p-trifluoromethoxyphenylhydrazone and by the ATPase inhibitors, N,N-dicyclohexylcarbodiimide and trimethyltin chloride, but it is largely insensitive to sodium orthovanadate. Fusicoccin had no significant effect on the isolated vacuoles, but its addition to excised tissue caused a hyperpolarisation of the cells measured using a microelectrode.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - DiS-C2-(5) 3,3-diethylthiodicarbocyanine iodide - FCCP carbonylcyanide p-trifluoromethoxyphenylhydrazone - TPMP+ triphenylmethylphosphonium ion  相似文献   

19.
20.
A convenient and reliable method for culturing cotton embryos is needed to obtain interspecific hybrids of this genus. C.A. Beasley and I.P. Ting (Amer. J. Bot. 60, 130, 1973) developed a phytohormone-supplemented medium (BTP) upon which the growth of ovules was similar that of in situ ovules. This medium was examined for in-ovulo embryo culture. Although good ovule growth occurred on BTP no embryos developed to maturity. However, when the medium was supplemented with NH 4 + , more than 50% of the ovules produced mature embryos, and many of these germinated precociously after 8–10 weeks of culture. After germination seedlings were established on a separate medium designed to give balanced root and shoot growth. Subsequently young plants could be transferred to pots for greenhouse culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号